
https://secure.urkund.com/view/158826019-231749-951747#/sources 1/133

Document Information

Analyzed document Mathematical Foundation of Computer Science.pdf (D166063629)

Submitted 5/6/2023 6:54:00 AM

Submitted by Mumtaz B

Submitter email mumtaz@code.dbuniversity.ac.in

Similarity 17%

Analysis address mumtaz.dbuni@analysis.urkund.com

Sources included in the report

URL: http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-

open-universi...

Fetched: 12/9/2021 9:37:35 AM

127

Entire Document

MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE

SYLLABI-BOOK MAPPING TABLE Mathematical Foundations of Computer Science Algorithm: Algorithms, merits and

demerits, Exponentiation, How to compute fast exponentiation. Linear Search, Binary Search, ‘Big Oh’ notation.

Worst case, Advantage of logarithmic algorithms over linear algorithms, complexity.

Graph Theory: Graphs, Types of graphs, degree of vertex, sub graph, isomorphic and homeomorphic graphs, Adjacent and

incidence matrices, Path circuit: Eulerian, Hamiltonian path circuit. Tree: Tree, Minimum distance trees, Minimum weight

and Minimum distance spanning trees. Recursion: Merge sort, Insertion sort, Bubble sort, and Decimal to Binary.

Recurrence Relations: LHRR, LHRRWCCs, DCRR. Recursive procedures. Number Theory: GCD,

Euclidean algorithm, Fibonacci numbers, congruences and equivalence relations, public key encryption schemes.

Unit 1: Algorithms (Pages: 3-93) Unit 2: Graph Theory (Pages: 95-136) Unit 3: Trees (Pages: 137-162) Unit 4: Recursion

(Pages: 163-216) Unit 5: Number Theory (

Pages: 217-261) Syllabi Mapping in Book

CONTENTS INTRODUCTION 1

UNIT 1 ALGORITHMS 3-93 1.0 Introduction 1.1 Unit Objectives 1.2

Algorithms: An Introduction 1.2.1 Definition, Characteristics and Properties of Algorithms 1.2.2 Types of Algorithms 1.2.3

Areas of Research in the Study of Algorithms 1.2.4 Algorithm for Sequential Search 1.2.5 Algorithms as Technology 1.2.6

Algorithms and Other Technologies 1.2.7 Measuring the Running Time of an Algorithm 1.2.8 Algorithm Design Strategies

1.2.9 Analysis of Algorithms 1.2.10 Merits and Demerits of Algorithm 1.2.11 Flowchart and Algorithms 1.2.12 Designing an

Algorithm using Flowcharts 1.3 Exponentiation 1.3.1 How to Compute Exponentiation Fast? 1.4 Linear Search 1.4.1

Algorithm for Linear Search 1.4.2 Analysis of Linear Search algorithm 1.5 Binary Search 1.5.1 The Search Method 1.5.2

Algorithm for Binary Search 1.5.3 Analysis of Binary Search Algorithm 1.5.4 Fibonacci Search 1.6 Big Oh Notation (or Big O

Notation) 1.6.1 Properties of the Big O Notation 1.6.2 General Rules 1.6.3 Finding Prime Factor of a Given Number 1.6.4 List

of Prime Numbers 1.7 Worst Case 1.8 Advantage of Logarithmic Algorithms Over Linear Algorithms 1.9 Complexity 1.9.1

Space Complexity 1.9.2 Time Complexity 1.9.3 Practical Complexities 1.9.4 Performance Measurement 1.10 Algorithm

Representation through a Pseudocode 1.10.1 Coding 1.10.2 Program Development Steps 1.10.3 Software Testing 1.11

Amortized Analysis

1.12

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 2/133

84% MATCHING BLOCK 1/127

Summary 1.13 Key Terms 1.14 Answers to ‘Check Your Progress’ 1.15 Questions and Exercises 1.16 Further Reading UNIT 2

GRAPH THEORY 95-136 2.0 Introduction 2.1 Unit Objectives 2.2

Graphs: Types and Operations 2.2.1 Bipartite Graphs 2.2.2 Subgraph 2.2.3 Distance in a Graph 2.2.4 Cut-Vertices and Cut-

Edges 2.2.5 Graph Connectivity 2.2.6 Isomorphic Graphs 2.2.7 Homeographic Graphs 2.2.8 Cut-Sets and Connectivity of

Graphs 2.2.9 Operations on Graphs 2.3 Degree of Vertex 2.4 Adjacent and Incidence Matrices 2.5 Path Circuit 2.5.1 Floyd’s

and Warshall’s Algorithms 2.5.2 Eulerian Path and Circuit 2.5.3 Hamiltonian Graphs 2.6 Graph Colouring 2.6.1 Four Colour

Theorem 2.7

91% MATCHING BLOCK 18/127

Summary 2.8 Key Terms 2.9 Answers to ‘Check Your Progress’ 2.10 Questions and Exercises 2.11 Further Reading UNIT 3

TREES 137-162 3.0 Introduction 3.1 Unit Objectives 3.2

Trees: Basics 3.2.1 Trees and Sorting 3.3 Minimum Height and Minimum Distance Spanning Trees 3.3.1 Depth-First Search

and Breadth-First Search 3.3.2 Optimal Spanning Graph 3.4 Planar Graphs 3.5

91% MATCHING BLOCK 2/127

Summary 3.6 Key Terms 3.7 Answers to ‘Check Your Progress’ 3.8 Questions and Exercises 3.9 Further Reading UNIT 4

RECURSION 163-216 4.0 Introduction 4.1 Unit Objectives 4.2

Mergesort 4.3 Insertion Sort 4.4 Bubble Sort and Selection Sort 4.4.1 Bubble Sort 4.4.2 Selection Sort 4.5 Binary and Decimal

Numbers 4.5.1 Binary Number System 4.5.2 Decimal Number System 4.5.3 Binary to Decimal Conversion 4.5.4 Decimal to

Binary Conversion 4.5.5 Double-Dabble Method 4.5.6 Decimal Fraction to Binary 4.6 Recursion and Recurrence Relations

4.6.1 Recursion and Iteration 4.6.2 Closed Form Expression 4.6.3 Sequence of Integers 4.6.4 Recurrence Relations 4.6.5

Linear Homogenous Recurrence Relations (LHRR) 4.6.6 Solving Linear Homogeneous Recurrence Relations 4.6.7 Solving

Linear Non-Homogeneous

Recurrence Relations 4.6.8 Linear Homogeneous Recurrence Relations with Constant Coefficient (LHRRWCC) 4.6.9

Divide and Conquer Recurrence Relation (DCRR) 4.7 Recursive Procedures 4.7.1 Functional Recursion 4.7.2 Recursive

Proofs 4.7.3 The Recursion Theorem 4.7.4 Infinite Sequences 4.7.5 Recursive Function and Primitive Recursive Function 4.8

84% MATCHING BLOCK 3/127

Summary 4.9 Key Terms 4.10 Answers to ‘Check Your Progress’ 4.11 Questions and Exercises 4.12 Further Reading UNIT 5

NUMBER THEORY 217-261 5.0 Introduction 5.1 Unit Objectives 5.2

Number Theory: Basics 5.2.1 Fundamental Theorem of Arithmetic 5.2.2 Prime Numbers 5.2.3 Division Algorithms 5.2.4

Divisibility 5.2.5 Absolute Value 5.2.6 Order and Inequalities 5.3 Greatest Common Divisor 5.3.1 Linear Diophantine Equation

5.4 Euclidean Algorithm 5.5 Fibonacci Numbers

5.6 Congruences and Equivalence Relations 5.6.1 Congruences Relations 5.6.2 Equivalence Relations 5.7 Public Key

Encryption Schemes 5.7.1 Message Authentication Code 5.7.2 Digital Structure 5.8

89% MATCHING BLOCK 4/127

Summary 5.9 Key Terms 5.10 Answer to ‘Check Your Progress’ 5.11 Questions and Exercises 5.12 Further Reading

Introduction

NOTES Self-Instructional Material 1 INTRODUCTION

https://secure.urkund.com/view/158826019-231749-951747#/sources 3/133

Mathematics is, perhaps, the most important subject for achieving excellence in any field of science or commerce. The

book has been structured to define the key mathematical concepts and its formulations by providing helpful and relevant

material in lucid, self-explanatory and simple language to help you to understand the basic concepts and achieve your

goals. It can be used by you as an introduction to the underlying ideas of mathematics that are applicable to computer

science as well. This book, Mathematical Foundations of Computer Science , is divided into five units. The first unit

introduces the concept of algorithms, its properties and characteristics. It also discusses the advantage of logarithmic

algorithms over linear algorithms. The next unit covers the various features of graphs, its types and operations. The third

unit deals with the types of tree structures and the various situations in which they are applied. The next unit explains the

concept of recursion and the recursive procedures. The last unit discusses the basics of the number theory. The topics are

logically organized and explained with related mathematical theorems, analysis and formulations to provide a background

for statistical thinking and analysis with good knowledge of calculus. The interactive examples have also been carefully

designed so that you can gradually build up your knowledge and understanding. The key features of this book are: ?It

balances theory with applications. ?The theorems and proofs are followed by solved exercises. ?Simplified notations and

techniques of mathematical methods to make the text easy to understand. ?The book motivates new concepts with the

extensive use of examples. ?The mathematical applications provided will help you to understand mathematics in action and

to contextualize what you are actually learning. ?The text facilitates understanding of key mathematical concepts and their

application in solving problems.

77% MATCHING BLOCK 5/127

The book follows the self-instructional mode wherein each unit begins with an Introduction to the topic. The Unit

Objectives

are then outlined before going on to the presentation of the detailed content in a simple and structured format. Check

Your Progress questions are provided at regular intervals to test the student’s

74% MATCHING BLOCK 6/127

understanding of the subject. A Summary, a list of Key Terms and a set of Questions and Exercises are provided at the end

of each unit for recapitulation. Algorithms NOTES Self-Instructional Material 3 UNIT 1 ALGORITHMS Structure 1.0

Introduction 1.1 Unit Objectives 1.2

Algorithms: An Introduction 1.2.1 Definition, Characteristics and Properties of Algorithms 1.2.2 Types of Algorithms 1.2.3

Areas of Research in the Study of Algorithms 1.2.4 Algorithm for Sequential Search 1.2.5 Algorithms as Technology 1.2.6

Algorithms and Other Technologies 1.2.7 Measuring the Running Time of an Algorithm 1.2.8 Algorithm Design Strategies

1.2.9 Analysis of Algorithms 1.2.10 Merits and Demerits of Algorithm 1.2.11 Flowchart and Algorithms 1.2.12 Designing an

Algorithm using Flowcharts 1.3 Exponentiation 1.3.1 How to Compute Exponentiation Fast? 1.4 Linear Search 1.4.1

Algorithm for Linear Search 1.4.2 Analysis of Linear Search algorithm 1.5 Binary Search 1.5.1 The Search Method 1.5.2

Algorithm for Binary Search 1.5.3 Analysis of Binary Search Algorithm 1.5.4 Fibonacci Search 1.6 Big Oh Notation (or Big O

Notation) 1.6.1 Properties of the Big O Notation 1.6.2 General Rules 1.6.3 Finding Prime Factor of a Given Number 1.6.4 List

of Prime Numbers 1.7 Worst Case 1.8 Advantage of Logarithmic Algorithms Over Linear Algorithms 1.9 Complexity 1.9.1

Space Complexity 1.9.2 Time Complexity 1.9.3 Practical Complexities 1.9.4 Performance Measurement 1.10 Algorithm

Representation through a Pseudocode 1.10.1 Coding 1.10.2 Program Development Steps 1.10.3 Software Testing 1.11

Amortized Analysis 1.12

100% MATCHING BLOCK 7/127

Summary 1.13 Key Terms 1.14 Answers to ‘Check Your Progress’ 1.15 Questions and Exercises 1.16 Further Reading 4

Self-Instructional Material

Algorithms NOTES 1.0 INTRODUCTION Informally, an algorithm refers to any

well-defined computational procedure that takes some values as ‘input’ and produces some value or set of values as

‘output’.

It

https://secure.urkund.com/view/158826019-231749-951747#/sources 4/133

98% MATCHING BLOCK 8/127

is composed of a finite set of steps, each of which may require one or more operations. Every operation may be

characterized as either simple or complex. Operations performed on scalar quantities are termed simple, while

those performed on vector data are normally termed as complex. An algorithm

87% MATCHING BLOCK 9/127

can also be viewed as a tool for solving a well-specified ‘computational problem’. The statement

of the problem specifies, in general terms, the desired input/output relationship.

In simple terms, an algorithm can be defined as

100% MATCHING BLOCK 10/127

a step-by-step procedure for performing some task in a finite amount of time.

For a given problem, there are several ways of designing an algorithm, but the best way is the one that executes the

algorithm fast. The most commonly used design approaches include, incremental approach, divide and conquer approach,

dynamic programming, greedy strategy, branch and bound, backtracking and randomized algorithms. Algorithms are used

in a broad spectrum of computer applications. Algorithms to sort, search and process text, solve graph problems and basic

geometric problems, display graphics and perform common mathematical calculations are extensively studied and are

considered a necessary component of

81% MATCHING BLOCK 11/127

computer science. 1.1 UNIT OBJECTIVES After going through this unit, you will be able to: ?Describe the

basic features of

algorithms ?Compute exponentiation ?Describe the meaning and implementation of linear search ?Describe the meaning

and implementation of binary search ?Understand the functions of Big O notation ?Define the best-case, worst-case and

average-case situations in an algorithm ?Describe the advantages of logarithmic algorithms over linear algorithms ?

Understand the various types of complexities, such as space complexity, time complexity, practical complexity, etc ?

Represent an algorithm through a pseudo code ?Describe the various techniques used in amortized analysis

Algorithms NOTES Self-Instructional Material 5 1.2 ALGORITHMS: AN INTRODUCTION Informally, an algorithm refers to

any well-

defined computational procedure that takes some values as ‘input’ and produces some value or set of values as ‘output’. An

algorithm is thus

a

sequence of computational steps that transform the input into the output. You can also view an algorithm

95% MATCHING BLOCK 12/127

as a tool for solving a well-specified ‘computational problem’. The statement

of the problem specifies in general terms the desired input/output relationship. The algorithm describes a specific

computational procedure for achieving that input/output relationship.

In simple terms, you can say that ‘Aan

https://secure.urkund.com/view/158826019-231749-951747#/sources 5/133

99% MATCHING BLOCK 13/127

algorithm is a step-by-step procedure for performing some task in a finite amount of time’. An algorithm is composed of

a finite set of steps each of which may require one or more operations. Every operation may be characterized as either a

simple or complex. Operations performed on scalar quantities are termed simple, while operations on vector data

normally termed as complex. 1.2.1

Definition, Characteristics and Properties of Algorithms The following are some of the established definitions of algorithms:

?

An algorithm is any well-defined computational procedure that takes some value, or set of values as input and provides

some value, or set of values as output. ?An algorithm is a set of

instructions for solving a problem. ?An algorithm is a sequence of computational steps that transforms inputs into one or

more output. ?An algorithm is the essence of a computational procedure in form of step- by-step instructions. ?

100% MATCHING BLOCK 14/127

An algorithm is a finite set of instructions that accomplishes a particular task.

Specification of Input Algorithm Specification of Output as a Function of Input Characteristics of Algorithms The following

are the major features of algorithms: ?Input: Each algorithm should have zero or more (but only finite) data items which are

supplied externally. ?Output: An algorithm must provide at least one data item to explain its purpose. ?

95% MATCHING BLOCK 15/127

Finiteness: An algorithm must terminate after a finite number of steps

which were executed in a finite amount of time.

6 Self-Instructional Material Algorithms NOTES ?Definiteness: Each step must be unambiguously specified and clear, i.e.,

each step must be precisely defined. ?Effectiveness: Each step should be sufficiently simple and basic. Algorithms that are

definite and effective are also termed as computational procedures. What is a Good Algorithm? A good algorithm should

be efficient in terms of the running time as well as the space utilized. An algorithm is said to be efficient, if it takes less

amount of time to execute and also utilizes less amount of memory. Efficiency as a Function of Input Size Efficiency can be

measured in terms of the number of bits in an input number as well as the number of data elements (numbers, points).

100% MATCHING BLOCK 16/127

Properties of Algorithm The following are the five important properties (features) of algorithm: ?Finiteness ?Definitiveness

?Input ?Output ?Effectiveness ?Finiteness: An algorithm must always terminate after a finite number of steps. If we trace

out the instructions of an algorithm, then for all cases, the algorithm terminates after a finite number of steps. ?

Definitiveness: Each operation must have a definite meaning and it must be perfectly clear. All steps of an algorithm need

to be precisely defined. The actions to be executed in each case should be rigorously and clearly specified. ?Inputs: An

algorithm may have zero or more ‘

input’ quantities. These inputs are given to the algorithm either

91% MATCHING BLOCK 17/127

prior to its beginning or dynamically as it runs. An input is taken from a specified set of objects. Also, it is externally

supplied to the algorithm. ?Output: An algorithm has one or more ‘output’ quantities. These quantities have specified

relations to the inputs. An algorithm produces at least one output. ?Effectiveness: Each operation should be effective, i.e.,

the operation must terminate in a finite amount of time. An algorithm is usually supposed to be ‘effective’ in the sense

that all its operations need to be sufficiently basic so that they can in principle be executed exactly the same way in a

finite length of time by someone using pencil and paper.

Algorithms NOTES Self-Instructional Material 7 1.2.2

https://secure.urkund.com/view/158826019-231749-951747#/sources 6/133

70% MATCHING BLOCK 19/127

Types of Algorithms (i) Approximate algorithm (ii) Probabilistic algorithm (iii) Infinite algorithm (iv) Heuristic algorithm (i)

Approximate Algorithm An algorithm is said to approximate if it is infinite and repeating. For example, 414 .1 2? 732 .1 3?

14 .3 ? ? , etc. (ii) Probabilistic Algorithm If the solution of a problem is uncertain, then it is called a probabilistic algorithm.

For example, Tossing of a coin (

iii)

100% MATCHING BLOCK 20/127

Infinite Algorithm An algorithm, which is not finite, is called infinite algorithm.

For example,

88% MATCHING BLOCK 21/127

a complete solution of a chessboard, division by zero (iv) Heuristic Algorithm Giving less inputs and getting more outputs

is called heuristic algorithm. 1.2.3 Areas of

Research in the Study of Algorithms

Several

active areas of research are included in the study of algorithms. The following four distinct areas can be identified: 1.

Devising Algorithms The creation of an algorithm is an art. It may never be fully automated. A few design techniques are

especially useful in fields other than computer science, such as operations research and electrical engineering. All of the

approaches we consider have application in diverse areas, including computer science. But some important design

techniques such as linear, non-linear and integer programming are not covered here as they are traditionally covered in

other courses. 2. Validating Algorithms Once you have devised an algorithm, you need to show that it computes the

correct answer for all possible legal inputs. This process is referred to as ‘algorithm validation’. It is not necessary to express

the algorithm as a program. If it is stated in a precise way, it will do. The objective of the validation is to assure the user that

the algorithm will work correctly and independently of the issues concerning the programming language, in which it will

eventually be written. After validity of the method

gets checked, is

8 Self-Instructional Material Algorithms NOTES

78% MATCHING BLOCK 22/127

shown, it is possible to write the program. On completion of program writing the second phase begins. This phase is

called ‘program providing’ or ‘program verification’. A proof of correctness requires the solution to be stated in two

forms. One form is usually a program, which is annotated by a set of assertions about the input and output variables of

the program. The second form is called specification and this may also be expressed in the predicate calculus. A proof

shows that these two forms are equivalent for every given legal input, they describe the same output. A complete proof

of program correctness requires that each statement of the programming language is precisely defined and all basic

operations

are

100% MATCHING BLOCK 23/127

proved correct. All these details may cause a proof to be very much longer than the program. 3. Analysing Algorithms As

an algorithm is executed, it uses computer’s central processing unit (CPU) for performing

operations.

https://secure.urkund.com/view/158826019-231749-951747#/sources 7/133

80% MATCHING BLOCK 24/127

It also uses the memory for holding the program and its data. Analysis of algorithm is the process of determining the

computing time and storage required by an algorithm. 4. Testing a Program Testing of a program comprises of two

phases: (i) Debugging and (ii) Profiling. (i) Debugging refers to the process of carrying out programs on sample data sets

with the objective of finding

94% MATCHING BLOCK 25/127

faulty results. If any faulty result occurs, it is corrected by debugging. A proof of correctness is much more valuable than

a thousand tests, since it guarantees that the program will work correctly for a possible input. (ii) Profiling refers to the

process of executing a correct program on data sets and the measurement of the time and space it takes in computing

the results. It is useful in the sense that it confirms a previously done analysis and points out logical places for performing

useful optimization.

For example,

If you wish to measure the worst-case performance of the sequential search algorithm, we need to do the following: ?

Decide the values of n for which computing time has be obtained ?Determine for each of the above value of n the data

that exhibits the worst- case behaviour 1.2.4 Algorithm for Sequential Search 1. Algorithm seqsearch (a, x, n) 2. //search for

x in a[l: n] . a[0] is used as additional space 3. { 4. i := n; a[0] := x; 5. while(a[i] * x) do i := i + 1; 6. return

i; 7. }

Algorithms NOTES Self-Instructional Material 9

96% MATCHING BLOCK 26/127

The decision on which the values of n to be used is based on the amount of timing we wish to perform and also on what

we expect to do with the times once they are obtained. Assume that for algorithm, our interest is to simply predict how

long it will take, in the worst case, to search for x, given the size n of a. 1.2.5 Algorithms as Technology If computers were

infinitely fast and computer memory was free, you would be in a position to adopt any correct method to solve a

problem. In all likelihood, you would like your implementation to be adhering to good software engineering practice.

However, you would use the method which is the easiest to implement. However, computers may be fast, but they

cannot be infinitely fast. Similarly, memory may be cheap, but it cannot be free. Thus, computing time and space in

memory are bounded resources . You need to use these resources wisely. Such algorithms which are efficient in terms of

time or space will be helpful. Efficiency It has been found that algorithm devices used for solving the same problem

usually differ considerably in their efficiency. These differences are more significant than those due to hardware and

software. 1.2.6 Algorithms and Other Technologies Algorithms are important on contemporary computers which have

advanced technologies,

such as ?

97% MATCHING BLOCK 27/127

Hardware with high clock rates, pipelining and super scalar architectures ?Easy to use, intuitive Graphical User Interfaces

(GUIs) ?Local Area Networking (LAN) and Wide Area Networking (WAN) A truly skilled programmer possesses a solid

algorithmic knowledge and technique. It separates him/her from a novice. It is true that with modern computing

technology, you can perform some tasks even if you do not have much knowledge of algorithms. However, if you have a

good background in algorithms, you can perform much

better. 1.2.7 Measuring the Running Time of an Algorithm Experimental Study The following steps need to be carried out: (i)

A program should be written in a language which will implement the algorithm. (ii) This program should be run with input

data which is of varying size and composition. (iii) Methods such as getTime() or System.currentTime millis() should be

employed for obtaining an accurate value of the actual running time required by the algorithm for execution.

https://secure.urkund.com/view/158826019-231749-951747#/sources 8/133

10 Self-Instructional Material Algorithms NOTES Limitations of Experimental Study The experimental studies have the

following limitations: (i) In order to calculate the running time of the algorithm, it must be implemented and tested. (ii)

Since the experiments are carried out only with a few set of inputs, the running time calculated need not be representative

of other inputs which were not part of the experimental study. (iii) The same hardware and software platforms should be

used for comparing two algorithms. Theoretical Analysis The general methodology for analysing the running time of

algorithms: ?Uses a high-level description of the algorithm instead of testing one of its implementations ?Takes into

account all possible inputs ?Enables evaluation of efficiency of any algorithm in a way that is independent of the hardware

and software environment. 1.2.8 Algorithm Design Strategies For a given problem, there are several ways to design

algorithms, but the best way is the one which executes the algorithm fast, such that it operates quickly on inputs. The

following are the descriptions of several design approaches which yield good algorithms: Incremental Approach This is one

of the simplest approaches of algorithm designing. In this case, whenever a new element is inserted into its appropriate

place, the index is increased. You start moving from the first step executing each step one by one till you reach the end.

Here, you do not split your problem. Example includes insertion sort designed using incremental approach. Divide and

Conquer Approach Some algorithms have recursion and they call themselves one or more times to deal with sub-

problems in order to reach the solution. These types of algorithms follow the Divide and Conquer approach. In this

approach, you break the original problem into several sub-problems which are similar to the original problem in structure

but smaller in size, solve the sub-problems recursively, and then combine these solutions to create a solution of the

original problem. Traditionally, an algorithm is referred to as the ‘divide and conquer’ type, only if it contains at least two

recursive calls.

Algorithms NOTES Self-Instructional Material 11 The following are the three steps involved in this approach: 1.Divide: The

given problem is divided into several sub-problems 2.Conquer: The sub-problems are solved recursively 3.Combine: The

solutions of the sub-problems are combined to create a solution of the original problem Examples include quick sort,

merge sort, binary search, etc.

Dynamic Programming Dynamic programming is the most powerful design technique for optimization problems. The

divide and conquer approach is applicable where sub-problems are independent. On the other hand, dynamic

programming is applicable where sub-problems share sub-problems. A dynamic programming algorithm remembers past

results and uses them to find new results. Dynamic programming is generally used for optimization problems. In these

problems multiple solutions exist, but we need to find the ‘best’ solution. This requires ‘optimal sub-structure’ and

‘overlapping sub-problems’. ?Optimal sub-structure: Optimal solution contains optimal solutions to sub-problems. ?

Overlapping sub-problems: Solutions to sub-problems can be stored and reused in a bottom-up fashion. Examples include

assembly line scheduling, matrix chain multiplication and longest common sub-sequence. Greedy Strategy Greedy

algorithms typically applies to optimization problems such as dynamic programming algorithms, where a set of choices

must be made in order to arrive at an optimal solution. The main idea behind greedy algorithm is to make each choice in a

locally optimal manner, i.e., choose the solution which looks best at the moment without considering the future results.

Greedy approach provides an optimal solution for many problems much more quickly than a dynamic programming

approach. In greedy algorithms, you use optimal sub-structure in a top-down fashion. Instead of first finding optimal

solutions to sub-problems and then making a choice, greedy algorithms first make a choice—the choice that looks best at

the time—and then solve the resulting sub-problems. Greedy algorithms do not always guarantee optimal solutions,

however, they generally produce solutions that are very close in value to the optimal. Examples include activity selection

problem, Huffman algorithm, fractional knapsack problem. Branch and Bound Branch and Bound algorithm is used for

finding optimal solutions of various optimization problems, especially discrete and combinational types. In Branch and

Bound algorithm, a given problem which cannot be bounded has to be divided

12 Self-Instructional Material Algorithms NOTES into two new restricted problems. Branch and Bound algorithms can be

slow, and in worst cases they grow exponentially as the input size grows, but in some cases these algorithms perform well.

Examples include Knapsack problem, non-linear programming, maximum satisfiability problem, least cost search, 15-

puzzle, and so on.

Backtracking The term backtrack was first coined by D.H. Lehmer in the 1950s.

https://secure.urkund.com/view/158826019-231749-951747#/sources 9/133

If a problem has several possible choices at any stage, then you select any choice and start moving by considering that

choice. If it choice solves your problem then it is good, otherwise, you backtrack, i.e., move backwards and choose some

other choice and repeat the same procedure until the solution is obtained. Some sequence of choices may be a solution to

your problem. Examples include N-Queens problem, sum of subsets problem, Hamiltonian circuit problem, graph

colouring, etc. Randomized Algorithms An algorithm whose input is determined by the values produced by a random

number generator is a randomized or probabilistic algorithm. Such an algorithm employs a degree of randomness as part

of its logic. Various decisions made in the algorithm depend on the output of the random number generator. As random

number generator produces different outputs from run to run, so the output of a randomized algorithm could also differ

from run to run for the same input. The following are the two types of randomized algorithms: (i)Las Vegas algorithms (ii)

Monte Carlo algorithms Example includes randomized quicksort. C HECK Y OUR P ROGRESS 1. How can efficiency be

measured as a function of input size? 2. What is the ‘Incremental approach’ to design algorithms? 3. What are the two main

types of randomized algorithms? 1.2.9 Analysis of Algorithms During analysis, performance of an algorithm should be

evaluated by predicting how much resources the algorithm requires. You usually concentrate on determining the running

time (worst case) without considering the space requirements, unless stated. So, to predict the resource requirements, you

need a computational model. Popular computational models include RAM (Random Access Model), PARAM, Message

Passing Model, Turing Machine, etc.

Algorithms NOTES Self-Instructional Material 13 In RAM model, you have to deal with instructions which are executed one

after the other and there should also be no concurrent operations. Instructions include the following: ?Arithmetic: Add,

multiply, substract, floor, ceiling, divide ?Shift left and shift right ?Data movement: Assignment, load, copy, store ?Logical:

Comparison ?Control: Conditional/unconditional branching, subroutine call, return These instructions are called the

primitive operations. Primitive operations are low-level operations which are independent of the programming language.

They can be identified in the pseudocode. There is no generally accepted set of rules for the analysis of algorithms. You

can perform analysis by counting the number of primitive operations in the algorithm. By analysing the pseudocode, you

are able to count the number of primitive operations executed by an algorithm. In Example 1.1 the algorithm which

determines the maximum elements from a set of elements given in an array of size n is given . Determine the number of

primitive operations required. For example, MAXIMUM (A, n) 1. current_max ¬ A[0] 2.for i ¬ 1 to n – 1 do 3.if current_max

> A[i] 4. then current_max ¬ A[i] {increment counter i} 5.return current_max No. of primitive operations = 2 + 1 + n + 4(

n – 1) + 1 = 5 n (At least) = 2 + 1 + n + 6(n – 1) + 1 = 7 n – 2 (At most) Consider the following example for insertion sort,

which is a very

efficient algorithm for sorting a small number of elements. Insertion sort:

It is a very good algorithm for sorting or arranging, either in the increasing or decreasing order for small number of

elements. In this case the sequence of numbers which are to be sorted and output is a sorted sequence Insertion-Sort (A)

1.for i ? 2 to length A [i] do 2.item ? A [i] 3.//Insert A [i] into the sorted sequence A [1... i – 1] 4.j ? i –1

14 Self-Instructional Material Algorithms NOTES 5.

70% MATCHING BLOCK 28/127

while j < 0 and A [j] < item do 6.A [j + 1] ? A [j] 7.j ? j – 1 8.A [j + 1] ?

item In this algorithm, Steps 2 to 8 are under for loop construct which indicates indentation. Similarly, Steps 6 and 7 are

under while loop construct. We have taken i, j items as local variables in this procedure. The input to this algorithm is an

array which is shown in brackets after the name of the algorithm, and here the input is an array of some numbers which are

to be sorted. Consider the following example to understand how insertion sort works: 31 41 59 26 41 58 Dry run: The

length of the array is 6 since there are six elements. i item j A[j] 2 41 1 31 Exits from while loop 31 41 59 26 41 58 3 59 2 41

Exits from while loop 31 41 59 26 41 58 4 26 3 59 Enters into while loop 2 41 Enters into while loop 1 31 Enters into while

loop 0 Enters from while loop 26 31 41 5941 58 5 41 4 59 Enters into while loop 3 41 Exits from while loop 26 31 41 41 59

58 6 58 5 59 Enters into while loop 4 41 Exits from while loop So, the final sorted array is, 26 31 41 41 58 59

Algorithms NOTES Self-Instructional Material 15 Each round of iteration of an

65% MATCHING BLOCK 29/127

insertion sort removes an element from the input data, inserting it at the correct position in the already sorted

https://secure.urkund.com/view/158826019-231749-951747#/sources 10/133

list, until no elements are left in the input. Analysis of insertion sort: Each step is associated with two factors, namely, cost

and frequency. Cost: The amount of time a particular step takes during execution which is a constant quantity denoted by

c 1 , c 2 , c 3 , c 4 …….. Frequency: The number of times a particular step executes Note: The main step of the looping

constructs executes one time more than its internal statements. As in the above example, Step 1 executes seven times,

Steps 2 to 4 and Step 8 executes six times. Likewise, Step 5 executes one more time than Steps 6 and 7 because at last it

checks for the condition which becomes false. Consider that the number of elements in an array is n. So, length [A]=n. Let t

i be

the number of times the while loop test in line 5 is executed for that value of

i. I nser t i on Sor t (A) Cost Frequency 1 2 3 4 5 6 7 8 f or i ? 2 t o l engt h[A] do i t em ? A[i] / / I nser t A[i] i nt o t he sor t

ed sequence A [1…i – 1] j ? i – 1 whi l e j < 0 and A[j] < i t em do A[j + 1] ? A[j] j ? j – 1 A[j + 1] ? i t em c 1 c 2 0 c 4 c 5

c 6 c 7 c 8 n n – 1 n – 1 n – 1 n Σ t i i=2 n Σ t i –1 i=2 n Σ t i –1 i=2 n – 1 The running time of the algorithm denoted by T(n)

is the sum of the running times for each step. A statement whose cost is c i and frequency is

n will contribute c i n to the total running time. To compute T(n), the running time of INSERTION- SORT, we sum the

products of the Cost and Frequency columns

obtaining,

T(

n) = c 1 n + c 2 (n – 1) + c 4 (n – 1) + c 5 2 n i i t ? ? + c 6 ? ? 2 1 n i i t ? ? ? + c 7 ? ? 2 1 n i i t ? ? ? + c 8 (

n – 1)

Best case: It is

the function defined by the minimum number of steps taken on any input of size n. It gives the minimum value of T(n) for

any possible input data. Best case provides a lower bound on the running time for any input and

16 Self-Instructional Material Algorithms NOTES occurs when minimum number of steps are executed, i.e., the while loop

condition is always false or the array is already sorted. For that case,

t i = 1 . 2 1 n i i t n ? ? ? ? So,

T(n) =c 1

n + c 2 (n – 1) + c 4 (n – 1) + c 5 (n – 1) + c 8 (n – 1) T(n) = (

c 1 + c 2 +

c 4 + c 5 + c 8) n – (c 2 + c 4 + c 5 + c 8)

T(n) =an + b T(n) = O(n) For best case, the running time of insertion sort is a linear function in n. Worst case: It is the

function defined by the maximum number of steps taken on any input size of size n. It gives the maximum value of T(n) for

any possible input data. Worst case provides

an upper bound on the running time for any input

and gives you a guarantee that the algorithm will never take longer time. You usually concentrate on finding the worst case

running time, i.e., in searching algorithms worst case occurs when you try to find a number but the number is not present.

Likewise, worst case occurs when the maximum number of steps are executed, i.e., the while loop condition always leads

to true or the array elements are given in decreasing order. For that case, t i = j. Hence,

T(

n) =

c 1

n +

c 2 (n – 1) + c 4 (n – 1) + c 5 2 n i j ? ? + c 6 ? ? 2 1 n i j ? ? ? + c 7 ? ? 2 1

n i j ? ? ? +

c 8 (

n – 1)

T(n) =c 1 n + c 2 (n – 1) + c 4 (n – 1) + c 5 ((n(n + 1)/2) – 1) + c 6 (n(n – 1)/2) +

c 7 (n(n – 1)/2) + c 8 (n – 1)

T(n) = (

c 5 /2 +

c 6 /2 + c 7 /2) n 2 + (

c 1 +

c 2 + c 4 + c 5 /2 – c 6 /2 – c 7 /2 + c 8)n – (c 2 + c 4 + c 5 + c 8)

T(n) =an 2 + bn + c T(n) = O(n 2) For worst case, the running time of insertion sort is a quadratic function in

n. Average case: It is the function defined by the average number of steps taken on any input of

size n. It gives the expected value of T(n). Generally, you do not analyse the average case, because it is often as bad as the

worst case. This

https://secure.urkund.com/view/158826019-231749-951747#/sources 11/133

Algorithms NOTES Self-Instructional Material 17 case lies between the best and worst cases. Hence, in this case, t i = i/2 or (

i + 1)/ 2 or (i – 1)/2. T(n) = O(n 2) Note: During analysis we drop the lower contributing terms and the coefficients to do

analysis for large n. Analysis of Some Other Algorithms: MATRIX-ADD (A, B, C, m, n) Cost Frequency (Times) 1.for i ? 1 to m

c 1 m + 1 2.do j ? 1 to n c 2 m(n + 1) 3.do C[i, j] ? A[i, j] + B[i, j] c 3 m.n So,

T(n) =c 1 (m + 1) + c 2 (m(n + 1)) + c 3 .mn T(n) =c 1 m + c 1 + c 2 .mn + c 2 m + c 3 .mn T(n) = (c 2 + c 3).mn + (c 1 + c

2)m + c 1 T(n) =

O(mn) SUM (A, n) Cost Frequency (Times) 1.sum ? 0 c 1 1 2.for i ? 1 to n c 2 n + 1 3.do sum ? sum + A[i] c 3 n 4.return sum c

4 1 So,

T(n) =c 1 .1 + c 2 .(n + 1) + c 3 .n + c 4 .1 T(n) = (c 2 + c 3).n + (c 1 +

c 2 + c 4) T(n) =

an + b T(n) = O(n)

To have a good best case running time, the algorithm should be modified so that it tests whether the input satisfies some

special case condition, and if it does so, then outputs a pre-computed answer. The best case running time is generally not

a good measure of an algorithm. 1.2.10 Merits and Demerits of Algorithm Many algorithms are used in a broad spectrum of

computer applications. Such elementary algorithms are extensively studied and are considered a necessary component of

computer science. Examples of these algorithms include algorithms to sort, search and process text, solve graph problems

and basic geometric problems, and display graphics and perform common mathematical calculations. Sorting is useful in

arranging data objects in a specific order, e.g., in numerically ascending or descending order. Sorting may be internal or

external.

18 Self-Instructional Material Algorithms NOTES Using internal sorting, you can arrange data stored internally in a

computer’s memory. Simple algorithms for sorting by selection, exchange or insertion are easy to understand and

straightforward to code. However, in case the number of objects to be sorted is large, simple algorithms would not be

helpful as they are usually very slow. In such cases, you need a more sophisticated algorithm, such as heap sort or quick

sort, to achieve acceptable performance. Using external sorting, you can arrange data records that are stored. Searching

for data means looking for a desired data object in a group of data objects. Elementary searching algorithms comprise of

linear search and binary search. In linear search, a sequence of data objects is examined one by one. In binary search, on

the other hand, a more sophisticated strategy for searching data is adopted. While searching a large array, binary search

works faster than linear search. You can also store the collection of data objects as a tree that need to be searched

frequently. If such a tree is properly structured, searching the tree would be very efficient. A sequence of characters is

termed as a text string. In a word processing system, efficient algorithms for manipulating text strings, such as algorithms

for organizing text data into lines and paragraphs and searching for occurrences of a given pattern in a document, are

necessary. A source program in a high-level programming language is a text string. Text processing is one of the essential

tasks of a compiler. A compiler uses efficient algorithms to perform lexical analysis and parsing. When individual characters

are grouped into meaningful words or symbols, it is termed as lexical analysis. When the syntactical structure of a source

program is recognized, it is termed as parsing. A graph is used in modelling a group of interconnected objects. A graph

representing a set of locations connected by routes for transportation is a good example. Graph algorithms are used to

solve such problems which deal with objects and their connections, such as determining whether or not all locations are

connected, visiting all locations that are accessible from a given location, or determining the shortest path from one

location to another. Mathematical algorithms are widely applied in science and engineering. Algorithms to generate

random numbers, perform operations on matrices, solve simultaneous equations and numerical integration, etc., are

examples of basic algorithms for mathematical computations. In the modern programming languages, predefined

functions are usually provided for many common computations, such as random number generation, logarithm,

exponentiation and trigonometric functions. There are applications in which a computer program has to adapt to a change

in its environment so as to continue performing well. Using a self-organizing data structure, which gets reorganized at

regular intervals, such that those components which are most likely to be accessed are placed where they can be accessed

most efficiently, is a common approach to make a computer program adaptive. A self-modifying algorithm that adapts

itself is also conceivable. In order

Algorithms NOTES Self-Instructional Material 19 to develop adaptive computer programs, biological evolution has given

impetus to evolutionary computation methods, such as genetic algorithms. Some applications need a large amount of

computations in a timely manner. For saving time, you need to develop a parallel algorithm which uses many processors

simultaneously and thus quickly solves a given problem. The basic idea is that the given problem is divided into sub-

problems and each processor is used to solve a sub-problem. The processors usually have to communicate among

themselves so as to facilitate cooperation. For communicating with one another, the processors may share memory.

Alternatively, they may be connected by communication links into some type of network, such as a hypercube. 1.2.11

Flowchart and Algorithms

https://secure.urkund.com/view/158826019-231749-951747#/sources 12/133

98% MATCHING BLOCK 30/127

In the beginning, the use of flowcharts was restricted to electronic data processing for representing the conditional logic

of computer programs. The1980s witnessed the emergence of structured programming and structured design. As a

result of this, in database programming, data flow and structure charts began to replace flowcharts. With the widespread

adoption of such ALGOL-like computer languages as Pascal, textual models like pseudocode are being used frequently

for representing algorithms. Unified Modeling Language (UML) started the synthesis and codification these modelling

techniques in the 1990s. A flowchart refers to a graphical representation of a process which depicts inputs, outputs and

units of activity. It represents the whole process at a high or detailed (depending on your use) level of observation. It

serves as an instruction manual or a tool to facilitate a detailed analysis and optimization of workflow as well as service

delivery. Flowcharts have been in use since long. Nobody can be specified as the ‘father of the flowchart’. It is possible to

customize a flowchart according to need or purpose. This is why flowcharts are considered a very unique quality

improvement method for representing data. Symbols A typical flowchart has the following types of symbols: ?Start and

end symbols : They are represented as ovals or rounded rectangles, normally having the word ‘Start’ or ‘End’. ?Arrows:

They show the ‘flow of control’ in computer science. An arrow coming from one symbol and ending at another symbol

shows the transmission of control to the symbol the arrow is pointing to. ?Processing steps : They are represented as

rectangles. Example: Add 1 to X. ?Input/Output symbol : It is represented as a parallelogram. Examples: Get X from the

user; display X. 20

Self-Instructional Material Algorithms NOTES ?

100% MATCHING BLOCK 31/127

Conditional symbol : It is represented as a diamond (rhombus). It has a Yes/No question or True/False test. It contains two

arrows coming out of it, normally from the bottom and right points. One of the arrows corresponds to Yes or True, while

the other corresponds to No or False. These two arrows make it unique. There are also other symbols in flowcharts may

contain, e.g., connectors. Connectors are normally represented as circles. They represent converging paths in the

flowchart. Circles contain more than one arrow. However, only one arrow goes out. Some flowcharts may just have an

arrow point to another arrow instead. Such flowcharts are useful in representing an iterative process, what is known as a

loop in terms of computer science. A loop, for example, comprises a connector where control first enters processing

steps, a conditional with one arrow exiting the loop, and another going back to the connector.

Oval Terminator To represent the begin/end or start/stop of a flow chart Rectangle Process To represent calculations and

data manipulations Parallelogram Data To represent Input/Output data Diamond Decision To represent a decision or

comparison control flow Double sided Rectangle Predefined Process To represent Modules or set of operations or a

function Bracket with broken line Annotation To represent descriptive comments or explanations Document Print out To

represent output data in the form a document Multiple documents Print outs To represent output data in the form of

multiple documents Circle Connector To connect different parts of the flow chart

Hexagon Repetition/ Looping To represent a group of repetitive statements Trapezoid Manual Operation

To represent an operation which is done manually Card Card To represent a card. E.g., punched card Arrows Flows of

control To represent the flow of the execution

Shape Symbol Symbol Name Purpose

Algorithms NOTES Self-Instructional Material 21

https://secure.urkund.com/view/158826019-231749-951747#/sources 13/133

98% MATCHING BLOCK 32/127

It is now used at the beginning of the next line or page with the same number. Thus, a reader of the chart is able to

follow the path. Instructions The following is the step-by-step process for developing a flowchart: Step 1: Information on

how the process flows is gathered. For this, the following tools are used: ?Conservation ?Experience ?Product

development codes Step 2: The trial of process flow is undertaken. Step 3: Other more familiar personnel are allowed to

check for accuracy. Step 4: If necessary, changes are made. Step 5: The final actual flow is compared with the best

possible flow. Construction/Interpretation tips for a flowchart ?The boundaries of the process should be defined

unambiguously. ?The simplest symbols should be used. ?It should be ensured that each feedback loop contains an

escape. ?It should be ensured that there is only one output arrow out of a process box. Otherwise, it would require a

decision diamond. Types of Flowcharts A flowchart is common type of chart representing an algorithm or a process and

showing the steps as boxes of different kinds and their order by connecting these with arrows. We use flowcharts to

analyse, design, document or manage a process or program in different fields. There are many different types of

flowcharts. On the one hand, there are different types for different users, such as analysts, designers, engineers,

managers or programmers. On the other hand, those flowcharts can represent different types of objects. Sterneckert

(2003) divides four more general types of flowcharts: ?Document flowcharts showing a document flow through system ?

Data flowcharts showing data flows in a system ?System flowcharts showing controls at a physical or resource level ?

Program flowchart showing the controls in a program within a system However, there are several of these classifications.

For example, Andrew Veronis named three basic types of flowcharts: the system flowchart, the general flowchart, and

the detailed flowchart. Marilyn Bohl (1978) stated ‘in practice, 22

Self-Instructional Material Algorithms NOTES

99% MATCHING BLOCK 33/127

two kinds of flowcharts are used in solution planning: system flowcharts and program flowcharts...’. More recently, Mark

A. Fryman (2001) stated that there are more differences. Decision flowcharts, logic flowcharts, systems flowcharts,

product flowcharts and process flowcharts are just a few of the different types of flowcharts that are used in business and

government. Interpretation ?Analyse flowchart of the actual process ?Analyse flowchart of the best process ?Compare

both charts looking for areas where they are different. Most of the time, the stages where differences occur are

considered to be the problem area or process. ?Take appropriate in-house steps to correct the differences between the

two separate flows. Example: Process flowchart—Finding the best way home This is a simple case of processes and

decisions in finding the best route home at the end of the working day. A flowchart provides the following: ?

Communication: Flowcharts are excellent means of communication. They quickly and clearly impart ideas and

descriptions of algorithms to other programmers, students, computer operators and users. ?An overview: Flowcharts

provide a clear overview of the entire problem and its algorithm for solution. They show all major elements and their

relationships. ?Algorithm development and experimentation: Flowcharts are a quick method of illustrating program flow.

It is much easier and faster to try an idea with a flowchart than to write a program and test it on a computer. ?Check

program logic: Flowcharts show all major parts of a program. All details of program logic must be classified and specified.

This is a valuable check for maintaining accuracy in logic flow. ?Facilitate coding: A programmer can code the

programming instructions in a computer language with more ease with a comprehensive flowchart as a guide. A

flowchart specifies all the steps to be coded and helps to prevent errors. ?Program documentation: A flowchart provides

a permanent recording of program logic. It documents the steps followed in an algorithm. Advantages of Flowcharts ?

Clarify the program logic. ?Before coding begins, a flowchart assists the programmer in determining the type of logic

control to be used in a program.

Algorithms NOTES Self-Instructional Material 23 ?

https://secure.urkund.com/view/158826019-231749-951747#/sources 14/133

98% MATCHING BLOCK 34/127

Serve as documentation. ?Serve as a guide for program coding of program writing. ?A flowchart is a pictorial

representation that may be useful to the businessperson or user who wishes to examine some facts of the logic used in a

program. ?Help to detect deficiencies in the problem statement. Limitations of Flowcharts ?Program flowcharts are bulky

for the programmer to write. As a result many programmers do not write the chart until after the program has been

completed. This defeats one of its main purposes. ?It is sometimes difficult for a business person or user to understand

the logic depicted in a flowchart. ?Flowcharts are no longer completely standardized tools. The newer structured

programming techniques have changed the traditional format of a flowchart. Differences between Flowcharts and

Algorithms Flowchart ?It is the graphical representation of the solution to a problem. ?It is connected with the shape of

each box indicating the type of operation being performed. The actual operation, which is to be performed, is written

inside the symbol. The arrow coming out of symbol indicates which operation to perform next. Algorithm ?It is a process

for solving a problem. ?It is constructed without boxes in a succession of steps.

Ways to Write an Algorithm

100% MATCHING BLOCK 35/127

An algorithm can be written in the following three ways: ?Straight Sequential: A series of steps that can be performed one

after the other ?Selection or Transfer of Control: Making a selection of a choice from two alternatives of a group of

alternatives ?Iteration or Looping: Performing repeated operations The following are the examples of algorithms and

flowcharts for some different problems: 24

Self-Instructional Material Algorithms NOTES

Examples of Straight Sequential Execution Example 1.1: Write a flowchart to find the maximum and minimum of given

numbers. Read a, b Is a<b Write “max:”,b, “min:”,a Write “max:”,a, “min:”,b STOP T F START Example 1.2: Write the various

steps involved in executing a ‘C’ program and illustrate it with the help of a flowchart. Solution: Executing a program

written in C involves a series of steps. They are as follows: ?Creating the program ?Compiling the program ?Linking the

program with functions that are needed from the C library. ?Executing the program Although these steps remain the same

irrespective of the operating system, system commands for implementing the steps and conventions for naming files may

differ on different systems. An operating system is a program that controls the entire operation of a computer system. All

input/output operations are channelled through the operating system. The operating system, which is an interface

between the hardware and the user, handles the execution of user programs. The two most popular operating systems

today are UNIX (for minicomputers) and MS-DOS (for microcomputers).

Algorithms NOTES Self-Instructional Material 25 System Ready Enter Program Program Code Edit Source Program Compile

Source Program C Compiler Syntax Error ? Link with System Library Object code

No System Library Input Data Execute Object Code Executable Object code logic & Data Errors ? Data Error Logic Error

CORRECT OUTPUT No Errors STOP Yes Source Program

Examples for Flowcharts with Algorithms a. Draw a flowchart for adding two numbers and write an algorithm for it. Start

Read FirstNum Read SecondNum Sum = FirstNum + SecondNum Write Sum Stop

26 Self-Instructional Material Algorithms NOTES Step 1: Start Step 2: Read FirstNumber Step 3: Read SecondNumber Step

4: Sum=

FirstNumber + SecondNumber Step 5: Write (Sum) Step 6: Exit

Algorithm for addition of two numbers :

b. Draw a flowchart to find the larger number between two numbers and write an algorithm for it. Read a, b Is a<b Write

b Write a STOP T F START Step 1: Start Step 2: Read a and b Step 3: IF a < b THEN Write (a) ELSE Write(b) Step 5: Stop

Algorithm for finding large number between two numbers

Algorithms NOTES Self-Instructional Material 27

c. Draw a flowchart to display natural numbers between 1 and N in reverse order. F Read N Is N<0 START Write N N=N-1

STOP T d. Draw a flowchart to display umber of odd digits in a given number.

Step 1: Start Step 2: Read N Step 3: Repeat while N<0 Write (N) N=N-1 Step 4:Exit Algorithm

for displaying Natural numbers between 1 and N in Reverse Order.

Step 1:

Start Step 2: Read N Step 3: S=0 Step 4: REPEAT while N<0 R=N mod 10 IF R mod 2 THEN S=S+1 N =N/10 Step 5.

Write(s) Step 6: Exit

Algorithm to display number of odd digits exist in a given number.

https://secure.urkund.com/view/158826019-231749-951747#/sources 15/133

28

Self-Instructional Material Algorithms NOTES

T R=N%10 S=S+1

Read N Is N START Write S STOP F Is R%2 N=N/10 T F S=0 e. Draw a flowchart to evaluate the series 1! + 2!+ 3!++N!

Step 1: Start Step 2: Read N Step 3: S=0,I=1 Step 4: Repeat while I>=N K=factorial(I) S=S+K I=I+1 Step 5. Write(S) Step 6:

Exit

Algorithm for evaluating the series 1!+2!+…..+N! T Read N START Write S STOP F S=0 I=1 Is I>=N I=I+1 K= factorial(I)

S=S+K

Algorithms NOTES Self-Instructional Material 29

f. Flowchart to evaluate N! factorial(N) F=1 is N F=F*N N=N-1

F T Return F Step 1: F=1 Step 2: Repeat while N >< 0

F=F*N N=N- 1 Step 3: Return F Algorithm to find factorial(N). Where N is a value and function returns Factorial value for N

g.

Draw a flowchart to evaluate the series 1+

x+ x 2 /2! + ...+x n /N! I=I+1 T

START Read X, N S=0 I=0 Is I >= N F=factorial(I) P=power(X, I) S=S+P/F Write S STOP F

30

Self-Instructional Material Algorithms NOTES

Step 1: Read X,N Step 2: S=0,I=0 Step 3: Repeat while I>=N F=factorial(I) P=power(X,I) S=S+P/F I=I+1 Step 4: Writes(S)

Step 5: Exit Algorithm to evaluate 1 + X + X 2 /2! +…+ X n /

N! h. Flowchart to evaluate Power(X, N) F power(X,N) I=0 P=1 Is I>N P=P*X I=I+1 Return P T

Step 1: I=0,P=1 Step 2: Repeat while I>N P=P*X I=I+1 Step 3: Return P

Algorithm to evaluate Power(X, N). Where X and N are values

Algorithms NOTES Self-Instructional Material 31 1.2.12 Designing an Algorithm using Flowcharts

Example 1.3: Algorithm to pick the largest of three numbers. Step 1: Read A, B, C. Step 2: If A < B, go to Step 3. Else go to

Step 5. Step 3: If A < C Print A as the largest number. Else Print C as the largest number. Step 4: Stop. Step 5: If B < C

Print B as the largest number. Else Print C as the largest number. Step 6: Stop. Start Read A,B,C is A<B Print A Stop is

A<C is B<C Print C Print B Stop Stop

Yes No No No Yes Yes

32

Self-Instructional Material Algorithms NOTES

Explanation:

Read the three numbers A, B and C. A is compared with B. If A is larger, then it is compared with C. If A turns out to be the

largest number again, then A is the largest number; otherwise, C is the largest number. If in the second step, A is less than

or equal to be B, then B is compared with C. If B is larger, then B is the largest number; otherwise, C is the largest number.

Example 1.4: Algorithm to find the roots of a quadratic equation ax 2 + bx + c = 0 for all cases. Step 1: Read a, b, c. Step 2:

disc ? b 2 – 4ac. Step 3: If disc ? 0, go to Step 4. Else, if disc < 0, go to Step 5. Else, go to Step 6. Step 4: root l ? – b/2a.

root 2 ? rootl. go to Step 7. Step 5: Root l ? (–b + sqrt (disc)) / 2a. Root 2 ? (–b – sqrt (disc)) / 2a. go to Step 7. Step 6: real-

part ? –b / 2a. im-part ? sqrt(–disc) / 2a. Print real-part + i im-part. Print real-part – i im-part. Stop. Step 7: Print root l, root

2. Stop.

Algorithms NOTES Self-Instructional Material 33

root 1 = (–b + disc) / 2a root 2 = (–b – disc) / 2a real-part = b / 2a im-part = disc / 2a print real-part + i im-part print real-

part + i im-part root 1 = –

b/2a root 2 = root 1 Print root 1, root 2 Is disc d sc = b i – 4ac 2 Read A,B,C Start

Stop Stop < 0 > 0 = 0 Example 1.5: Algorithm for finding maximum and minimum numbers. Step 1: Read number. Step

2: Maximum ? number. Minimum ? number. Step 3: If (another number) go to Step 4. Else go to Step 7. Step 4: Read

number. Step 5: If number < Maximum Maximum = number. Else if number > Minimum Minimum = number.

34 Self-Instructional Material Algorithms NOTES Step 6: go to Step 3. Step 7: Print Maximum. Print Minimum. Step 8: Stop.

Start Is another number Read Number Maximum = number Minimum = number read number Print maximum print

minimum maximum = number minimum = number Is number < maximum Is number > minimum stop No Yes Yes Yes

No No Example 1.6: Algorithm for finding maximum and minimum of given n numbers. Step 1: Read N. Step 2: Counter ? 1.

Read number. Maximum ? number. Minimum ? number. Step 3: If Counter > N go to Step 4. Else go to Step 7.

Algorithms NOTES Self-Instructional Material 35 Step 4: Read number. Counter ? Counter + 1. Step 5: If number <

Maximum Step 6: Maximum ? number. Step 7: Else If number > Minimum Step 8: Minimum ? number. Step 9: go to Step

3. Step 10: Print Maximum. Print Minimum. Step 11: Stop. Start Is Counter > N Read N Maximum = number Minimum =

number real number Print maximum print minimum maximum = number minimum = number Is number < maximum Is

number > minimum stop No

https://secure.urkund.com/view/158826019-231749-951747#/sources 16/133

Yes Yes Yes No No Counter = counter + 1 Counter = 1 Read Number

36 Self-Instructional Material Algorithms NOTES

Example 1.7: Algorithm for generating Fibonacci numbers up to n. The first and second terms in the Fibonacci series are 0

and 1. The third and subsequent terms in the sequence are found by adding the preceding two terms in the series. The

Fibonacci series is: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, Step 1: Read N. Step 2: Previous ? 0. Current ? 1. Print Previous,

Current. Step 3: Next ? Previous + Current. Step 4: If Next > N Print Next. Previous ? Current. Current ? Next, go to Step

3. Else go to Step 5. Step 5: Stop.

Start Is Counter > N

Read N Previous = 0 Current = 1 print Next stop No Yes Next = previous + current Print previous current Previous = current

Current = next

Algorithms NOTES Self-Instructional Material 37 Example 1.8: Algorithm for generating first k Fibonacci numbers. Step 1:

Read k. Step 2: Counter ? 2. Previous ? 0. Current ? 1. Print ‘First k Fibonacci numbers are:’ Print Previous, Current. Step 3:

Next ? Previous + Current. Counter ? Counter + 1. Print Next. Previous ? Current. Current ? Next. Step 4: If (Counter > k)

go to Step 3. Else go to Step 5. Step 5: Stop. Start Is Counter > N Read k Previous = 0 Current = 1 Counter = 3 print Next

stop No Yes Next = previous + current Print previous current Counter = counter + 1 previous = counter current = next

38 Self-Instructional Material Algorithms NOTES Example 1.9: Sum of first n Factorials The factorial of a non-negative

integer n is the product of all positive integers less than or equal to n and is denoted by n! It is defined as follows: N! = n(n-

1) … 2*1 For example, 5! =5*4*3*2*1 . Its older notation was n. In factorial number system where the denominations are 1,

2, 6, 24, 120 , …, etc. the nth digit is in the range 0 to n. This identity works as shown

below in the

example: 1*1!+2*2!+3*3!+ … +k*k! = (k+1)! – 1 Sum of 2!+3! = (2*1) + (3*2*1) = (2) + (6) = 8 The following algorithm is

used to find the sum of n factorials: Algorithm of Sum of n Factorials Step 1: integer n, factorial, i, j, sum; Step 2: sum?0;

Step 3: print ‘Enter the number’; Step 4: read n; Step 5: for i ?1 to n //Running outer loop till n value { factorial ?1 for j ?1 to i

//Inner loop to calculate the sum of n factorial values { factorial ?factorial*j; //Calculating n factorial values } sum?

sum+factorial; //Calculating sum of n factorial values } Step 6: print ‘Sum of n Factorials’; Step 7: print sum; //Print the sum

value of n factorials Implementation to find the Sum of first n Factorials /*——————— START OF PROGRAM

————————*/ #include >stdio.h< //Declaration of Header files #include >conio.h< /*——- 1/1! + 2/2! + 3/3!

+ 4/4! ...- ——*/ void main() { int factorial,sum=0,i,j,n; //Declaring and assigning the variables

Algorithms NOTES Self-Instructional Material 39 printf(“Enter a value for [n] value = “); scanf(“%d”, &n); //Accept input value

for n term for(i=1;i>=n;i++) //For outer loop till n value { factorial=1; for(j=1;j>=i;j++) //Using inner for loop to

calculate the sum of n factorial { factorial = factorial *j; } sum=sum+ factorial; } Printf(“\n sum of %d factorial = %d”, n, sum);

} getch(); } The result of the above program is as follows: Enter a value for [n] value = 4 sum of 4 factorial = 33 How

the above program works it is explained step-wise-step

in

the following ways: 1!+2!+3!+4! = 33 The value of 1! = 1 The value of 2! = 2 The value of 3! = 6 The value of 4! = 24

1+2+6+24= 33 Example 1.10: To Find Largest Value and Second Largest Value of the List The largest and second largest

values in the given list are determined by array implementation. Array can contain the various elements of the list. The

algorithm to find the largest and second largest of given list is as follows: Algorithm to find the largest value and second

largest value of the given list Step 1: integer M, a[M], i, largest, t, second_largest; Step 2: print ‘Enter a value for array’; Step 3:

read M; Step 4: for i ?1 to M print ‘Enter values:’;

40

Self-Instructional Material Algorithms NOTES

https://secure.urkund.com/view/158826019-231749-951747#/sources 17/133

96% MATCHING BLOCK 36/127

read a[i]; Step 5: if i==1 largest ?t?second_largest ?a[i]; Step 6: else if a[i]<largest second_largest ?largest; largest ?a[i];

Step 7: else if a[i]<second_largest && a[i]>largest second_largest ?a[i]; Step 8: else if a[i]>t t?a[i]; Step 9: print

‘Largest value in the given list =’; Step 10: print largest; Step 11: ‘Second largest value in the given list =’; Step 12: print

second_largest; The result of the above algorithm is as follows: Enter a value for array 5 Then array A[M] is assigned a

value 5 as A[5]. The input values are entered in the following way: Enter values 45 90 112 4 35 Largest value in the given

list = 112 Second largest value in the given list = 90 The first element of the array is 45 which is assumed to be the largest

value and it is kept in the temporary location where it is temporarily stored in variable t. All the remaining values are

checked from this number. Now, the A[i] value is assigned as 45. At second step, the condition is satisfied so largest value

is 90. Now, 90 is checked with the next entered value 112. Because the condition is not satisfied so 112 is assumed as

greater value. The values 4 and 35 are less than 90, so the condition for less than largest is not satisfied. The checking

process of second largest value ‘45’ is done after checking the rest four values and declaring 112 as first largest value.

Further, the statement ‘second_largest=largest’ is used. The first element of the array is again taken as largest among the

four values. Now, 45 is checked step-by-step in if else if conditional statement to find the second largest value.

Algorithms NOTES Self-Instructional Material 41

Program to find the largest value and second largest value in a given list /*—————————— START OF PROGRAM

——————————*/ #include >stdio.h< #include >conio.h< #define M 5 //Define preprocessor directive that

assigns M = 5 void main() { int a[M], i, largest, t, second_largest; clrscr(); //Clear the screen of previous for(i=1; i>=M); i+) {

printf(“Enter %d value”); scanf(“%d”, &a[i]); if(i==1) largest=t=second_largest=a[i]; //The largest, t, second_largest values are

assigned as the value of a[i]. if(a[i]<largest) { second_largest=largest; largest=a[i]; } if(a[i]<second_largest &&

a[i]>largest) second_largest=a[i]; if(a[i])>t) t=a[i]; } printf(“\nLargest Vvalue in the given list = %d”, largest);

printf(“\nSecond largest value in the given list = %d”, second_largest); getch(); } The result of the above program is as

follows: Enter 1 value = 45 Enter 2 value = 90 Enter 3 value = 112 Enter 4 value = 4 Enter 5 value = 35 Largest value in the

given list =112 Second largest value in the given list=90

42 Self-Instructional Material Algorithms NOTES In the above program, #define M 5 statement defines preprocessor

directive that works as a macro. It means wherever M comes in the program, its value 5 is changed automatically. The

#define statement can not be terminated by a semicolon (;) because the preprocessor is a program that comes before

main() statement. Example 1.11: Determining nth root of a number. The nth root of a number a is a number where n is

positive integer. The nth roots are taken with the following iteration where a is the input values and n is the root value to be

taken. The equation is arranged in the following ways:

n b a ?

where a is the number, n is the nth root and b is the value that retains the nth root of number a. For example, nth root is

equal to 3 and number a is equal to 2 can be written as because 2 3 = 8. The following algorithm is used to find out the nth

root of a given value: Algorithm to find the nth root of a number Step 1:double calculate_root(double,double); //Declare a

calculate_root function having two parameters Step 2:double Find_nth_Root(double,double,double); //Declare a

calculate_root function having three parameters Step 3: double number(double,double); //Declare a number function

having two parameters Step 4: double x ?1, NUMBER_OF_ITERATIONS ?40, n; //Assign value 1 to x variable and

NUMBER_OF_ITERATIONS=40 Step 5: double N; //Declare a variable N as double data type Step 6: double root; //Declare

a variable root as double data type Step 7: x_label: //Assign a label named as x_label Step 8: print ‘Enter root do want [2,3, …

5] ?’ Step 9: read n; //Accept input value n Step 10: if n>=0 //Check the condition where n is less than 0 Step 11: print

‘Number should be Greater than 0’; Step 12: print n; Step 13: goto x_label; //Go to label on x_label Step 14: y_label:

//Assign a label named as y_label

Algorithms NOTES Self-Instructional Material 43

https://secure.urkund.com/view/158826019-231749-951747#/sources 18/133

98% MATCHING BLOCK 37/127

Step 15: print ‘Enter the number for Root’; Step 16: read N; Step 17 : if N>=0 Step 18 : print ‘Number should be greater

than 0’; Step 19: print ‘PRESS ANY KEY TO ENTER AGAIN’; Step 20: goto y_label; //Go to label on y_label Step 21: x?

calulate_root(n,N); //x retains the returned value of function calculate_root Step 22: print ‘The first assumed root is’,x;

Step 23: root ?Find_nth_Root(N,n,x); //root retains the Find_nth_Root returned value Step 24: print ‘Root of n’,n; Step 25:

print N; Step 26: print root; Step 27: double calculate_root(double n,double N) Step 28: integer i,xr; //integer i and xr are

declared Step 29: xr?1; //xr is assigned as 1 Step 30: double j ?1; //double j is assigned as 1 Step 31: while(1) Step 32: for i ?

0 to n //Running for loop { xr?xr*j; //xr retains the value of xr*j } Step 33: if xr<N Return j-1; //Returns j-1 Step 34: j?j+1;

//j value is increased by 1 Step 35: xr?1; //xr value is increased by 1 Step 36: double Find_nth_Root(double NUM,double

n,double X0) //Function Find_nth_Root starts from here. Step 37: int i; Step 38: double d ?1.0; Step 39: double first_term,

second_term, root ?X0; Step 40: for i ?1 to NUMBER_OF_ITERATIONS //Body of for loop starts that calculates first term

and second term value of enter values of NUMBER_OF_ITERATIONS Step 41: d?number(root,n); //d retains the n th value

of given number. 44

Self-Instructional Material Algorithms NOTES

95% MATCHING BLOCK 38/127

Step 42: first_term ?((n-1)/n)*root; // first_term retains the value of let say 5 (5-1)/5)* root value Step 43: second_term ?

(1/n)*(NUM/d); Step 44: root ?first_term+second_term; Step 45: print first_term,second_term,root; Step 46: return root;

Step 47: double number (double x,double n) Step 48: double d ?1; Step 49: integer i; Step 50: for i ?1 to n-1 Step 51: d?

d*x; //Printing the final nth root value of given number n Step 52: return d; //Returns the resulted value to d The above

algorithm can work in the following way: The odd nth root let say cube root of a real number b can not be identified with

the fractional power a^{1/n}, although so has been done in the entries nth root and cube root. The fractional power with

a negative base is not uniquely determined therefore, it depends not only on the value of the exponent but also on the

form of the exponent; e.g., (–1)^{1/3} = the 3rd root of –1, i.e. = –1 (–1)^(2/6) = the 6th root of (–1)^2, i.e. = 1

Implementation to find the nth root of a number /*—————————— START OF PROGRAM ——————————*/

#include>stdio.h< #include>conio.h< #define NUMBER_OF_ITERATIONS 40 //Preprocessor directive where

NUMBER_OF_ITERATIONS is defined as macro double calculate_root(double,double); double

Find_nth_Root(double,double,double); double number(double,double); void main() { double x=1,n; double N; double

root; x_label: Algorithms NOTES Self-Instructional Material 45 printf(“\n Enter root value [2,3, …5] ?”); scanf(“%f”,&n);

if(n>=0) { printf(“\nNumber should be Greater than 0”); printf(“Press any key to enter again”); getch(); goto x_label; }

y_label: printf(“\n\rEnter a number = “); scanf(“%f”,&N); if(N>=0) { printf(“\nNumber should be greater than 0”);

printf(“\n PRESS ANY KEY TO ENTER AGAIN …”); getch(); goto y_label; } x = calulate_root(n,N); printf(“\n\nThe first

assumed root is calculated as %f\n”,x); root=Find_nth_Root(N,n,x); printf(“\n\n%f Root of %f = “,n,N); printf(“Root value is

= %f”,root); getch(); } double calculate_root(double n,double N) { int i, xr=1; double j=1; while(1) { for(i=0;i>n;i=i+1) {

xr=xr*j; } if(xr<N) { return(j-1); break; 46 Self-Instructional Material

Algorithms NOTES }

j=j+1;

xr=1; } } double Find_nth_Root(double NUM,double n,double X0) { int i; double d=1.0; double

first_term,second_term,root=X0; for(i=1;i>=NUMBER_OF_ITERATIONS;i++) { d=number(root,n); first_term=((n-

1)/n)*root; second_term=(1/n)*(NUM/d); root=first_term+second_term; printf(“\n%f\t%f\t%f”,first_term,second_term,root);

} return(root); } double number(double x,double n) { double d=1; int i; for(i=1;i>=n-1;i++) d=d*x; return(d); } The result of

the above program is as follows: Enter root value [2,3, …5] ? 3 Enter a number = 64 Root value is = 4 In

the above

100% MATCHING BLOCK 39/127

program, the syntax of #define is as follows: #define macro-name replacement-string The #define command is used to

make substitutions throughout the program file in which it is located. It causes the compiler to go through the file,

replacing every occurrence of macro-name with replacement-string. The replacement-string stops at the end of the

line. The above program calculates the nth root of any number a. This program uses the NEWTON_RAPTION_

ITERATION method for calculation. For Example, you have to calculate the square

https://secure.urkund.com/view/158826019-231749-951747#/sources 19/133

Algorithms NOTES Self-Instructional Material 47

97% MATCHING BLOCK 40/127

root of 16, then n=2 (square root), a=16 (the number). The following examples show how nth root of the given number

can be written: Enter a Number = 32, Enter a Root = 5. The (n th) 5 th root of 32 is 2. Enter a Number = 11, Enter a Root

= 4. The 4 th root of 11 is 1.82116. Example 1.12: Greatest Common Divisor (GCD). The GCD of two integers is the largest

integer value that divides both integer values where both the values are not zero. The basic identities of GCD are as

follows: GCD(A,B)=GCD(B,A) GCD(A,B)=GCD(-A,B) GCD(A,0)=ABS(A) Both the integer values can be assumed as

nonnegative integers. The GCD procedure extracts the greatest common divisor A because the common divisor B

divides to get the remainder until finally B divides A. The result A is in fact a greatest common divisor because it contains

every other common divisor B. GCD Algorithm Step 1: integer m, n, q, r; //Variables are defined Step 2: print‘Enter two

values:’; Step 3: read m,n; //Input two values for m and n variables Step 4: if m==0 OR n==0 //Checking the condition

whether m is equal to 0 or n is equal to 0 print‘One number is Zero’; else reach: //Label reach is defined for loop q?m/n;

//Get the value of q after ding m by n r?m – q*n; //Gets remainder value Step 5: if r==0 print ‘GCD Value is :’; //Prints

message print n; //Prints GCD value goto end; //Got to end label else m?n?r; //Assigning m is equal to n that is also equal

to r goto reach; //Go to reach label end:; //Label end is defined If the two given values are 10, 12 then the greatest

common factor is the number that divides both the values 10 and 12. 48 Self-Instructional Material Algorithms NOTES

The GCD of two given integers (a and b) is the largest positive integer which divides both integers a and b, for example,

gcd (10,12)=2 . The following table shows the step-by-step procedure to get resultant GCD value: Let the two values are,

m =15 and n = 18. div quo %Quo %div Resultant value 0 1 1 15 False True 1 2 7 False False 1 3 5 False True 3 4 3 The loop

exits and returns 3. So, the resultant GCD value of the two given values 15 and 18 is 3. Program to find GCD of given

values: /*—————————— START OF PROGRAM ——————————*/ #include >stdio.h< #include

>conio.h< void main() { int m, n, q, r; clrscr(); printf(“Enter two values:”); scanf(“%d%d”, &m,&n); if (m==0||n==0)

printf(“One number is Zero”); else reach: { q=m/n; r=m – q*n; } if(r==0) { printf(“GCD Value is : %d”, n); goto end; //Go to

end label } else { m=n=r; goto reach; } end:; } Algorithms NOTES Self-Instructional Material 49 The GCD can also be

calculated applying Euclidean algorithm. If the integers a and b are two positive integers and n is the remainder, then (a,

b) = (b, r) . Euclidean_gcd(a,b) Step 1: integer x, y, f, d; Step 2: x?f; y?d; Step 3: if y=0 return x Step 4: r?x mod y; Step 5: x?

y; Step 6: y?r; Step 7: goto Step 2. The above algorithm works in the following way: Small value (x) = 10 , Large value (y)

=12 . Large Small Remainder 12 10 2 10 2 0 Result: 2 is the GCD of 10, 12. The above algorithm is known as Euclid’s GCD

algorithm that extracts the greatest common divisor x. The common divisor y divides x and keeps remainder as value n.

This process is continued until y divides x finally. Therefore, value assigned for x is the greatest common divisor if it

contains every other common divisor y. Example 1.13: Base Conversion (Decimal to Binary). The base of a binary number

is 2 and of decimal number is 10 (denary). Binary numbers have only two numerals (0 and 1), whereas decimal numbers

have 10 numerals (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). An example of a binary number is 10011100 and decimal number is

0.012345679012. The decimal numeral system is the one that is the most widely used. Computer operations are

performed with number base conversion. The following algorithm is an example of printing an integer value into binary

format: Algorithm Step 1: integer number, binary_val,temp_val,counter,d_val; Step 2: binary_val ?0; //Assigning value 0 to

binary_val Step 3: temp_val ?number; // Assigning temp_val is equal to number Step 4: counter ?0; //Assigning value 0 to

counter Step 5: print ‘Enter the number’; Step 6: read number; //Accept input values to number Step 7: if temp_val<0 {

50 Self-Instructional Material Algorithms NOTES d_val ? mod(temp_val,2) binary_val ? binary_val + d_val*10^counter;

//10^counter means power(10,counter) d_val ? d_val + a_val*p_val; temp_val ? int(temp_val/2) //Change the fraction

values as integer data types. counter ? counter + 1; //Increase the counter value by one } Step 7: print ‘Binary Value’; Step

8: print binary_val; // Prints resultant binary value

How

the above

algorithm works is explained below: Let us take a decimal value 6. d_val = 6 mod 2 that returns 0 binary value=0+3*10^0

returns 0 d_val = 3 mod 2 returns 1 counter = 0 +1= 1 The decimal number 6 is equal to binary number 110. This

conversion is explained in the following way: number number/2 number % 2 6 3 0 3 1 1 1 0 1 Implementation of base

conversion (decimal to binary) /*—————————— START OF PROGRAM ——————————*/ #include >stdio.h<

//Declaring Header files #include >conio.h< #include >math.h< void main() //Start main() function { int number,

binary_val, temp_val, counter, d_val, p_val; binary_val=0; // Declaring integer data types variables temp_val=number;

//Assigning temp_val is equal to number counter=0; //Initailizing 0 to counter printf(“\n Enter a number”); scanf(“%d”,

&number); //Accept input value if (temp_val<0) {

https://secure.urkund.com/view/158826019-231749-951747#/sources 20/133

Algorithms NOTES Self-Instructional Material 51 d_val = temp_val%2; //Returns remainder to d_val

p_val=power(10,counter); binary_val= binary_val+ d_val*p_val; //The value of binary_val is added to d_val by d_val by 10

‘raise to the power’ counter value temp_val = int(temp_val/2) //if temp_val contains fraction value, int() function changes

the integer type value counter = counter +1; //Counter variable is increased } printf(“Binary Value = %d”, binary_val);

//Printing the binary value getch(); } Base Conversion (binary to decimal) Algorithm Step 1: integer

number,d_val,temp_val,counter,a_val; Step 2: d_val ?0; //Assigning 0 to d_val Step 3: temp_val ?number; //Assigning

temp_val is equal to number Step 4: counter ?0; //Assigning 0 to counter Step 5: print ‘Enter the number’; Step 6: read

number; //Accept input value for number Step 7: if temp_val<0 //Body of if control statement { a_val ?

mod(temp_val,10); p_val ?power(2,counter); d_val ? d_val+ a_val*p_val; temp_val ? int(temp_val/10); counter ? counter

+1; } Step 8: print ‘Decimal value’; Step 9: print d_val; How the above algorithm works is explained as follows: Let us take

binary number 1011. =1*2 3 +0+2 2 +1*2 1 +1*2 0 =8+0+2+1 = 11

52 Self-Instructional Material

Algorithms NOTES

The binary number 1011 is equal to decimal number 11. /*—————————— START OF PROGRAM ——————————*/

#include >stdio.h< //Declaring Header files #include >conio.h< #include >math.h< void main() //Start

main() function { int number,d_val,temp_val,counter,a_val; // Declaring integer data types variables temp_val=number;

//Assigning temp_val is equal to number d_val=0; counter=0; //Initailizing 0 to counter printf(“\n Enter a number”);

scanf(“%d”, &number); //Accept input value if (temp_val<0) { a_val = temp_val%10; //Returns remainder to d_val p_val =

pow(2,counter); //Returns counter value raise to the power 2 to p_val variable d_val=d_val+ a_val*p_val; //The value of

d_val is added to multiplied value of a_val and p_val temp_val = int(temp_val/10) //if temp_val contains fraction value, int()

function changes the integer type value counter = counter +1; //Counter variable is increased } printf(“Decimal Value =

%d”, d_val); //Printing the binary value getch(); //Pressing key to return the program } The above program is able to convert

the binary number into decimal number. The result of the program is as follows: Enter a number = 1011 Decimal Value = 11

When a theoretical algorithm design is combined with the real-world data, it is called algorithm engineering . When you

take an algorithm and combine it

Algorithms NOTES Self-Instructional Material 53

with a hardware device that is connected to the real-world, you can verify and validate the algorithm results and behaviour

more precisely and accurately. A simple data acquisition or stimulus device may be considered as the real-world device.

Alternatively, you can implement an algorithm on some embedded platform, such as a field-programmable gate array

(FPGA) or microprocessor which can be similar to the final system design. The first specific use of the term, ‘algorithm

engineering’ was at the inaugural Workshop on Algorithm Engineering (WAE) in 1997. It has of late been used for describing

the steps in a graphical system design: ‘A modern approach to design, prototype and deploy the embedded systems which

combine open graphical programming with the commercial off-the-shelf (COTS) hardware for dramatically simplifying

development, bringing higher-quality designs with a migration to custom design’. With the help of algorithm engineering,

you can transform a pencil-and- paper algorithm into a robust, efficient, well-tested and easily usable implementation. It

covers various topics, from modelling cache behaviour to the principles of good software engineering. However,

experimentation is its main focus.

C HECK Y OUR P ROGRESS 4. List the instructions that are dealt with in RAM model. 5. What are primitive operations? 6.

What is a flowchart? 7. Define algorithm engineering. 1.3 EXPONENTIATION The mathematical operation of the form x n is

known as exponentiation. This involves two numbers, base and exponent. Here, in x n , x is the base and n is the exponent .

For positive integral values of n exponentiation means repeated multiplication as shown below: x n = x ? x ? ……..x ? x (n

times) This can be compared with mathematical operation of multiplying with a positive integer that means repeated

addition: xn = x + x + ……..x + x (n times)

https://secure.urkund.com/view/158826019-231749-951747#/sources 21/133

54 Self-Instructional Material Algorithms NOTES Exponentiation is written as a superscript towards the right of the base.

The exponentiation x n is equivalent to saying ‘ x raised to the nth power or x raised to the power n or x raised to the power

n’. Some use statements more brief that these and say ‘ x to the n .’ Negative Exponentiation The exponentiation x n , is also

defined when n is a negative integer and x¹ 0. There is no natural extension for all real valued x and n, but for all positive

real values of the base x , x n is defined for real and even complex exponents n by the exponential function e y .

Trigonometric functions are also expressed as a combination of complex exponentiation. Exponentiation is used in many

fields such as physics, chemistry, biology, computer science and economics. Applications such as wave behaviour,

chemical reaction, kinetics, population growth, public key cryptography and compound interest are used in these fields.

Exponents One and Zero Exponentiation is recursive in nature and one and zero are base cases. 5 1 mean 5 only and 5 5 =

5·5 4 ; 5 4 = 5·5 3 and continuing like this, we get 5 1 = 5·5 0 . Another way of saying this is that when n, m and n – m are

positive (and if x is not equal to zero), one can see by counting the number of occurrences of x that, n n m m x x x ? ?

Extended to the case that n and m are equal, the equation would read, 0 1 n n n n x x x x ? ? ? ? For equal numerator and

denominator this gives the definition of x 0 . Thus, we define 5 0 = 1 for the equality to hold. This leads to two basic rules of

exponentiation: (i) Any number to the power 1 is the same number. (ii) Any nonzero number to the power 0 is 1. Negative

Integer Exponents By definition, when base is a nonzero number and exponent is 1 is used give negative, reciprocal of that

base: x –1 = 1/ x and one may write x –n = 1/ x n for x¹ 0 and n ? I + . Negative integral exponent to a base means repeated

division of 1 by the base. For example, 5 –1 = 1/5 and 5 –3 = ((1/5)/5)/5

Algorithms NOTES Self-Instructional Material 55 Identities and Properties The most important identity satisfied by integer

exponentiation is: x a+ b = x a .x b . This also leads to x a–b = x a /x b for x0, and (x m) n = x mn There is another basic

identity: (x.y) n = x n . y n Exponentiation is not commutative, since 2 5 = 32, but 5 2 = 25. Not associative since 2 3 is base

and 4 is exponent. It is 8 4 or 4096, but when base is 2 and exponent is 3 4 then it becomes 2 81 . 1.3.1 How to Compute

Exponentiation Fast? Different method can be used to compute fast exponentiation. The major ones include the following:

(i) Squaring Algorithm For fast computations, ‘exponentiation by squaring’ algorithm is used. This algorithm is good for fast

computation of large exponent to a number. Due to nature of its working, it is known as square-and-multiply algorithm.

Binary exponentiation is another name given to this algorithm. Double-and-add, is also a name given to this algorithm. It

makes use of binary expansion of the exponent and is used in modular arithmetic. The following recursive algorithm

computes x n for a non-negative integer n. Here, x n is written as Power (x, n) and defined as below. 2 1, if 0 Power (,)

Power (, 1,) if is odd Power (, /2) , if is even n x n x x n n x n n ? ? ? ? ? ? ? ? ? Here, normal strategy of x n = x.x n–1 is not

adopted rather, ‘ n is even’ fact is optimized, and according to this fact: /2 /2 n n n x x x ? ? Using approach as this, log 2 n

squaring and at maximum of log 2 n multiplications are performed which is more efficient computationally in comparison

to that of multiplying the base with itself in a recursive manner. Given any (,) R Z , n x n x ? ? , x n is calculated by: 1. if n

> 0 then 1 := and := - x n n x 2.i: = n, y: = 1, z: = x 3. if i is odd then y: = y.z

56 Self-Instructional Material Algorithms NOTES 4.z: = z * z 5. ? ? ? ? ? ? := 2 i i , this discards the remainder after

performing division 6. if i ? o, then go to step 3 7. give y as result There is one problem in this algorithm that this gives 0 0 =

1 which is mathematically indeterminate. (ii) Montgomery’s Ladder Technique Disadvantages of squaring algorithm lies in

doing analysis of the operations performed at every step. This algorithm may become problematic if exponent serves the

purpose of a secret key. A variant has been created from squaring algorithm by making use of a technique known as

Montgomery’s Ladder to solve this problem. Given an integer n=(n r –1 ... n 0) 2 in base 2 with n r –1 =1 we can compute x

n as follows: x 1 =x; x 2 =x 2 for i=r-2 to 0 do if n i =0 then

x 2 =x 1 *x 2 ; x 1 =x 1 2 else x 1 =x 1 *x 2 ; x 2 =x 2 2 return x 1 (

iii) 2 K-ary Method In this algorithm calculation is performed for the value of x n by way of expansion of the exponent in

base 2 k . This method was proposed for the first time in 1939 by Brauer. In this algorithm the functions used are f(0) = (k,0)

and f(m) = (s,u), where m= 2 s *u where u is odd. Algorithm: Input ?An element x ?G and k < 0, where k is a parameter ?A

non-negative integer n=(n r –1 ,n r –2 , n 0) 2 k ?The pre-computed values x 3 ,x 5 ,... x 2k–1 . Output Element x n ??G

Algorithms NOTES Self-Instructional Material 57 Steps 1. y=1 and i=r –1 2. while i<0 do 3. (s,u)=f(n i) 4. for j=1 to k-s do

y=y 2 5. y=y*x u 6. for j=1 to s do y=y 2 7. i=i–1 8. return y Note: Optimal efficiency is achieved for small integral value of k

satisfying log(n)>(k(k+1)*2 2*k)/(2 k+1 –k–2) + 1 (iv) Sliding Window Method This is a variant of 2 k-ary method which is

more efficient. For example, to calculate exponent 398 having binary equivalent as (110 001 110) 2 , a window of length 3 is

chosen and then 2 k-ary algorithm is used for computing 1,

x 3 ,x 6 ,x 12 ,x 24 ,x 48 ,x 49 ,x 98 ,x 196 , x 199 ,x 398 and also 1, x 3 ,x 6 ,

x 12 ,x 24 ,x 48 ,x 96 ,x 192 ,x 199 , x 398 .

This saves on multiplication and this evaluates (101 00 111 0) n 2. General algorithm is given below: Input ?An element x ? G

?An integer n=(n l ,n l–1 ,..., n 0) 2 , n ? I + and k<0, where k is a parameter ?Pre-computed values x 3 , x 5 ,... x 2k–1 .

Output Element x n ?G Steps 1.y=1 and i=l–1 2. while i<–1 do 3. if n i =0 the y=y 2 and i=i –1 4. else 5. s =max{ i–k +1,0}

6. while n s =0 do s=s+1 7. for h=1 to i-s +1 do y=y 2 8. u=(n i ,n i–1 ,...., n s) 2 9.y=y*x u

https://secure.urkund.com/view/158826019-231749-951747#/sources 22/133

58 Self-Instructional Material Algorithms NOTES 10.i=s–1 11. return y Note: In the above algorithm, at line 6 the loop has

longest string of length ? k ending in a nonzero value. Computation of all odd powers of 2 up to 2 2k–1 is not required and

those specifically involved in computation are considered. Fixed Base Exponent There are several methods which can be

employed to calculate x n when the base is fixed and the exponent varies. Pre-computations play a key role in these

algorithms. (v) Yao’s Method Yao’s method is orthogonal to the 2 k-ary method where the exponent is expanded in radix

b=2 k and the computation is as performed in the algorithm above. Let ‘ n’, ‘n i ’, ‘ b’, and ‘ b i ’ be integers. Let the exponent

‘ n’ be written as 1 0 where 0 for all [0, 1] l i i i i n n b n h i l ? ? ? ? ? ? ? ? Let x i = b i x Then the algorithm uses equality as, 1 1

0 1 i i j l h n n i i i j n j x x x ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? Since x ?G , exponent ‘ n’ is written along with pre-computed

values of x b 0 –1 b l x the element x n is computed by the use of algorithm below: 1.y=1,u=1 and j=h–1 2. while j < 0

do 3. for i=0 to l–1 do 4. if n i =j then u=u* b i x 5.y=y*u 6.j=j –1 7. return y By setting h=2 k and b i = h i then n i ’s are digits

of n in base h. Yao’s method does the collection in u, first those x i appearing for the highest power h–1and in the next

round also those having h–2 as power get collected in u and like that. The variable y is multiplied h–1 times with the initial

u, h–2 times with the next highest powers, and so on. This algorithm makes use of l+ h–2 multiplications and l+1 has to be

stored for computing x n .

Algorithms NOTES Self-Instructional Material 59 (vi) Euclidean Method The Euclidean method was first introduced in

‘efficient exponentiation using precomputation and vector addition chains’ by P.D Rooij. The algorithm below computes x n

using the following equality recursively: 1 0 0 1 (mod) 0 1 0 0 1 0 1 1 () . where / n n n n n q x x x x x q n n ? ? ? ? ? ? If x ?G

and exponent ‘ n’ is written the way it is written in Yao’s method having computed values of x b 0 x b l–1 the element x n

is computed by making use of the algorithm below: Steps 1. while true do 2. find M such that n M ? n i for all i in [0, l–1] 3.

find N ? M such that n N ? n i for all i in [0, l–1], i? M 4. if n N ? 0 then 5. * (/) , and mod q M N N N M M N M q n n x x x n n

n ? ? ? ? ? 6. else break 7. return x M n The algorithm first finds the largest value amongst the n i and then the supremum

within the set of { n i : i ?? M }. It raises x M to the power q, multiplies this value with x N and then assigns x N the result of

this computation and n M the value n M modulo n N . Further applications Using this idea, speedy calculations for large

exponents modulo division of a number is done, that has applications in cryptography. Computation of powers in a ring of

integers modulo q is very useful and use can be made of this in computing integer powers in a group. For this following

rule is used, Power(x, – n) = (Power(x, n)) –1 . In every semi-group this method works and this is often used for computing

powers of matrices. For example, in evaluating 13789 722341 (mod 2345), if a naïve method is used then it will require very

long time and storage space. It involves computing 13789 722341 and taking remainder after dividing by 2345. Even if more

effective methods are used it will consume long time as it will first square 13789, then would find remainder after dividing

by 2345 and further multiply this result by 13789. This process will continue involving 722340 modular multiplications. The

square-and-multiply algorithm is based on 13789 722341 = 13789(13789 2) 361170 . So, when 13789 2 is computed, full

computation would consist of 361170 modular multiplications and there is a gain of a factor of two. As new problem is also

the

60 Self-Instructional Material Algorithms NOTES same in its type, same observation can be applied again, and

approximately halving the size once more. Repeated application of this algorithm is equivalent to decomposing the

exponent by performing a base conversion of decimal to binary as a sequence of squares and products. This is explained as

follows:

x 11 = x (1011)bin =

x (1*2^3 + 0*2^2 + 1*2^1 + 1*2^0) = x 1*2^3 * x 0*2^2 * x 1*2^1 * x 1*2^0 = x 2^3 * 1 * x 2 * x 2^0 = x 8 * x 2 * x 1 = (

x 4) 2 * (

x) 2 * x = (x 4 * x) 2 * x = ((

x 2) 2 *

x) 2 * x = (x 2 * x) 2 *

x ?

Thus, algorithm requires only 3 multiplications instead of 10 (11-1) Some more examples: ? x 10 = ((x 2) 2 *x) 2 because 10

= (1,010) 2 = 2 3 +2 1 , algorithm needs 4 multiplications instead of 9. ? x 100 = (((((x 2 *x) 2) 2) 2 *x) 2) 2 because 100 =

(1,100,100) 2 = 2 6 +2 5 +2 2 , algorithm needs 8 multiplications instead of 99. ? x 1,000 = ((((((((x 2 *x) 2 *x) 2 *x) 2 *x) 2) 2

*x) 2) 2) 2 because 10 3 = (1,111,101, 000) 2 , algorithm needs 14 multiplications instead of 999. ? x 1,000,000 =

((((((((((((((((((x 2 *x) 2 *x) 2 *x) 2) 2 *x) 2) 2) 2) 2) 2 *x) 2) 2) 2 *x) 2) 2) 2) 2) 2) 2 because 10 6 =

(11,110,100,001,001,000,000) 2 , algorithm needs 25 multiplications instead of 999,999. ?

x 1,000,000,000 = ((((((((((((((((((((((((((((x 2 *x) 2 *x) 2) 2 *x) 2 *x) 2 *x) 2) 2) 2 *x) 2 *x) 2) 2 *x) 2) 2 *x) 2 *x) 2) 2) 2 *

x) 2) 2 *x) 2) 2) 2) 2) 2) 2) 2) 2) 2

because 10 9 = (111,011,100,110,101,100,101,000,000,000) 2 , algorithm needs 41 multiplications instead of 999,999,999. C

HECK Y OUR P ROGRESS 8. What are the two basic rules of exponentiation? 9. List the methods used to compute

exponentiation fast.

Algorithms NOTES Self-Instructional Material 61 1.4 LINEAR

https://secure.urkund.com/view/158826019-231749-951747#/sources 23/133

100% MATCHING BLOCK 41/127

SEARCH Linear search is the easiest and least efficient searching technique. In this technique, the given list of elements

is scanned till

100% MATCHING BLOCK 42/127

either the required element is found or the list is exhausted. This technique is used in direct access media such as

magnetic tapes. Example 1.14

illustrutes a linear search. Example 1.14:

98% MATCHING BLOCK 43/127

Find an element 77 from the given list using linear search. The list of elements is 10, 25, 77, 16, 47 and 98. Linear search

starts by checking the target element (i.e., 77) with the first element of the list, i.e., 10, which is not equal to the target

element; search continues with the second element, i.e. 25, which is also not equal to the target element and search

continues with the third element, i.e. 77, which is equal to the target element (=77). So, the search is stopped. 1.4.1

Algorithm for Linear Search LINEAR_SEARCH (L, N, E) 1. [Initialization] loc = 1 L[N + 1] = E 2. [Search the element in the

vector] REPEAT WHILE (K[loc]>< E) DO loc = loc + 1 3. [Check whether the search is successful or not?] IF loc = N

+ 1, THEN WRITE (‘UNSUCCESSFUL SEARCH’) RETURN(0) ELSE WRITE(‘SUCCESSFUL SEARCH’) RETURN(loc) 1.4.2

Analysis of Linear Search Algorithm For N total number of elements, the search time T is proportional to half of N: T = K *

N/2 where K is a constant If K = 2, then T = K*N The average linear search times are proportional to the size of the array,

i.e., O(N) Note: If an array is twice as big, it will take twice as long to search. Implementation of Linear Search to Find a

String from a String Vector/ Array Program for Linear Search of Strings /*—————————START OF PROGRAM

——————————*/ #include>stdio.h< #define MAXROWS 10 62

Self-Instructional Material Algorithms NOTES #

define MAXCOLS 20 #define NOTFOUND -1 typedef char STRINGS[MAXROWS][MAXCOLS]; typedef char

STRING[MAXCOLS]; int LSearch(STRINGS s,STRING target,int n) { int loc=0; strcpy(s[n],target); while(strcmp(s[loc],target))

loc++; if(loc==n) return NOTFOUND; else return loc; } void main() { STRINGS a=

{“MON”,”TUE”,”WED”,”THU”,”FRI”,”SAT”,”SUN”}; int index; index=LSearch(a,”WED”,7); if(index==NOTFOUND) printf(“Record

not found”);

else printf(“Record found at Location:%d”,index+1); } /*——————————END OF PROGRAM————————*/ Output:

Record found at Location 3 Implementation of linear search to find a value in a vector or array /*————————START OF

PROGRAM——————————*/ #include>stdio.h< #include>conio.h< #define MAXROWS 10 #define

MAXCOLS 20 #define NOTFOUND -1 typedef int VECTOR[MAXCOLS]; int LSearch(VECTOR s,int target,int n) { int loc=0;

s[n]=target; while(s[loc]!=target)

Algorithms NOTES Self-Instructional Material 63

97% MATCHING BLOCK 44/127

loc++; if(loc==n) return NOTFOUND; else return loc; } void main() { VECTOR a={5,4,3,2,7}; int index; clrscr(); Program for

Linear Search of Numbers index=LSearch(a,2,5); if(index==NOTFOUND) printf(“Record not found”); else printf(“Record

found at Location:%d”,index+1); } /*——————————END OF PROGRAM————————*/ Output: Record found at

Location:4 1.5 BINARY SEARCH Binary search is used to search for an element in a sorted list. 1.5.1 The Search Method ?

First compare the key with the item in the middle position of the array. ?If any match is found, return it immediately. ?If

the key is less than the middle key, then the item to be found must lie in the lower half of the array; if it is greater, then

the item to be found must lie in the upper half of the array. ?Repeat the procedure on the lower (or upper) half of the

array. Example 1.15

illustrates a binary search Example 1.15:

Find an element 88 in an array of elements given below where L is Lower bound of the array and U is the Upper bound of

the array. 10 12 18 23 53 67 88 99 102 0 1 2 3 4 5 6 7 8 L U

https://secure.urkund.com/view/158826019-231749-951747#/sources 24/133

64 Self-Instructional Material Algorithms NOTES Calculate middle by M=FLOOR((L+U)/2), where L=0 and U=8 M=4 Since

value in Vector[M] is 53, which is less than the target value (=88), search in the second half of the array. 10 12 18 23 53 67

88 99 102 0 1 2 3 4 5 6 7 8 L U Calculate middle by M=FLOOR((L+U)/2), where L=5 and U=8 M=6 Since value in Array[M] is

equal to target value (=88), then it is a successful search and record found at location 6. 1.5.2 Algorithm for Binary Search

BINARY_SEARCH(B,N,E) 1. [Initialization] L=1 H=N 2. [Start the searching process] REPEAT THRU STEP 4 WHILE L>=H

DO 3. [Get the index of midpoint of interval] M=FLOOR(L+H)/2 4.[Comparison to get the element] IF E > B[M] THEN

H=M-1 ELSE IF E < B[M] THEN L = M +1 ELSE WRITE(‘SUCCESSFUL SEARCH’) RETURN(M) 5. [Unsuccessful search]

WRITE(‘UNSUCCESSFUL SEARCH’) 6.[Finished] RETURN(0) 1.5.3 Analysis of Binary Search algorithm For N total number of

elements, the search time T is proportional to log(N) T=K * log 2 (N). The average searching time for binary search is O(log

N).

Algorithms NOTES Self-Instructional Material 65

98% MATCHING BLOCK 45/127

Implementation of Binary Search to Find an Element in a Sorted Vector/ Array Program for Binary Search for Numbers *

——————————START OF PROGRAM——————————*/ #include>stdio.h< #include>conio.h< #define

MAXCOLS 20 #define NOTFOUND -1 typedef int VECTOR[MAXCOLS]; int BSearch(VECTOR str,int target,int n) { int

s,e,m,cmp; s=0; e=n-1; while(s>=e) { m=(s+e)/2; if(target>str[m]) e=m-1; else if(target<str[m]) s=m+1; else return

m; } return NOTFOUND; } void main() { VECTOR a={1,2,3,4,5}; int index; clrscr(); index=BSearch(a,4,5);

if(index==NOTFOUND) printf(“Record not found”); else printf(“Record found at Location:%d”,index+1); } /*

———————————END OF PROGRAM——————————*/ Output: Record found at Location:5 66

Self-Instructional Material Algorithms NOTES

Implementation to Search a String in a Vector/Array having Strings in Sorted Order /*——————————START OF

PROGRAM——————————*/ #include>stdio.h< #include>conio.h< #define MAXROWS 10 #define

MAXCOLS 20 #define NOTFOUND -1 typedef char STRINGS[MAXROWS][MAXCOLS]; typedef char STRING[MAXCOLS]; int

BSearch(STRINGS str,STRING target,int n) { int s,e,m,cmp; s=0; e=n-1; while(s>=e) { m=(s+e)/2;

cmp=strcmp(target,str[m]); if(cmp>0) e=m-1; else if(cmp<0) s=m+1; else return m; }

return NOTFOUND; } void main() { STRINGS str={“AB”,”ABC”,”BB”,”BCA”,”CC”,”CCC”}; int index; clrscr();

index=BSearch(str,”CC”,6); if(index==NOTFOUND) printf(“Record not found”); else printf(“Record found at

Location:%d”,index+1); } /*————————END OF PROGRAM——————————*/

Algorithms NOTES Self-Instructional Material 67

97% MATCHING BLOCK 46/127

Output: Record found at Location:5 Note: In the above two programs, the array should contain sorted values; otherwise,

use any sorting algorithm before calling BSearch. Algorithm for Binary Search using Recursive Technique Function

BSearch (Vector,First_Index,Second_Index,Target) 1.[Search vector between First_Index and Second_Index for target] IF

First_Index<Second_Index) loc=0 ELSE Middle_Index=(First_Index+Second_Index)/2; IF Target <

Vector[Middle_Index] loc=BSearch(Vector,Middle_Index+1,Second_Index,Target) ELSE IF Target >

Vector[Middle_Index] loc=BSearch(Vector,First_Index,Middle_Index-1, Target) ELSE loc=Middle_Index 2.[Finished]

RETURN(loc) Implementation of Binary Search to Find an Element in a Sorted Vector/ Array using Recursion Technique

Program for binary search for numbers using recursion #include >stdio.h< #define MAXCOLS 20 #define

NOTFOUND -1 typedef int VECTOR[MAXCOLS]; int BSearch(VECTOR vector,int findex,int sindex,int target) { int

mindex,loc; if(findex<sindex) loc=NOTFOUND; else { mindex=(findex+sindex)/2; 68

Self-Instructional Material Algorithms NOTES

if(target<vector[mindex]) loc=BSearch(vector,mindex+1,sindex,target); else if(target>vector[mindex])

loc=BSearch(vector,findex,mindex-1,target); else loc=mindex; } return(loc); } void main() { VECTOR a=

{10,20,30,40,50,60,70,80,90}; int loc; loc=BSearch(a,0,8,40); if(loc==NOTFOUND) printf(“Target string not found”); else

printf(“Starting from 0th location target is at location:%d”,loc); } Output Starting from 0th location target is at Location:3

Implementation to Search a String in a Vector/Array having Strings in Sorted Order using Recursion Technique Program for

binary search for strings using recursion #include >stdio.h< #include >string.h< #define MAXCOLS 20 #define

MAXROWS 10 #define NOTFOUND -1 typedef char STRINGS[MAXROWS][MAXCOLS]; typedef char STRING[MAXCOLS]; int

BSearch(STRINGS str,int findex,int sindex,STRING target) { int mindex,loc,cmp; if(findex<sindex) loc=NOTFOUND; else {

mindex=(findex+sindex)/2;

Algorithms NOTES Self-Instructional Material 69

https://secure.urkund.com/view/158826019-231749-951747#/sources 25/133

97% MATCHING BLOCK 47/127

cmp=strcmpi(target,str[mindex]); if(cmp>0) /* if target greater than middle string */

loc=BSearch(str,mindex+1,sindex,target); else if(cmp<0) /* if target less than middle string */

loc=BSearch(str,findex,mindex-1,target); else loc=mindex; } return(loc); } void main() { STRINGS str[]={“aa”,”bb”,”cc”,”dd”};

int loc; loc=BSearch(str,0,3,”bb”); if(loc==NOTFOUND) printf(“Target string not found”); else printf(“Starting from 0th

location target is at Location:%d”,loc); } Output Starting from 0th location target is at Location:1 1.5.4 Fibonacci Search

The Fibonacci progression is a numeric progression such that F 0 = 0, F 1 = 1 and F n = F n–1 +F n–2 for n 2 . The

Fibonacci search splits the given list of elements according to the Fibonacci progression unlike splitting in middle as in

the binary search. Algorithm for Fibonacci search Function Fibonacci_search (Array, Target, N) 1. [Initialize I with 0] I = 0

2. [Check ?] WHILE(Fib(I) > N) I = I + 1 3. [Assignments] A = Fib(I – 2) B = Fib(

I – 3)

70 Self-Instructional Material Algorithms NOTES 4. [

Calculate middle element] Middle=N-A-1 5. [Search process] WHILE Array[Middle]><Target DO IF Array[Middle] <

Target THEN IF b > 0 THEN RETURN NOTFOUND T = A – B Middle = Middle – B A = B B = T ELSE IF A > 1 THEN

RETURN NOTFOUND MIDDLE = MIDDLE + B A = A – B B = B – A 6.[Finished] RETURN Middle Algorithm for Fibonacci

Function Function Fib(N). 1.[Generate number] IF N = 0 THEN RETURN 0 ELSE IF N = 1 THEN RETURN 1 ELSE RETURN

Fib(n – 1)+Fib(n – 2) Analysis of Fibonacci Search Algorithm Fibonacci numbers grow exponentially, it immediately follows

that any node with N descendants that has rank at most O(logN) The average searching time for Fibonacci search is O(log

N). Implementation to Search a String in a Vector/Array having Strings in Sorted Order using Fibonacci Search Program for

Fibonacci search for strings /*—————————STARTING THE PROGRAM——————————*/ #include>stdio.h<

Algorithms NOTES Self-Instructional Material 71 #

94% MATCHING BLOCK 48/127

include>conio.h< #include>string.h< #define MAXCOLS 20 #define MAXROWS 10 #define NOTFOUND –1

typedef char STRINGS[MAXROWS][MAXCOLS]; typedef char STRING[MAXCOLS]; int Fib(int n) { if(n==0) return 0; else

if(n==1) return 1; else return Fib(n – 1) + Fib(n – 2); } int Fsearch(STRINGS str, STRING target, int n) { int i,a,b,middle,t; i =

0; while(Fib(i) > n) i++; a=Fib(i – 2); b=Fib(i – 3); middle = n – a – 1; while(strcmpi(str[middle],target)!=0) {

if(strcmpi(str[middle],target)<0) { if(b > 0) return NOTFOUND; t = a – b; middle = middle – b; a = b; b = t; } else { if(a

> 1) return – 1; middle = middle + b; a = a – b; b = b – a; } 72 Self-Instructional Material Algorithms NOTES }

return(middle); } void main() { int i,n; STRINGS str[]={“aa”,”bb”,”cc”,”dd”,”ee”,”ff”,”gg”}; i=Fsearch(str,”gg”,7);

if(i==NOTFOUND) printf(“\nRecord not found”); else printf(“\nStarting from 0th location record found at:%d”,i); } Output

Starting from 0th location record found at:6 1.6

BIG OH NOTATION (OR BIG O NOTATION)

94% MATCHING BLOCK 49/127

An algorithm is a step-by-step procedure for performing some task in a finite amount of time. Sometimes we need to

know how much time and space (computer memory) a computer algorithm requires, i.e., how efficient it is. This is

termed as time and space complexity. Typically, the complexity refers to a function of the values of the inputs, and we

would like to know what is that function. The best, average and worst cases can also be considered. The big O notation (

also known as

https://secure.urkund.com/view/158826019-231749-951747#/sources 26/133

92% MATCHING BLOCK 50/127

big OH notation) provides a convenient way to compare the speed of algorithms. This is a mathematical notation used in

the priori analysis. If an algorithm is said to have a computing time of O(g(n)), then it implies that if the algorithm is run on

some computer on the same type of data put for increasing the values of n, the resulting times will always be less than

same constant times |g(n)|. The best algorithm runs in O(1) times. Good algorithm runs in O(log N) times. Fair algorithm

runs in O(N) times. Worst algorithm runs in O(N 2) times. Note: If A(n) = a m n m + ...+a 1 n 1 + a 0 is a polynomial of

degree m, then f(n) = O(n m). Thus, if the frequency of execution of a statement is in the form of A(n), then the

statements computing time will be O(n m). Formally, O(g(n)) is the set of functions, f, such that for some c < 0, f(n) >

cg(n) for all positive integers, n < N, i.e. for all sufficiently large N. It can be represented as c n g n f n ? ? ?) () (lim .

Algorithms NOTES Self-Instructional Material 73 Informally, we say the O(g) is the set of all functions, which grows no

faster than g. The function g is an upper bound to functions in O(g). We can analyse any algorithm by the O notation

irrespective of the programming language and machine. Consider two other functions:) (g ? and) (g ? .) (g ? is the set of

functions f(n) for which f(n)) (n cg ? for all positive integers, n<N, and) () () (g O g g ? ? ? ? 1.6.1 Properties of the Big O

Notation

The following are the

properties of big O notation: ?Constant factors may be ignored: For all k < 0, kf is O(f). e.g. cn 2 and kn 2 are both O(n 2).

?Higher powers of n grow faster than lower powers: n r is O(n 8) if s r? ?0 . ?The growth rate of a sum of terms is the

growth rate of its fastest growing term: If f is O(g), then f+g is O(g). e.g. an 3 +bn 2 is O(n 3). ?The growth rate of

polynomial is given by the growth rate of its leading term: If f is a polynomial of degree d, then f is O(n d). ?If f grows faster

than g, which grows faster than h, then f grows faster than h. ?The product of upper bounds of functions gives an upper

bound for the product of the functions: If f is O(g) and h is O(r) , then fh is O(gr). e.g.

If f is O(n 2) and g is O(log n), then fg is O(n 2 log n). ?Exponential functions grow faster than powers: n k is O(b n), for all b

< 1, k, e.g. n 4 is O(2 n) and n 4 is O(exp(n)). ?

Logarithms grow more slowly than powers: log b n is O(n k) for all b < 1, k < 0 e.g. log 2 n is O(n 0.5). ?All logarithms

grow at the same rate: log b n is) (logn d ? for all b, d<1. ?The sum of the n r th powers grows as the (r+1) th power: ? ? ?

?

n k r r n

is k 1 1) (

92% MATCHING BLOCK 51/127

e.g.) (2)1 (2 1 n is n n i n k ? ? ? ? ? 74 Self-Instructional Material Algorithms NOTES 1.6.2 General Rules ?Simple

statement sequence: It is to be noted first that a sequence of statements executed once only is O(1). It is immaterial as to

how many statements are in the sequence; only that the number of statements (or the time that they take to execute) is

constant for all problems. ?Simple loops: If a problem of size n can be solved with a simple loop. For example, for (i = 0;i

> n; ++i) { Statement(s); } Where Statement(s) is an O(1) sequence of statements, then the time complexity is nO(1) or

O(n). ?Nested loops: for(j = 0;j > n; ++j) for(i = 0;i > n; ++i) { Statement(s); } when we have n repetitions of an O(n)

sequence, then the complexity is nO(n) or O(n 2). ?Loop index does not vary linearly: Where the index jumps by an

increasing amount in each iteration. i = 1; while(i ?n) { Statement(s); i = 2*i; } in which i takes values 1, 2, 4,… until it

exceeds n. This sequence has 1 + ? ? n 2 log values, so the complexity is O(log 2 n). ?If the inner loop depends on an

outer loop index: for(j = 0;j > n; j++) for(i = 0;i > j; i++) { Statement(s); } The inner loop i = 0, 1, 2…n gets executed n

times, so the total is: ? ? ? n n n i 1 2)1 (and the complexity is O(n 2).

Algorithms NOTES Self-Instructional Material 75 Notice that the above

https://secure.urkund.com/view/158826019-231749-951747#/sources 27/133

95% MATCHING BLOCK 52/127

two nested loops also have the same complexity, so the variable number of iterations of the inner loop does not affect

the ‘big picture’. However, if the number of iterations of one of the loops decreases by a constant factor with every

iteration as shown below: i = n; while(i < 0) { for(i = 0;i > n; ++i) { Statement(s); } h = h/2; } Then there are log 2 n

iterations of the outer loop and the inner loop is O(n). So the overall complexity is O(n log n) . The most common

computing times of algorithms in the big O notation are: O(1)> O(logn)> O(n)> O(nlogn)> O(n 2) > O(n 3

)>O(2 n)>=O(n!) 1.6.3 Finding Prime Factor of a Given Number Finding a prime factor begins with the lowest prime

number 2. If 2 divides the number completely and leaves no remainder it is marked as the very first prime factor. It

continues dividing until it longer divides evenly. Then the control flow moves to the next lowest prime numbers. The step

is repeated until the next prime factor comes. The following algorithm is used to find the prime factor of a given number:

Algorithm to Find Prime Factor of a Given Number Step 1: integer input, divisor, count; Step 2: print ‘Enter a value:’, Step

3: read input; Step 4: count ?0; Step 5: Do Step 6: divisor ?0; Step 7 : if input mod 2==0 OR input==1 //To remove all the

factors of 2 break; count ?count+1; //Increase counter value by 1 print count, divisor; input ?input/2; //Remove this

factor from input Step 8: End Do Step 9: divisor ?3; Step 10: Do Step 11 : if divisor<input 76 Self-Instructional Material

Algorithms NOTES break; Step 12: Do //Remove the factors repeatedly Step 13 : if input mod divisor ==0 OR input==1

break; count ?count+1; print count, divisor; input ?input/divisor; //Remove factors from input Step 14: End Do Step 15 :

divisor ? divisor+2; //Move to next odd number Step 16: End Do The above algorithm lists out all prime factors of an n

integer <=2 . First it sides back all factors of 2. Then, all factors, such as 3, 5, 7 and so on can be removed. This process

is run until all the prime factors are sided back and kept in a temporary location. According to the above algorithm, if the

input value is 53, the prime factors of 53 are 1 and 53 itself. Implementation of Finding Prime Factor of a Given Number /*

—————————— START OF PROGRAM ——————————*/ #include >stdio.h< #include >conio.h< void

main() { int number, i, j, k; clrscr(); printf(“Enter a number:”); scanf(“%d”, &d); while(i>=number) { k=0; if (number%i==0)

{ j=1; while(j>=i) { if(i%j==0) k++; //Value k is increased by 1 j++; //Value j is increased by 1 } if(k==2) printf(“\nPrime

factors are:”); printf(“%d”,

i);

Algorithms NOTES Self-Instructional Material 77 i++; }

getch(); } The

result of the above program is as follows: Enter a number: 123 Prime factors are: 3 41 In the above program, finding a

prime factor of a given number can be performed in the following step. You first enter a number let say ‘123’ as input value.

The prime factors of 123 are 3 and 41 (prime numbers). If you multiple 3 and 41, it returns 123, that is a prime number. 1.6.4

List of Prime Numbers Prime numbers are numbers that can be divided only by 1 or by themselves. Below, in white, are the

prime numbers between 1 and 100. The following algorithm is used to find the list of prime numbers: Algorithm to Find the

List of Prime Numbers Step 1: integer N,D; // Declare the variables the integer being considered needed for the integer

divison Step 2: integer N_is_prime; // N is equal to 1 (default) when N is prime and N = 0 when N is not prime Step 3: for N

?3 to 30 //Running for loop // This loop considers all prime integers between 3 and 30 N_is_prime ?1; // assume N is prime

Step 4: for D ?2 to (N-1) if N%D == 0 //Returns remainder if N is divided by D N_is_prime = 0; // if the remainder is 0 then

N is prime

78

Self-Instructional Material Algorithms NOTES

96% MATCHING BLOCK 53/127

Step 5: if N_is_prime == 0 break; //Exit from loop // if N is prime do not do any more integer divisions Step 6: if

N_is_prime == 1 print N; Implementation to find the list of prime numbers /*—————————— START OF PROGRAM

——————————*/ #include>stdio.h< #include >conio.h< void main() { int N; // the integer being

considered int D; // needed for the integer divison int N_is_prime; // = 1 (default) when N is prime and = 0 when N is not

prime for (N=3;N>=30;N++) // This loop considers all prime integers between 3 and 100 { N_is_prime = 1; // assume

N is prime for (D=2;D>=N-1;D++) { if (N%D == 0) N_is_prime = 0; // if the remainder is 0 then N is prime if

(N_is_prime == 0) break; // if N is prime don’t do any more integer divisions } if (N_is_prime == 1) printf(“%d\n”,N); }

getch(); } The result of the above program is as follows: 2 3 5 7 11 13 17

https://secure.urkund.com/view/158826019-231749-951747#/sources 28/133

Algorithms NOTES Self-Instructional Material 79 19 23 29 C HECK Y OUR P ROGRESS 10. What do you understand by the

linear search technique? 11. When is the binary search method used? 12. What is big O notation? 1.7 WORST CASE In the

field of computer science, complexity indicates a measure of resources required by an algorithm and worst-case

complexity is a measure of resources required by the algorithm to solve a problem in worst case. Here, by ‘resources’ we

mean time of run and memory required. These are time and space complexity. Worst-case indicates the maximum amount

of resource required by the algorithm to solve the problem. Measured in terms of time required, worst-case time-

complexity gives maximum time required by an algorithm to perform when any input of size n is given with a guarantee

that algorithm finishes its work within that time. This also forms a basis for comparing efficiency of two algorithms. Best

case, worst case and average cases are three situations in which analysis is done for a given algorithm. These terms tell

about use of resources in terms of at least , at most and on average , respectively. Here, resources usually include running

time and amount of memory space the algorithm occupies. It may mean other resources as well, but mostly time and

space complexities are used. Worst- case execution time is of particular importance in real time computing as it is critical

to know the maximum time required to execute instructions with a guarantee that the algorithm will always finish within

that time. Worst-case is compared with average performance and is mostly used in algorithm analysis. In case of a looping

statement there is O(n) time complexity. If another loop is put in that loop the complexity increases and it becomes O(

n^2), since it has to do n^2 things for an input size of n. Worst case algorithms are non deterministic. 1.8 ADVANTAGE OF

LOGARITHMIC ALGORITHMS OVER LINEAR ALGORITHMS An algorithm that takes search time of the order of O(log n) is

logarithmic whereas a linear algorithm takes search time of O(kn) to find kth smallest or largest item in a list containing n

items. This linear algorithm is not effective when list is large and

80 Self-Instructional Material Algorithms NOTES value of k is large. Such algorithm is suitable only for the cases where

value of k is small. Binary search is an example of logarithmic search. In linear algorithm, program moves in a sequential

manner, whereas a binary search adopts the policy of ‘divide and conquer’. For example, if we start searching a number, say

30, in a list of 100 numbers, and the list is serially arranged then it will search linearly from 1 to 29 and then come to 30. But

in Binary search, it would divide in two halves and will discard one half and will again search in another half. This search

strategy reduces the number checking by a factor of two each time to find the target value, if it is in the list and this will be

done in logarithmic time. Suppose we want to design an algorithm to find whether determinant value of a particular n ? n

matrix is more than a predetermined value k. Using linear search this can be done in O(n 2) time whereas using binary

search, ceiling of the determinant value (d) can be found in O(n 2 log d) time. Here, d is the size of output and not of the

input. Algorithm of logarithmic nature always takes less time that of linear search. A linear search has worst case behaviour

of N iterations and takes much time as N grows. If there are one million items, it will make one million searches. But in case

of logarithmic search such as binary search, time taken in worst case is floor value of (log 2 2 10 – 1) which is

approximately 9. Search is continued even if iteration fails to find a match at the probed position, with one or other of the

two sub-intervals, each with almost halved size. If N, denoting the number items, is odd then both sub-intervals will have (

N –1)/2 elements. But if N is even the two sub-intervals will have N/2 –1 and N/2 elements. In a list of N items, after first

iteration, remaining items will N/2 items at the maximum and in second iteration, items will get reduced to at most N/4

items, then to N/8 items and so on. This way algorithm continues, iterating until the span becomes empty. This will, at the

most will take ?log 2 (N) + 1 ? iterations. Here, ??? stands for the floor function which neglects the decimal part of the

number. In worst case for any N it takes exactly ?(log 2 N) + 1 ? iterations. Linear search can be applied to a list sorted as

well as unsorted, but binary search is applied to a list that is already sorted. 1.9 COMPLEXITY 1.9.1 Space Complexity The

space complexity of an algorithm indicates the quantity of temporary storage required for running the algorithm, i.e. the

amount of memory needed by the algorithm to run to completion.

Algorithms NOTES Self-Instructional Material 81 In most cases, you do not count the storage required for the inputs or the

outputs as part of the space complexity. This is because the space complexity is used to compare different algorithms for

the same problem in which case the input/output requirements are fixed. Also, you cannot do without the input or the

output, and you want to count only the storage that may be served. You also do not count the storage required for the

program itself since it is independent of the size of the input. Like time complexity, space complexity refers to the worst

case, and it is usually denoted as an asymptotic expression in the size of the input. Thus, a o(n) – space algorithm requires

a constant amount of space independent of the size of the input. The amount of memory an algorithm needs to run to

completion is called its space complexity. The space required by an algorithm consists of the following two components:

(i) Fixed or static part: Fixed or static part is not dependent on the characteristics (such as number size) of the inputs and

outputs. It includes various types spaces, such as instruction space (i.e., space for code), space for simple variables and

fixed-size component variables, space for constants, etc. (ii) Variable or dynamic part: Variable or dynamic part consists of

the space required by component variables whose size is dependent on the particular problem instance at run-time being

solved, the space needed by referenced variables and the recursion stack space (depends on instance characteristics). The

space requirements S(p) of an algorithm p is S(p) = c + Sp (instance characteristics), where ‘ c’ is

https://secure.urkund.com/view/158826019-231749-951747#/sources 29/133

a constant. We are supposed to concentrate on estimating SP (instance characteristics) since the first part is static. The

problem instances for algorithm are characterized by n, the number of elements to be summed. The space needed by n is

one word since it is of type integer. The space needed by a is the space needed by variables of type array of floating-point

numbers. This is at least n words since a must be large enough to hold the n elements to be summed. So, we obtain S S (n)

= (n + 3) (n for a[], one each for n, i, and s). Iterative function for sum Algorithm RSum (a, n) { if (n 0) then return 0.0; else

return RSum (a, n – 1) + a[n]; }

82 Self-Instructional Material Algorithms NOTES 1.9.2 Time Complexity The time complexity of an algorithm may be

defined as the amount of time the computer requires to run to completion. The time T(P) consumed by a program P is the

sum of the compile-time and the run-time (execution-time). The compile time is independent of the instance

characteristics. Also, it may be assumed that a compiled program can be run many times without recompilation. As a result,

we are more interested in the run-time of a program. This run-time is denoted by t p (instance characteristics). Many

factors on which t p depend are not known at the time a program is written; so it is always better to estimate t p . If we

happen to know the type of the compiler used, then we could proceed to find the number of additions, subtractions,

multiplications, divisions, compare statements, loads, stores and so on that would be made by a program P. So we can

obtain an expression of the form. t p (n) = C a ADD(n) + C s SUB(n) + C m MUL(n) + C d DIV(n) +......... Where n denotes

the instance characteristics, and C a , C s , C m , C d and so on denote the time needed for addition, subtraction,

multiplication, division, etc. But here we need to note that the exact amount of time needed for the operations mentioned

here cannot be found exactly; so instead we could only count the number of program steps, which means that a program

step is counted. A program step is defined as a syntactically or semantically meaningful segment of a program that has an

execution time that is independent of the instance characteristics. For example, consider the statement return a + b * c – d

% e/f This can be regarded as a step since its execution time is independent of the instance characteristics. The number of

steps that are assigned to any program statement depend on the type of statement. The comments do not count for the

program step. A general assignment statement, which does not call another algorithm, is considered one step whereas in

an iterative statement like for, while and repeat_until, you count the step only for the control part of the statement. The

general syntax for ‘for’ and ‘while’ statements is as follows: for i = (exprl) to (expr2) do while(expr) do Each execution of the

control part of a while statement is given step count equal to the number of step counts assignable to >expr<. The

step count for each execution of the control part of a for statement is one, unless the counts attributable to >expr<

and >exprl< are functions of the instance characteristics.

Algorithms NOTES Self-Instructional Material 83 1.9.3 Practical Complexities One of the main reasons to analyse algorithms

is to find out the relative performance of two or more algorithms for the same problem. Consider the problem of sorting

an array a[0:n – 1] for which the best known algorithms are

bubble sort, selection sort, insertion sort, quick sort, merge sort,

etc. The time complexities of these algorithms fall in two categories. One set of algorithm have O(n 2) and the other set

have O(n log n). Unless we analyse and find their complexities, it may be difficult to say which is faster and which is not.

While comparing the algorithms we must also keep in mind that n is very large or sufficiently large. The performance of the

algorithms strongly depends on the size of n too. For instance, quick sort behaves very badly when n is small, i.e., O(n 2),

which is same as bubble sort or insertion sort. However, when the size is sufficiently large its time complexity is O(n log n).

The aim of this section is to illustrate the practical time calculation of a program, what are the timing functions to use

(given by the operating system or the complier), how to set up the test data, calculate the actual time taken by common

asymptotic functions, f(n) using a real computer executing certain number of instructions per second. You will be

wondering that certain functions may take years of computer time (even on a Pentium III or mainframe machines) for

sufficiently large values of n. Typical Examples (1) Assume that a computer can execute 10 9 steps/sec and a particular

program needs n 10 steps, then: for n = 10, the time required is = 10 sec for n = 100, the time required is = 3171 years for n

= 1000, the time required is = 3.17 × 10 13 years (2) Assuming that out task needs n 2 steps (bubble sort to selection sort)

then: for n = 10, the time required is = 0.1 ?sec for n = 100, the time required is = 10 ?sec for n = 1000, the time required is

= 1msec for n = 1000000, the time required is = 16.6 min Looking at the first example, we see that even a polynomial

function f(n 10) takes enormous amount of time (unimaginable ?10 13 years). When the function is exponential, (say 2 n)

imagine what could be the time taken.

https://secure.urkund.com/view/158826019-231749-951747#/sources 30/133

84 Self-Instructional Material Algorithms NOTES Table 1.1 shows the run-time on a 1,000,000,000 instructions/sec. Table

1.1 Run-time for Various Values of n n n n log n 2 n 10 n n 2 10 s 01 .0 ? s 03 .0 ? s 1.0? 10s s 1? 50 s 05 .0 ? s 28 .0 ? s 5.2?

3.1yrs 13 days 100 s 01 .0 ? s 66 .0 ? s 10? 3171yrs 4 × 10 13 yrs 1000 s 1? s 96 .9 ? 1ms 3.17 × 10 13 yrs 3.17 × 10 43 yrs

1000000 1ms 19.92ms 16.67min 3.17 × 10 43 yrs - 1.9.4 Performance Measurement This section explains how the run-time

of a function is calculated using specific complier options. You will not show the space calculations and the compilation

time in this example. There is of course a small difference between the time calculation on DOS/Windows 95 or 98

environment and UNIX environment. Therefore, the reader must be careful in introducing the appropriate statement in

his/her program depending on the platform. The test data is another important aspect of time complexity calculation. For

example, when you want to generate the test data for bubble sort (or for that matter any sorting or searching program)

function, it is better to use a random number generator to populate the array. This will enable you to find the run-time on

an average case or worst case. Programs need to be tested and in turn, the time complexity need to be calculated. For

example, in the case of bubble sort, the best case is to input a sorted sequence itself. In case of the searching algorithm,

just put the key in the 1st position. Example1.16 shows the famous factorial program with statements required for finding

the time complexity on DOS platforms. The function gettime () obtains the time in a structure with hours, minutes, seconds

and hundredth of a second. In the program shown, only hundredth of a second is considered assuming that the program

does not take of the order of seconds. The time before and after calling the functions is recorded and the difference

multiplied by 10 gives the result in milliseconds. If this program gets tested on a Pentium – III @ 500 MHz computer then

for most of the values of n, you may get the result as 0 as the machine is fast as the program consumes less than a

millisecond. Example 1.16: Run-time Calculation – Factorial Program (DOS version) /* Factorial – Recursive method */

#include>stdio.h< #include>stdlib.h< #include>time.h< #include>dos.h<

Algorithms NOTES Self-Instructional Material 85 long Fact(int); void main() { int n; long f; struct time t; long stime, etime;

printf(“Enter n:”); scanf(“%d”, &n); gettime(&t); stime=t.ti_hund; f=Fact(n); gettime(&t); etime=t.ti_hund; printf(“The Factorial

is = %1d\n”, f); printf(“Time taken = %1d\n”,(etime – stime) * 10); /* time in msec */ } long Fact(int n) { delay(10); if (n==0)

return 1; else return n* Fact(n-1); } On UNIX platform, you must follow the following piece of code:

#include>sys/types.h< #include>sys/times.h< ……………. ……………. ……………. main() { struct tms t; long stime, etime;

…………. ………… stime = times (&t); f(); /* function whose run-time to be calculated */ etime = times(&t);

86 Self-Instructional Material Algorithms NOTES …………../* calculate the difference *10*/ …………../* similar to program 1.11

*/ } 1.10 ALGORITHM REPRESENTATION THROUGH A

99% MATCHING BLOCK 54/127

PSEUDOCODE A pseudocode is neither an algorithm nor a program. It is an art of expressing a program in simple English

that parallels the forms of a computer language. It is basically useful for working out the logic of a program. Once the

logic seems right, you can attend to the details of translating the pseudocode to the actual programming code. The

advantage of pseudocode is that it lets you concentrate on the logic and organization of the program while sparing you

the efforts of simultaneously worrying how to express the ideas in a computer language. A simple example of

pseudocode: set highest to 100 set lowest to 1 ask user to choose a number guess (highest + lowest) / 2 while guess is

wrong, do the following: { if guess is high, set highest to old guess minus 1 if guess is low, set lowest to old guess plus 1

new guess is (highest + lowest) / 2 } 1.10.1 Coding In the field of computer programming, the term code refers to

instructions to a computer in a programming language. The terms ‘ code’ and ‘to code’ have different meanings in

computer programming. The noun ‘ code’ stands for source code or machine code. The verb ‘ to code’ , on the other

hand , means writing source code to a program. This usage seems to have originated at the time when the first symbolic

languages evolved and were punched onto cards as ‘codes’. It is a common practice among engineers to use the word

‘code’ to mean a single program. They may say ‘I wrote a code’ or ‘I have two codes’. This inspires wincing among the

literate software engineer or computer scientists. They rather prefer to say ‘I wrote some code’ or ‘I have two programs’.

As in English it is possible to use virtually any word as a verb, a programmer/coder may also say ‘coded a program’;

however, since a code is applicable to various concepts, a coder or programmer may say ‘hard-coded it right into the

program’ as opposed to the meta-programming model, which might allow multiple reuses of the same piece of code to

achieve multiple goals. As compared to a hard-coded concept, a

Algorithms NOTES Self-Instructional Material 87

https://secure.urkund.com/view/158826019-231749-951747#/sources 31/133

99% MATCHING BLOCK 55/127

soft-coded concept has a longer lifespan. This is the reason of soft-coding of concept by the coder. While writing your

code, you need to remember the following key points: ?Linearity: If you are using a procedural language, you need to

ensure that code is linear at the first executable statement and continues to a final return or end of block statement. ?If

constructs: You would better use several simpler nested ‘if’ constructs rather than a complicated and compound ‘if’

constructs. ?Layout: Code layout should be formatted in such a way that it provides clues to the flow of the

implementation. Layout is an important part of coding. Thus, before a project starts, there should be agreement on the

various layout factors, such as indentation, location of brackets, length of lines, use of tabs or spaces, use of white space,

line spacing, etc. ?External constants: You should define constant values outside the code. It ensures easy maintenance.

Changing hard-coded constants takes too much time and is prone to human error. ?Error handling: Writing some form

of error handling into your code is equally important. ?Portability: Portable code makes it possible for the source file to

be compiled with any compiler. It also allows the source file to be executed on any machine and operating system.

However, creating a portable code is a fairly complex task. The machine-dependent and machine-independent codes

should be kept in separate files. 1.10.2 Program Development Steps The following steps are required to develop a

program: ?Statement of the problem ?Analysis ?Designing ?Implementation ?Testing ?Documentation ?Maintenance

Statement of the problem : A problem should be explained clearly with required input/output and objectives of the

problem. It makes easy to understand the problem to be solved. Analysis : Analysis is the first technical step in the

program development process. To find a better solution for a problem, an analyst must understand the problem

statement, objectives and required tools for it. 88

Self-Instructional Material Algorithms NOTES

100% MATCHING BLOCK 56/127

Designing : The design phase will begin after the software analysis process. It is a multi-step process. It mainly focuses on

data, architecture, user interfaces and program components. The importance of the designing is to get the quality of the

product. Implementation : A new system will be implemented based on the designing part. It includes coding and

building of new software using a programming language and software tools. Clear and detailed designing greatly helps in

generating effective code with less implementing time. Testing : Program testing begins after the implementation. The

importance of the software testing is in finding the uncover errors, assuring software quality and reviewing the analysis,

design and implementation phases. 1.10.3 Software Testing

100% MATCHING BLOCK 57/127

Software testing will be performed in the following two technical ways: ?

Black box tests or Behavioral tests (testing in the large): These types of techniques focus on the information domain of the

software. Example: Graph-based testing, Equivalence partitioning, Boundary value analysis, Comparison testing and

Orthogonal array testing. ?White box tests or Glass box tests (testing in the small): These types of techniques focus on the

program control structure. Example: Basis path testing and Condition testing ?Documentation : Documentation is

descriptive information that explains the usage as well as functionality of the software. Documentation can be in several

forms: ? Documentation for programmers ? Documentation for technical support ? Documentation for end-users ?

Maintenance : Software maintenance starts after the software installation. This activity includes amendments,

measurements and tests in the existing software. In this activity, problems are fixed and the software updated to make the

system faster and better. Programming is the process of devising programs in order to achieve the desired goals using

computers. A good program has the following qualities: ?A program should be correct and designed in accordance with

the specifications so that anyone can understand the design of the program. ?A program should be easy to understand. It

should be designed that anyone can understand its logic. ?A program should be easy to maintain and update.

Algorithms NOTES Self-Instructional Material 89 ?

100% MATCHING BLOCK 58/127

It should be efficient in terms of the speed and use of computer resources such as primary storage. ?It should be reliable.

?It should be flexible ; that is to say, it should be able to operate with a wide range of inputs. 1.11

https://secure.urkund.com/view/158826019-231749-951747#/sources 32/133

AMORTIZED ANALYSIS Amortized analysis means finding the average running time per operation over a worst-case

sequence of operations. While giving the average case complexity, probability is involved. On the other hand, amortized

analysis ensures the time per operation over the worst-case performance. ?Amortized analysis assumes the worst-case

input and typically disallows random choices. ?The average case analysis and amortized analysis are two different

concepts. In the former, we average all possible inputs, whereas in the latter, we average a sequence of operations. ?The

amortized analysis disallows the random selection of input. Various techniques are used in amortized analysis. They are

discussed as follows: ?Aggregate analysis: In this type of analysis, the

upper bound T(n) on the total cost of a sequence of n operations

is decided; then the average cost is calculated as T(n)/n. ?Accounting method: In this method, the individual cost of an

operation is calculated by combining the immediate execution time and its influence on the run- time of future operations.

?Potential method: This method is very much like the accounting method, but overcharges operations early to

compensate for undercharges later. C HECK Y OUR P ROGRESS 13. What do you understand by worst-case complexity of

algorithms? 14. Define space complexity. 15. What is time complexity? 16. What do you understand by a pseudocode? 17.

What is amortized analysis?

90 Self-Instructional Material Algorithms NOTES 1.12 SUMMARY In this unit, you have learned that: ?

100% MATCHING BLOCK 59/127

An algorithm is a step-by-step procedure for performing some task in a finite amount of time.

The five important properties (features) of algorithm are: finiteness, definitiveness, input, output and effectiveness. ?

100% MATCHING BLOCK 60/127

Testing of a program comprises two phases: (i) debugging and (ii) profiling. Debugging refers to the process of carrying

out programs on sample data sets for

finding out faulty results.

90% MATCHING BLOCK 61/127

Profiling refers to the process of executing a correct program on data sets and the measurement of the time and space it

takes in computing the results. ?

Algorithms can be classified into four categories: approximate algorithms, probabilistic algorithms, infinite algorithm and

heuristic algorithms. ?The most commonly used design approaches for designing an algorithm include: incremental

approach, divide and conquer approach, dynamic programming approach, greedy strategy, branch and bound algorithm

approach, backtracking and randomized algorithms approach. ?The mathematical operation of the form x n is known as

exponentiation. This involves two numbers, base and exponent. Here, in x n , x is the base and n is the exponent. ?The

methods which can be used to compute exponentiation fast are: squaring algorithm, Montgomery’s ladder technique,

sliding window method, Yao’s method, and euclidean method. ?

100% MATCHING BLOCK 62/127

Linear search is the easiest and least efficient searching technique. In this technique, the given list of elements are

scanned from the first one till either the required element is found or the list is exhausted. This technique is used in direct

access media, such as magnetic tapes. ?

Binary

search is used to search for an element in a sorted list. ?

100% MATCHING BLOCK 63/127

The Fibonacci progression is a numeric progression such that F 0 = 0, F 1 = 1, and F n = F n–1 +F n–2 for n 2 . The

Fibonacci search splits the given list of elements according to the Fibonacci progression unlike splitting in middle as in

the binary search. ?

https://secure.urkund.com/view/158826019-231749-951747#/sources 33/133

The amount of memory an algorithm needs to run to completion is called its space complexity. ?The time complexity of an

algorithm may be defined as the amount of time the computer requires to run to completion.

Algorithms NOTES Self-Instructional Material 91 1.13 KEY TERMS ?Debugging: It

100% MATCHING BLOCK 64/127

refers to the process of carrying out programs on sample data sets

so as to check for faulty results. ?Profiling: It

90% MATCHING BLOCK 65/127

refers to the process of executing a correct program on data sets and the measurement of the time and space it takes in

computing the results. ?

Randomized algorithm: It refers to an algorithm whose input is determined by the values produced by a random number

generator. ?Average case: It is the function defined by the average number of steps taken on any input of size n. ?Space

complexity: It refers to the amount of memory an algorithm needs to run to completion. ?Time complexity: It refers to the

amount of time the computer requires to run to completion. 1.14 ANSWERS TO ‘CHECK YOUR PROGRESS’ 1. Efficiency as

a function of input size can be measured in terms of the number of bits in an input number as well as the number of data

elements (numbers, points). 2. Incremental approach is one of the simplest approaches to design algorithms . In this

approach, whenever a new element is inserted into its appropriate place, the index is increased. One needs to start moving

from the first step, executing each step till he reaches the end. Here, the problem is not split. 3. The following are the two

main types of randomized algorithms: (i) Las Vegas algorithms (ii) Monte Carlo algorithms 4. Instructions include the

following: ?Arithmetic: Add, multiply, substract, floor, ceiling, divide ?Shift left and shift right ?Data movement: Assignment,

load, copy, store ?Logical: Comparison ?Control: Conditional/unconditional branching, subroutine call, return 5. Primitive

operations are low-level operations which are independent of the programming language. They can be identified

96% MATCHING BLOCK 66/127

in the pseudocode. 6. A flowchart refers to a graphical representation of a process which depicts inputs, outputs and

units of activity. It represents the whole process at a high or detailed (depending on your use) level of observation. It

serves as 92

Self-Instructional Material Algorithms NOTES

100% MATCHING BLOCK 67/127

an instruction manual or a tool to facilitate a detailed analysis and optimization of workflow as well as service delivery. 7.

100% MATCHING BLOCK 68/127

When a theoretical algorithm design is combined with the real-world data, it is called algorithm engineering. 8.

This leads to two basic rules of exponentiation: (i) Any number to the power 1 is the same number. (ii) Any nonzero number

to the power 0 is 1. 9. The following methods can be used to compute exponentiation fast: ?Squaring algorithm ?

Montgomery’s ladder technique ?2 K-ary method ?Sliding window method ?Yao’s method ?Euclidean method 10. In this

technique, the given list of elements is scanned till

100% MATCHING BLOCK 69/127

either the required element is found or the list is exhausted. This technique is used in direct access media such as

magnetic tapes. 11.

Binary

https://secure.urkund.com/view/158826019-231749-951747#/sources 34/133

100% MATCHING BLOCK 70/127

search is used to search for an element in a sorted list. 12. The

big O notation (also known as

98% MATCHING BLOCK 71/127

big OH notation) provides a convenient way to compare the speed of algorithms. This is a mathematical notation used in

the priori analysis. If an algorithm is said to have a computing time of O(g(n)), then it implies that if the algorithm is run on

some computer on the same type of data put for increasing the values of n, the resulting times will always be less than

same constant times |g(n)|. 13.

Worst-case complexity of an algorithm refers to the measure of resources it requires to solve a problem in the worst case.

Here, resources include, time of run and memory required. Worst-case indicates the maximum amount of resource

required by the algorithm to solve the problem. 14. The space complexity of an algorithm indicates the quantity of

temporary storage required for running the algorithm, i.e., the amount of memory needed by the algorithm to run to

completion. 15. The time complexity of an algorithm may be defined as the amount of time the computer requires to run

to completion. 16.

100% MATCHING BLOCK 72/127

A pseudocode is neither an algorithm nor a program. It is an art of expressing a program in simple English that parallels

the forms of a computer language. It is basically useful for working out the logic of a program. 17.

Amortized analysis means finding the average running time per operation over a worst-case sequence of operations.

Algorithms NOTES Self-Instructional Material 93 1.15 QUESTIONS AND EXERCISES Short-Answer Questions 1. Why an

algorithm needs to be verified before it gets analysed? 2. Write a short note on Greedy algorithms. 3. Write a short note on

squaring algorithm which is used for computing exponentiation fast. 4. Write an algorithm for Fibonacci search. Long-

Answer Questions 1. Explain the different methods used to compute exponentiation fast. 2. Write a program to show the

100% MATCHING BLOCK 73/127

implementation of linear search to find a value in a vector or array. 3.

Write a program to show the

96% MATCHING BLOCK 74/127

implementation of binary search to find an element in a sorted vector/array using recursion technique. 4.

Write a program to show the implementation of Fibonacci search to find a string in a sorted vector/array. 1.16 FURTHER

READING Lipschutz, Seymour and Lipson Marc. Schaum’s Outline of Discrete Mathematics, 3rd edition. New York:

McGraw-Hill, 2007. Horowitz, Ellis, Sartaj Sahni and Sanguthevar Rajasekaran. Fundamentals of Computer Algorithms.

Hyderabad: Orient BlackSwan, 2008. Cormen,

Thomas H., Charles E. Leiserson, Ronald L. Rivest and Clifford Stein. Introduction to Algorithms .

The MIT Press, 1990. Brassard, Gilles and Paul Bratley. Fundamentals of Algorithms . New Delhi: Prentice Hall of India, 1995.

Levitin, Anany. Introduction to the Design and Analysis of Algorithms . New Jersey: Pearson, 2006. Baase, Sara and Allen

Van Gelder. Computer Algorithms – Introduction to Design and Analysis . New Jersey: Pearson, 2003. Mott, J.L. Discrete

Mathematics for Computer Scientists , 2nd edition. New Delhi: Prentice-Hall of India Pvt. Ltd., 2007. Liu, C.L. Elements of

Discrete Mathematics . New Delhi: Tata McGraw-Hill Publishing Company, 1977. Rosen, Kenneth. Discrete Mathematics and

Its Applications , 6th edition. New York: McGraw-Hill Higher Education, 2007.

Graph Theory NOTES Self-Instructional Material 95 UNIT 2 GRAPH THEORY

https://secure.urkund.com/view/158826019-231749-951747#/sources 35/133

Structure 2.0 Introduction 2.1 Unit Objectives 2.2 Graphs: Types and Operations 2.2.1 Bipartite Graphs 2.2.2 Subgraph 2.2.3

Distance in a Graph 2.2.4 Cut-Vertices and Cut-Edges 2.2.5 Graph Connectivity 2.2.6 Isomorphic Graphs 2.2.7

Homeographic Graphs 2.2.8 Cut-Sets and Connectivity of Graphs 2.2.9 Operations on Graphs 2.3 Degree of Vertex 2.4

Adjacent and Incidence Matrices 2.5 Path Circuit 2.5.1 Floyd’s and Warshall’s Algorithms 2.5.2 Eulerian Path and Circuit 2.5.3

Hamiltonian Graphs 2.6 Graph Colouring 2.6.1 Four Colour Theorem 2.7

100% MATCHING BLOCK 75/127

Summary 2.8 Key Terms 2.9 Answers to ‘Check Your Progress’ 2.10 Questions and Exercises 2.11 Further Reading 2.0

INTRODUCTION

In this unit, you will learn about the various features of graphs. A graph is a depiction in a diagrammatic format of a set of

dots for the vertices, joined by lines or curves for the edges. Every graph has a diagram associated with it. This diagram is

helpful in understanding the problems involved in the graph. In this unit you will learn about the various types of graphs and

operations involving them. You will also learn the difference between a simple graph and pseudograph, and will also come

to know that

the degree of a vertex is the number of edges incident with

that vertex

and that a vertex with degree zero is called an isolated vertex. There are various types of graphs, such as complete graph,

bipartite graph and subgraph. The edge connectivity of a graph is the minimum cardinality of a set of edges. This unit also

deals with isomorphic and homeographic graphs.

96

Self-Instructional Material Graph Theory NOTES 2.1

UNIT OBJECTIVES After going through this unit, you will be able to: ?Understand the

various types of graphs

and their operations ?Describe the characteristics of the degree of a vertex ?Understand the functions of adjacent and

incidence matrices ?Explain the various features of a path circuit ?Colour graphs and maps 2.2 GRAPHS: TYPES AND

OPERATIONS A graph G is a triplet (V(G), E(G), ? G) consisting of a non-empty set V(G) of vertices, a set E(G) of edges and

a function ? G that is assigned to each edge and a subset { u, v } of V(G) (u, v need not be distinct). If e is an edge and u, v

are vertices such that ? G (e) = uv, then e is a line (edge) between u and v; the vertices u and v are the end points of the

edge e. For example, (i)

G= (V(G), E(G), ? G) Where,

V(G) = { v 1 , v 2 , v 3 , v 4 } E(G) = { e 1 , e 2 , e 3 , e 4 , e 5 , e 6 } ? G (e 1) = { v 1 v 2 }, ? G (e 2) = { v 2 v 2 }, ? G (e 3) = { v 2

v 3 }, ? G (e 4) = {

v 1 v 3 }, ? G (e 5) = { v 4 v 5 }

and ? G (e 6) = { v 1 v 4 } (ii) G= (V(G),

E(G), ? G) Where, V(G) = { v 1 , v 2 , v 3 }, E(G) = { e 1 , e 2 , e 3 }, ? G (e 1) = {

v 1 v 2 }, ? G (e 2) = { v 2 v 3 }; ? G (e 3) = { v 3 v 1 } Every graph has a diagram associated with it. These diagrams are useful

for understanding problems involved in the graph. In the pictorial representation, vertices are represented by small circles

and edges by lines whenever the corresponding pair of vertices forms an edge. The pictorial representation of examples (i)

and (ii) are shown in Figure 2.1.

v 2 v 3 e 3 e 1 e 2 v 1 () ii e 6 e 4 e 3 e 2 v 2 e 1 v 1 v 4 v 3 e 5

v 5 () i Figure 2.1 Pictorial Representation of Graphs

Graph Theory NOTES Self-Instructional Material 97 Notes: 1. In example (i), e 2 joins the vertex v 2 to itself. Such an edge is

called self loop. 2. If there is more than one edge between a pair of vertices in a graph, then these edges are called parallel

edges. 3. Hereafter the graph G = (V, E) will be denoted for simplicity. 4. A graph which consists of parallel edges is called a

multigraph. Simple Graph: A graph with no self loops and parallel edges is called a simple graph. Pseudograph: A graph

with self loops and parallel edges is called a pseudograph (see Figure 2.2). Note: Every simple graph and every multigraph is

a pseudograph, but the converse is not true. G: Figure 2.2 A Pseudograph The above graph G is neither a simple graph nor

a multigraph. Following are some of the types of graphs commonly used: 2.2.1 Bipartite Graphs

A simple

graph G is called bipartite if its vertex set V can be partitioned into two disjoint non-empty sets V 1

and V 2 in such

a way that every edge in the graph connects a vertex in V 1 and a vertex in V 2 . Note that no edge in G in Figure 2.3

connects either two vertices in V 1 or two vertices in V 2 . v 2 v 3 v 6 v 5 v 1 v 4 G Figure 2.3 A Bipartite Graph

98 Self-Instructional Material Graph Theory NOTES For example, G is bipartite, because its vertex set

v = { v 1 , v 2 , v 3 , v 4 , v 5 , v 6 } is partitioned into two non-empty sets V 1 = { v 1 , v 3 ,

https://secure.urkund.com/view/158826019-231749-951747#/sources 36/133

v 5 } and V 2 = { v 2 , v 4 , v 6 }.

Also, every edge in G connects a vertex in V 1 and a vertex in V 2 .

Complete Bipartite Graph The complete bipartite graph k m, n is the graph that has its vertex set partitioned into two non-

empty subsets of m and n vertices, respectively. There is an edge between two vertices, if one vertex is in the first subset

then the other vertex is in the second subset. Figure 2.4 has examples of complete bipartite graphs. k 2, 3 k 3, 3 k 1, 4 (Star

Graph) Figure 2.4 Complete Bipartite Graphs 2.2.2 Subgraph A graph H = (V(H), E(H)) is called a subgraph of a graph G = (

V(G), E(G)) if (a) V(H) ? V(G) and (b) E(H) ? E(G).

A subgraph H of a graph G is called a

spanning

subgraph if V(H) = V(G). Figure 2.5 shows examples of subgraphs: G: H: H 1 : Subgraph Spanning Subgraph Figure 2.5

Subgraphs

Graph Theory NOTES Self-Instructional Material 99 2.2.3 Distance in a Graph For a non-trial graph G and a pair u, v of

vertices of G, the distance d G (u – v) is defined as the length of a shortest (u – v) path in G (if such path exists). If G

contains no (u – v) path, then one defines d G (u – v) = ?. Examples of Figure 2.6 illustrate the distance in a graph. G 1 : u v

() (,) = 2 i d u v G 1 G 2 : x y () (,) = ii d x y G 2 Figure 2.6 Distance in a Graph G is a connected graph and v is an arbitrary

vertex in G. Then, following important terms are defined as follows: (i) The eccentricity of v is defined as the length of the

longest path in G starting from vertex u and is denoted by e(v). e(v) = max { d(u, v): u?v(G)}. (ii) The diameter of G is defined

as the maximum eccentricity among all the vertices of G, i.e., diam (G) = max { e(v): v ? V(G)}. (iii) The radius of G is defined

as the minimum eccentricity among all the vertices of G, i.e., rad (G) = min { e(v): v ? V(G)}. (iv) The centre of G is defined as

the set of vertices having minimum eccentricity among all the vertices of G, i.e., cent (G) = { v ??V(G): e(v) = rad (G)}. Notes:

1. rad (G) ? diam (G) ? 2 rad (G), G is a graph. 2. The median of a connected graph G is defined as the set of vertices having

minimum distance. 2.2.4 Cut-Vertices and Cut-Edges A vertex v in a graph G is said to be a cut-vertex if ?(G – v) < ??(G),

where ?(G) is the component of G and a component is a maximal connected subgraph of G, i.e., a vertex v of a connected

graph is a cut-vertex, iff (G – v) is disconnected (Figure 2.7).

100 Self-Instructional Material Graph Theory NOTES G 1 : v G 2 : Figure 2.7 Cut-Vertices and Cut-Edges G 1 contains one

cut-vertex v and G 2 contains no cut-vertices (See Figure 2.7). Theorem 2.1: A vertex v in a connected graph G is a cut-

vertex iff vertices u and w exist (both are different from v) in such a way that every path connecting u and w contains v.

Proof: Let G be a connected graph and v be a cut-vertex. Claim: There exist vertices u and w in such a way that every path

between u and w contains v. Since v is a cut-vertex, (G – v) is disconnected and (G – v) contains two components say G 1

and G 2 . Let u and w be the vertices of G 1 and G 2 , respectively. Clearly there is no (u – w) path in (G – v). Hence, every

path connecting u and w must contain v. Conversely, lets assume that there exist vertices u and w in such a way that every

(u – w) path contains v. Claim: v is a cut-vertex. Suppose v is not a cut-vertex. Then, (G – v) is connected. Since u, w are

vertices in G – v, there is a path between u and w in G – v, which does not contain the vertex v. This is a contradiction.

Hence, v is a cut-vertex. Cut-edge: An edge e in a graph G is said to be a cut-edge, if (G – e) is disconnected (see Figure

2.8). For example, G 1 : e G 2 : Figure 2.8 G 1 containing One Cut-Edge and G 2 with no Cut-edge As in cut-vertex, a similar

result can be furnished. Theorem 2.2: An edge e in a connected graph G is a cut-edge iff there exists vertices u and w such

that every path connecting u and w must contain the edge ‘ e’. Proof: Let G be a connected graph and e be a cut-edge.

Graph Theory NOTES Self-Instructional Material 101 Claim: There exist vertices u and w such that every (u – w) path must

contain the edge e, since e is a cut-edge in G, (G – e) is disconnected and (G – e) contains atleast

two components say G 1 and G 2 . Let u and w be the vertices respectively in G 1 and G 2 . Thus, there is no path between

u and w in (G – 2).

Hence, every path connecting u and w must contain the edge e. Conversely, suppose that there exist vertices u and w such

that every path connecting u and w must contain the edge e. Claim: e is a cut-edge. Suppose

e is not a cut-edge. Then (G – e) is connected

and hence, e is some circuit in G. Therefore, there exists a path connecting u and w, which does not contain the edge e.

This is a contradiction. Hence, e is a cut-edge. 2.2.5 Graph Connectivity In this sub-section, the structure of graphs will be

studied.

A walk in

a graph G is an alternating sequence. W : v 0 , e 1 , v 1 , e 2 ,..., v n–1 , e n , v n (

n ? 0) of vertices and edges, beginning and ending with vertices,

such that e i = v i – 1 v i , i = 1, 2,..., n. It is denoted by (v 0 – v n) walk. The number of edges (not necessarily distinct) is

called the length of walk. In graph G, u, e 1 , v, e 2 , w, e 6 , x, e 4 , u is a walk of length 4. Figure 2.9 illustrates the path and

walk in a graph. G e : 4 x u v y w e 6 e 7 e 5 e 3 e 2 e 1 Figure 2.9 Path and Walk in a Graph A trail is a walk in which no edge

is repeated and a path is a trail in which no vertex is repeated. Thus, a path is a trail, but not every trail is a path . In the

above graph G, x, e 6 , w, e 3 , v, e 1 , u, e 2 , w, e 7 , y is a trail that is not a path, and u, e 4 , x, e 6 , w, e 7 , y e 5 , v is a path.

Problem 1: Every (u – v) walk in a graph

contains a (u – v) path. Proof: Let W be a (u – v) walk in

https://secure.urkund.com/view/158826019-231749-951747#/sources 37/133

a graph G. If u = v, then w is the trail path, i.e., walk of length zero. Suppose u ? v and W : u = u 0 , u 1 , u 2 ,..., u n = v. If no

vertex of G appears in W more than once, then w itself is a (u – v) path. Otherwise, there are vertices of G that occur in w

twice or more. Let i and j be distinct positive integers such that i > j with ui = uj. Then say u i , u i + 1 ,..., u j – 2 , u j – 1

are removed from w and the resulting sequence is (u – v) walk w 1 whose length

102 Self-Instructional Material Graph Theory NOTES is less than that of w. By

induction hypothesis, this w 1 contains a (u – v) path and hence w has a (u – v) path.

If no vertex of G appears more than once in w 1 , then w 1 is a (u – v) path. If not, apply the procedure, until you get a (u –

v) path. Cycle: A cycle is a walk. v 0 , v 1 ,..., v n is a walk in which n ? 3, v 0 = v n and the ‘ n’-vertices v 1 , v 2 ,..., v n are

distinct. It is said that a (u – v) walk is closed if u = v and open if u ? v. Connection: Let u and v be vertices in a graph G. You

say that u is connected to v if G contains a (u – v) path. The graph G is connected, if u is connected to v for every pair and

u, v are vertices of G. Disconnection: A graph G is disconnected, if there exists two vertices u and v for which there is no (u

– v) path. Component:

A subgraph H of a graph G is called a component of G, if H is a

maximal connected subgraph of G and component is denoted by ?(G). Note: If ?(G) < 1, then G is disconnected (see

Figure 2.10) () i () ii Figure 2.10 Connected and Disconnected Graph Graph (i) is connected and (ii) is disconnected. Note

that graph (ii) has 3 components. Connectedness in a Directed Graph ?Strongly Connected: A directed graph is strongly

connected if there is a path from u to v and v to u, whenever u and v are vertices in the graph. ?Weakly Connected: A

directed graph is weakly connected, if there is a path between any two vertices in the underlying undirected graph. ?

Unilaterally Connected: A directed graph is said to be unilaterally connected, if in the two vertices u and v, there exists a

directed path either from u to v or from v to u. (see Figure 2.11)

Graph Theory NOTES Self-Instructional Material 103 For example, G 1 a b d c a b d c Weakly Connected Directed Graph

Unilaterally Connected Directed Graph Strongly Connected Directed Graph a b d c G 2 G 3 Figure 2.11 Connectedness in

Directed Graph G 1 is weakly connected; G 2 unilaterally connected and G 3 is strongly connected. 2.2.6 Isomorphic

Graphs

Two graphs G and H are said to be isomorphic if there exist

bijections ??: V(G) ? V(H) and ?: E(G) ? E(H)

such that iff ? G (e) = uv iff ? H (?(e)) = ?(u) ?(v). Such a pair of mappings (?, ?) is called an isomorphism between G and H

and is written as G ? H. In other words,

two simple graphs G and H are isomorphic if there

is a bijection ? : V(G) ? V(H) such that uv ? E(G) iff ?(u) ?(v) ? E(H).

Figure 2.12 shows examples of isomorphic graphs. G: v 3 v 1 v 2 v 4 v 5 v 6 a H: d c b f e Figure 2.12 Isomorphic Graphs

Here G and H are isomorphic. The correspondence which gives isomorphism between G and H is as follows:

v 1 v 2 ? E(G) ? dc = ?(v 1) ?(v 2) ? E(H) v 1 v 3 ? E(G) ? da = ?(v 1) ?(v 3) ? E(H) v 3 v 6 ? E(G) ? ab = ?(v 3) ?(v 6) ? E(H) v 6 v

5 ? E(G) ?

be = ?(v 6) ?(v 5) ? E(H) v 3 v 4 ? E(G) ? af = ?(v 3) ?(v 4) ? E(H)

104 Self-Instructional Material Graph Theory NOTES v 6 v 2 ? E(G) ? bc = ?(v 6) ?(v 2) ? E(H) v 4 v 2 ? E(G) ? fc = ?(v 4) ?(v 2

) ? E(H) ? G? H Notes: 1. Two graphs G 1 = (V 1 , E 1) and G 2 = (V 2 , E 2)

are said to be isomorphic if a one-to-one correspondence ?

exists from V 1 to V 2 such that u and v are adjacent in G 1 iff ?(u) and ?(v) are adjacent to G 2 . 2. If G ? H, then degrees of

corresponding vertices are equal. Example 2.1: Prove that the following graphs G and H are non-isomorphic. G: v 3 v 4 v 5

v 2 v 1 H: u 3 u 4 u 5 u 1 u 2 Solution: Clearly G and H are isomorphic. In G, V 1 is adjacent to the vertices V 3 , V 4 , V 5 ; V 2

is adjacent to the vertices V 3 , V 4 , V 5 . In H, u 1 is adjacent to u 3 , u 4 , u 5 and u 2 is adjacent to u 3 , u 4 , u 5 . Here, the

function defined by ?(v i) = u i , 1 ? i ? 5 gives the isomorphism. Example 2.2: Prove that the following graphs G and H are

non-isomorphic. G u : 3 u 5 u 4 u 2 u 1 w 1 H w : 2 w 4 w 3 w 5 Solution: Clearly G and H are non-isomorphic graphs. In G,

these two vertices (u 1 and u 2) are adjacent with three other vertices (u 3 , u 4 , u 5) whereas in H, the vertex w 2 is

adjacent to w 1 , w 2 , w 4 and the vertex w 3 is adjacent to w 1 , w 2 and w 5 and vertices w 2 and w 3 are adjacent to each

other. In G, u 1 and u 2 are non-adjacent. Hence, G is not isomorphic to H. Note: From the above example, it is clear that

two graphs are isomorphic if they have same number of vertices and same number of edges and the degrees of the

corresponding vertices are equal, but the converse is not true.

https://secure.urkund.com/view/158826019-231749-951747#/sources 38/133

Graph Theory NOTES Self-Instructional Material 105 2.2.7 Homeographic Graphs Two graphs G 1 and G 2 are

homeomorphic if an isomorphism is found from any subdivision of G 1 to any subdivision of G 2 . Subdivision of a graph is

another graph that results from subdivision of edges in that graph. Let there be an edge e having { u, v} as endpoints.

Subdivision of edge e with these endpoints will yield a graph that contains another vertex w as a new vertex with an edge

set that replaces e by two new edges having endpoints {u,w} and { w,v}. Lets take an example of a graph as shown in Figure

2.13. There is an edge connecting two endpoints { u,v}. u e v Figure 2.13 An Edge Connecting Two Endpoints This graph

may have subdivision as two edges, e 1 and e 2 , with a new vertex w. u w v e 1 e 2 Figure 2.14 The Edges of a Graph

Reverse of this operation smoothens out a vertex w connecting a pair of edges (e 1 , e 2) and removes these edges that

contain vertex w replacing these with a new edge connecting other endpoints of the pair. In Figure 2.14 it is emphasized

that only 2-valent vertices can be smoothed. This can be understood in Figure 2.15. Let there be a simple connected graph

having two edges, e 1 joining vertices { u,w} and e 2 joining vertices { w,v}. u w v e 1 e 2 Figure 2.15 A Simple Connected

Graph with Two Edges Joining Vertices There is common vertex w that might be smoothed away. If done so this results in

a situation as shown in Figure 2.16. u e v Figure 2.16 Smoothing Away of the Common Vertex Determining whether for

graphs G 1 and G 2 , G 2 is homeomorphic to a subgraph of G 1 , it is a problem that is NP-complete. Barycentric

Subdivision A subdivision of this type is a special subdivision that subdivides every edge of a graph. Such a subdivision

results in a bipartite graph and procedure can be repeated in a way that nth barycentric subdivision is the barycentric

subdivision of n-1th

106 Self-Instructional Material Graph Theory NOTES barycentric subdivision of the graph. Second subdivision of this type

results in a simple graph. Embedding on a Surface Subdivision of a graph preserves planarity. Kuratowski’s theorem states

that ‘a finite

graph is planar if and only if it contains no

subgraph homeomorphic to the complete graph on five vertices or complete bipartite graph on six vertices, three of which

connect to each of the other three’. A complete graph is denoted as K 5 and a complete bipartite graph of six vertices in

which three vertices are connected to another three vertices is denoted as K 3,3 . If a graph is homeomorphic to K 5 or K

3,3 it is known as Kuratowski subgraph. A generalization, that follows from Robertson–Seymour theorem, asserts that for

each integer g, a finite obstruction set () () { } g i L g G ? of graphs is there, such that a graph G can be embeded on a

surface of genus g, iff G does not contain any homeomorphic copy of any of the () g i G . For example, the finite

obstruction set L(0) = { K 5 ,K 3,3 } contains the Kuratowski subgraphs. For Example, In Figure 2.17, graph G 1 and graph G 2

are homeomorphic. G 1 G 2 G 1 'G 2 ' Figure 2.17 Homoeomorphic Graphs If G 1 is the graph created by subdivision of the

outer edges of G 1 and G 2 ' is the graph resulting from subdivision of inner edge of G 2 , then G 1 ' and G 2 ' have similarity

in drawing as shown in Figure 2.17 and hence, G 1 ' and G 2 ' have isomorphism which leads to the fact that G 1 and G 2 are

homoeomorphic. 2.2.8 Cut-Sets and Connectivity of Graphs Let G be a connected graph. Let us recollect the definition of

cut-edge (bridge) and cut-vertex. If G contains an edge e such that G–e is disconnected, then e is a bridge of G. Further, if

G contains a vertex v such that G–v is disconnected, then v is a cut-vertex of G. 1. Edge cut-set: A subset S of the edge set

of a connected graph G is called an edge cut-set or cut-set of G if, (i)G – S is disconnected. (ii)G – S 1 is connected for

every proper subset S 1 of S.

Graph Theory NOTES Self-Instructional Material 107 2. Vertex cut-set: A subset u of the vertex set of G is called a vertex

cut- set if, (i)G – u is disconnected. (ii)G – u 1 is connected for every proper subset u 1 of u. For example,

v 1 e 2 v 6 v 5 v 4 v 2 v 3 e 1 e 5 e 6 e 4 e 3 e 7 e 8 e 9 G: Figure 2.18 Cut-Set (i)S = { e 1 , e 4 , e 6 , e 8 }

is a cut-set (see Figure 2.18). v 6 v 5 v 3 v 1 v 2 v 4 G-S: Figure 2.19 Vertex Cut-Set (ii)u = { v 1 , v 3 , v 5 } is a vertex-cut-set

(see Figures 2.19 and 2.20). v 6 v 5 v 6 G-U: Figure 2.20 Note: For a connected graph, there may be more than one cut-set.

For example, consider the graph G in Figure 2.20. Some cut-sets of G are: S 1 = {e 1 , e 4 , e 6 , e 8 } S 2 = {e 1 , e 2 }, S 3 = {

e 1 , e 3 , e 9 } As s result one is forced to introduce two more parameters for graphs, viz. edge-connectivity ?(G) and vertex

connectivity k(G). 1. Edge Connectivity: The edge connectivity l(G) of a graph

is the minimum cardinality of a set S of edges of G such that G – S is disconnected,

i.e., the

108 Self-Instructional Material Graph Theory NOTES edge (line) connectivity of a connected graph is the number of edges

in a minimum cut-set in the graph (see Figure 2.21). G: e 3 e 3 e 6 e 8 e 7 e 5 e 4 e 1 e 2 λ() = 2 G Figure 2.21 Edge

Connectivity Notes: 1. If G is a tree then ?(G) = 1. 2. G has ?(G) = 0 iff G is disconnected or trivial. 2. Vertex Connectivity: The

vertex connectivity K(

G) of a graph G is the minimum number of

vertices whose deletion makes G a disconnected or trivial graph, i.e., the number of vertices in a minimum vertex cut is

called the connectivity of the graph (Figure 2.22).

G: v 1 e 2 v 6 e 9 v 5 e 8 v 4 v 2 e 5 e 6 v 3 e 4 e 10 e 1 e 3 e 7 K G() = 3 Figure 2.22

Vertex Connectivity Problem 2: For every graph G, K(G) ? ?(G) ? ?(G). Proof: Let v be a vertex of G with a minimum degree,

i.e., d(v) = ?(G). Removing ?(G) edges of G incident with v produces a graph G 1 , in which v is isolated. Clearly G is

disconnected or trivial. ? ?(G) ? ?(G) ...(2.1) Claim:K(G)? ?(G) If, ?(

https://secure.urkund.com/view/158826019-231749-951747#/sources 39/133

G) = 0 then G is disconnected. ? K(G) = 0. If ?(G) = 1, then G is a connected graph containing a cut-edge (bridge). Therefore

either G is isomorphic to K 2

or G is a connected graph having atleast one cut-vertex. ? In both cases, K(G) = 1.

Graph Theory NOTES Self-Instructional Material 109 Now, let us assume that ?(G) ? 2. Let S be a cut-set of G with ?(G)

edges and e = xy be an edge in S. If the edges of S – { e} are deleted from G, the resulting subgraph H 1 is connected and

contains e as a cut-edge. Now select an incident vertex different from x and y for each and every edge in S – { e}. Remove

these vertices from H 1 , the resulting subgraph H 2 is disconnected, then K(G)? ?(G) – 1 > ?(G) Suppose the subgraph H

2 is connected, then H 2 is isomorphic to K 2 or the sub- graph H 2 has a cut-vertex, since H 2 is an induced subgraph of H

1 . In any case, there exists a vertex of H 2 whose removal results in a disconnected graph. There- fore, K(G)? ?(G). ...(2.2)

From equations (2.1) and (2.2), K(G) ? ?(G) ???(G) G: Figure 2.23 In Figure 2.23 K(G) = 1, ?(G) = 3 and ?(G) = 3. n-edge

Connected: A graph G is n-edge connected (n ? 1) if ?(G) ? n and G is n-connected if K(G) ? n. 2.2.9 Operations on Graphs

(i) The union of two simple graphs G 1 = (V 1 , E 1) and G 2 = (V 2 , E 2) is the simple graph with vertex set V 1 ? V 2 and an

edge set E 1 ? E 2 and is denoted by G 1 ??G 2 (see Figure 2.24). G 1 : x y v u w G 2 : u v x z G 1 G 2 x y z w v u Figure 2.24 (ii)

The intersection of two simple graphs G 1 = (V 1 , E 1) and G 2 = (V 2 , E 2) is the simple graph with vertex set V 1 ? V 2

and an edge set E 1 ? E 2 and is denoted by G 1 ? G 2 (see Figure 2.25). You need to remember that for G 1 ? G 2 , V 1 ? V 2

is always non-empty.

110 Self-Instructional Material Graph Theory NOTES For example, G 1 : u x y v w G 2 : u x y z w v x u v w y G 1 G 2 Figure

2.25 (iii) The ring sum of two graphs G 1 and G 2 is a graph consisting of the vertex set V 1 ? V 2 and of edges that are either

in G 1 or in G 2 , but not in both and is denoted by G 1 ? G 2 , i.e., G 1 = (V 1 , E 1); G 2 = (V 2 , E 2) Then, G 1 ? G 2 = (V 1 ?

V 2 , E 1 ? E 2) Where ? is the symmetric difference. C HECK Y OUR P ROGRESS 1. How can a graph be represented

diagrammatically? 2. What is a simple graph? 3. What is a pseudograph? 4. Name the various types of graphs. 5. What does

the edge connectivity of a graph mean? 6. What does the vertex connectivity of a graph mean? 7. What are isomorphic

graphs? 8. What is a subdivision of

graph? 2.3 DEGREE OF VERTEX

The degree of a vertex v is the number of edges incident with

that vertex. In other words, the degree of a vertex is the number of edges having that vertex as an end point, and is denoted

by d(v)

Figure 2.26. v 1 v 2 v 3 v 4 Here, d(v 1) = 2 d(v 2) = 3 d(v 3) = 2 d(v 4) = 3 Figure 2.26 Degree of a Vertex A loop contributes

2 to the degree of vertex.

Graph Theory NOTES Self-Instructional Material 111 Isolated Vertex: A vertex with

degree zero is called an isolated vertex. Pendant Vertex: A vertex with degree one is called a pendant vertex.

Adjacent Vertices: A pair of vertices that determine an edge are called adjacent vertices. Note: A vertex is even or odd based

on its degree being even or odd. Example 2.3: Let G be a simple graph with n vertices. Prove that the number of edges E(G)

is at most n C 2 . Solution: Let G = (V(G), E(G), ? G) be a simple graph with () V G = n. Since, ? G assigns to each edge, a 2-

element subset { u, v } of V(G), there are at most n C 2 2-element subsets. Hence, E(G) ? (1) 2 n n Theorem 2.3: Let G be a

graph with n vertices and e edges. Then, 1 () n i i d v = 2e Proof: Let G be a graph with n vertices and e edges. Since, every

edge contributes degree 2 to this sum, so 1 () n i i d v = 2 e. Theorem 2.4: In a graph G, the number of odd vertices is an

even number. Proof: Let G be a graph with n vertices and e edges. By Theorem 2.1, you have: 1 () n i i d v = 2e = Even

number ...(2.3) Among n vertices, some are even vertices and some are odd vertices. Let V e and V 0 be the even and odd

vertices respectively. Now equation (2.3) can be written as: 0 () () ? ? ? ? ? e n v V v V d v d v = Even number ? 0 () ? ? v V d

v = Even number – () e v V d v ...(2.4) Since every term in the right side of equation (2.4) is even, the sum on the left side

must contain an even number of terms, i.e., the number of odd vertices in G is even. Minimum and Maximum Degrees: Let

G be a graph. The minimum and maximum degrees of G are ?(G) and ?(G), respectively and are given as: ?(G) = min { d(v); v

? V(G)} and, ?(G) = max { d(v); v ? V(G)}

112 Self-Instructional Material Graph Theory NOTES

k-Regular: A graph G is k-regular or regular of degree k, if every vertex of G has degree k.

Complete Graph: A simple graph in which each pair of distinct vertices is joined by an edge

is called a complete graph.

A

complete graph on n vertices is denoted by k

n .

Figure 2.27 are the examples of complete graphs on 2 and 4 vertices, respectively. k 2 k 4 4-Regular Graph Figure 2.27

Complete Graphs Notes: 1. Every complete graph k n is a (n – 1) regular graph. 2. There is no 1-regular or 3-regular graphs

with 5 vertices, since no graph has an odd number of vertices.

Complement of a graph: The complement G of a graph G is that graph with V(G) = VG and such that uv is an edge of G if

and only if uv is not an edge of G.

https://secure.urkund.com/view/158826019-231749-951747#/sources 40/133

Figure 2.28 shows examples of complement of a graph. u v w x x u v w G () i G () ii G G Figure 2.28 Complement of a

Graph There are also some useful terminologies for graphs with directed edges. Graphs with directed edges: When (u, v) is

an edge of the graph G with directed edges, u is said to be adjacent to v and v is said to be adjacent from u. The vertex u is

called the initial vertex of (u, v) and v is called the terminal or end vertex of the edge (u, v).

Graph Theory NOTES Self-Instructional Material 113 Figure 2.29 shows examples of graphs and directed edges. u w v G v 3

v 5 v 4 v 2 v 1 () i () ii Figure 2.29 Graphs with Directed Edges In-degree and out-degree: In a graph with directed edges,

the in-degree of a vertex v denoted by d – (v) is the number of edges with v as their terminal vertex. The out-degree of v

denoted by d + (v) is the number of edges with v as their initial vertex.

Note: Self loop at a vertex contributes 1 to both in-degree and out-degree of this vertex. Example 2.4: Find the in-degree

and out-degree of the following graphs. c b a d e () i u w v () ii Solution: (i) d – (a) = 3; d – (b) = 1; d – (c) = 1; d – (d) = 2;

and d – (e) = 1 d + (a) = 2; d + (b) = 2; d + (c) = 1; d + (d) = 2; and d + (e) = 1 (ii) d – (u) = 1; d – (v) = 1; d – (w) = 1 and d +

(u) = 1; d + (v) = 1; d + (w) = 1 Notes: 1.

Let G = (V, E) be a graph with directed edges. Then () ? ? ? v V d v = () ? ? ?

v V d v = e. 2. By ignoring directions of edges in a graph with directed edges, you will get an undirected graph. Such graphs

are called underlying undirected graphs. 2.4 ADJACENT AND INCIDENCE MATRICES To any graph G, there corresponds a V

× E matrix called the incidence matrix of G and is denoted by I(G) = ,] [E V ij a ? where 1, if th edge is incident with th vertex

0, otherwise ij j i a

114 Self-Instructional Material Graph Theory NOTES One more matrix associated with graph G is the adjacency matrix, e is

denoted by ,] [) (V V ij b G A ? ? 1, if th edge is incident with th vertex 0, otherwise ij j i a Some authors used to define a ij as

the number of times (0, 1, and 2) v i and e j are incident ; b ij is the number of edges v i and v j . For example, 0 1 0 0 0 1 0 0

0 0 1 1 1 1 0 0 0 1 0 1 0 0 0 1 1 5 4 3 2 1 5 4 3 2 1

v v v v v e e e e e I(G), incidence matrix of

G 0 1 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0 0 1 1 0 5 4 3 2 1 5 4 3 2 1

v v v v v v

v v v v

A(

G), adjacency matrix of G The adjacency matrix A(G) = [b ij] of a directed graph is also a V × V matrix, 1, if there is a

directed edge from to Where 0, otherwise i j ij v v b (Similarly one can define the incidence matrix of a directed graph) For

example, 0 1 1 1 0 0 0 0 1 1 ()0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 A G ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Graph Theory NOTES Self-Instructional Material 115 Example 2.5: Write the adjacency matrix of graphs (i), (ii) and (iii).

Solution: The adjacency matrices of the graphs are: (i) 0 1 0 1 0 0 0 1 0 0 ()0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 A G ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? (ii) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0 0 0 0 1 0) (G A (iii) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? 0 1 1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0) (G A Notes: From Example 2.5 one can

conclude that: 1. The diagonal entries of an adjacency matrix are all zero, iff the graph is a graph with no self-loops. 2. If G

is disconnected and it has two components, then its adjacency matrix A(G) can be written as, ,) (0 0) () (2 1 ? ? ? ? ? ? ? G

A G A G A G 1 and G 2 are components. With the help of these matrices, one can verify whether the given graphs are

isomorphic or not. Example 2.6: Verify if G and G 1 are isomorphic.

116 Self-Instructional Material Graph Theory NOTES Solution: First lets write the adjacency matrices of G and G 1 . ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0) (G A ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0) (1 G A By keeping one matrix fixed and by

applying permutation of rows and corresponding columns, permutations on the unfixed matrix yields the fixed one. Then,

the given graphs are isomorphic. It keeps A(G) fixed. Also G and G 1 have 4 vertices of degree 2 and two vertices of degree

3. Since d(v 1) = 2 and v 1 is not adjacent to any other vertex of degree 2, corresponding vertex in G 1 is either w 4 or w 6 ,

the only vertices of degree 2 in G 1 not adjacent to a vertex of degree 2. Without the loss of generality, let us take . 6 1 w v?

Suppose this 6 1 w v? is not ending with isomorphism, one has to take 4 1 w v? . Similarly, for other vertices of G, it can be

set as: 2 3 3 4 4 5 5 1 ; ; ; ; v w v w v w v v 6 2 v v. Thus, we can modify A(G 1) as 6 3 4 5 1 2 6 1 3 4 5 1 2 0 1 0 1 0 0 () 1 0 1

0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0 w w w w w w w A G w w w w w ? 1 1 () (

) and hence . A G A G G G 2.5 PATH CIRCUIT Now you will study about paths in directed graphs and relationship between a

relation on a set, before transitive closure. Path: A path from vertex a to vertex b in a directed graph G is a sequence of one

or more edges (v 0 , v 1), (v 1 , v 2), ...,(v n–1 , v n) in G, with v 0 = a; v n = b, i.e., a sequence of edges whose terminal

vertex is same as the intial vertex of the next edge in this path. This path is denoted by v 0 , v 1 , ..., v n of length n.

https://secure.urkund.com/view/158826019-231749-951747#/sources 41/133

Graph Theory NOTES Self-Instructional Material 117 Let R be a relation on a set A = {1, 2,.. ,n} and G R be the corresponding

relation graph whose vertices are a = 1, v 1 = 2, ..., b = n. There is a path in G R from a to b if there is a sequence of vertices

a, v 1, v 2 ,..., v n–1 , b with (a, v 1) ? R, (v 1 , v 2)? R, (v 2 , v 3)? R,..., (v n–1 , b)? R. Problem 3: Let R be a relation on a set A.

Then, (i)R 2 = R R, R n = R n–1 R (ii)R n ? R (iii)In G R , the relational graph of R, there is a path of length n from a to b if (a,b)

? R n . Connectivity Relation: Let R be a relation on set A. The connectivity relation R * consists of the pairs (a,b) such that

there is a path between a and b in R. i.e., n n R R ? ? ? ? ? 1 Problem 4: The transitive closure of a relation R equals the

connectivity relation R * . Let R be a relation on a set A. Claim: R * is the transitive closure of R. To prove that, (i)R * is

transitive. (ii)S is a transitive relation on A with R? S. Then R * ? S. By definition, i i R R ? ? ? ? ? 1 ? R * contains R. (i) If (a,b)? R

* and (b,c)? R * , then there are paths from a to b and from b to c in R. Thus, a path is obtained from a to c by starting with

the path a to b and following it with the path b to c. ? (b,c) ? R * . i.e., R * is transitive. (ii) Let S be a transitive relation

containing R. Since, S is transitive, S * is also transitive. Further S * ? S. Since, 1 i i S S ? ? ? ? ? and S i ? S, S * ? S. Since, any

path in R is also a path in S,R * ? S * , if R ? S. Now one gets, R * ? S * and S*? S. ? R * ? S * i.e., any transitive relation that

contains R must also contain R * . ? R * is the transitive closure of R. Transitive Closure: Let M R be the relation matrix of a

relation R on the set A of n elements. Then the transitive closure matrix M R* is given by, * 2 3 ... R R n R R R M M M M M ? ?

? ? ?

118 Self-Instructional Material Graph Theory NOTES Example 2.7: (i) Find the transitive closure of a relation R on the set {

a,b,c }, whose relation matrix M R is given as 0 0 1 1 1 0 1 0 1 R M ? ? ? ? ? ? ? ? ? ? ? Solution: Let R * be the transitive

closure of R. The relation matrix M R* of R * is given as, M R* = M R ? 2 R M ? 3 R M Now 2 3 1 0 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1

0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 R R R M M M ?

? (ii) Find the transitive closure matrix of the relation R whose

relation matrix is given as ? ? ? ? ? ? ? ? ? ? ? 0 1 1 0 1 0 1 0 1 R M Solution: Let R* be the transitive closure of R and M R * be

the corresponding relation matrix. we have M R* = M R ? M R 2 ? M R 3 2 3 1 1 1 1 1 1 Now 0 1 0 ; 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1

1 1 1 1 1 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 R R R M M M ?

? Note: The transitive closure can be obtained by the following algorithm.

Transitive closure (M R ; 0 –1 n??? n matrix) A ? M R B ? A for i ? 2 to n begin A ? A × M R M

Graph Theory NOTES Self-Instructional Material 119 B ? B ??A end (B is the required matrix R *) Paths and Closures A

connected graph might contain more than one spanning tree. Consider the given graphs in Figure 2.30. In T 1 the edges e 1

, e 2 , e 5 , e 6 are present, whereas in T 2 the edges e 2 , e 4 , e 5 , e 6 are present. Figure 2.30 The edges of G which are

present in a spanning tree T, are called as the branches of G with respect to T. The edges of G which are not present in its

spanning tree T are called the chords of G with respect to T. In the above example, the branches of G are e 1 , e 2 , e 5 , e 6

with respect to T 1 : the branches of G are e 2 , e 4 , e 5 , e 6 , with respect to T 2 . Note: Let G be a connected graph on n

vertices; e-edges and T be one of its spanning tree. Since T is a tree on n vertices, it has (n –1) edges, i.e., the number of

branches of G with respect to T is (n –1). The number of chords of G with respect to T is e– (n –1). Often, the number of

branches

of G is called as rank of G and is denoted by r(G); the number of chords of G is called as the nullity of G, denoted by ?(G).

In general, for a connected graph on n-vertices and e-edges, r(G), the rank of G is (n –1) and ?(G), the nullity of G is e – n +

1. Fundamental Circuit Let T be the

spanning tree of a connected graph G, and e be a chord of G

with respect to T. Since the spanning tree T is minimally acyclic, the graph T+e contains a unique cycle. This cycle is called

a fundamental cycle in G with respect to T as seen in Figure 2.31. R M

120 Self-Instructional Material Graph Theory NOTES Every chord of G gives rise to a fundamental cycle. Therefore, the

number of fundamental cycles possible for a connected graph is atmost ?(G). For example, G – Graph, T – Spanning tree

of G, T+e 3 – Fundamental Cycle Figure 2.31 Cyclic Interchange

Let T be a spanning tree of G and e be a chord of G

with respect to T. The graph T+e is a fundamental circuit. In this circuit other than edge e, all the other edges are branches

of G with respect to T. On removal of any of the branches from the fundamental circuit, one gets a spanning tree T 1 , i.e., b

is a branch in the fundamental circuit (with respect to a chord e), then spanning tree T 1 is obtained by removing b from

T+e, i.e., T 1 = T + e – b. This process is called cyclic interchange (see Figure 2.32). G - Connected Graph , T - Spanning

Tree T+e - Fundamental Circuit ; T 1 - Spanning Tree Obtained by Cyclic Interchange . Figure 2.32

https://secure.urkund.com/view/158826019-231749-951747#/sources 42/133

Graph Theory NOTES Self-Instructional Material 121 2.5.1 Floyd’s and Warshall’s Algorithms Floyd’s Algorithm – Shortest

Paths Floyd’s algorithm finds the paths which has least value between all the vertices of a graph. This requires matrix

representation of the graph. The matrix represents the distance of edges between vertices which normally corresponds to

the cost. To apply this algorithm a matrix has to be made as a two-dimensional array. For a graph of n vertices matrix will

be n × n. Every row in the matrix is a ‘starting’ vertex, denoted as i and each column is an ‘ending’ point, denoted as j. An

edge between i and j in the graph, length of this edge is the position (i,j) of the matrix. In case of undirected graphs, edges

are bidirectional, a value is given in position (j,i) of the matrix. If there is no edge as a direct link between two vertices,

value is given as infinity. Alternatively, very large value is put, to express the impossibility of movement from i to j. For

example, in a graph connecting points 2 and 6, bidirectionally and the edge has a length of 24 units, number 24 will be

placed into positions (2, 6) and (6, 2) of the matrix. After setting such a matrix Floyd’s algorithm can be used to find the

shortest distance between every pair of vertices in the graph. The algorithm works for every non-direct path between pairs

of vertices having least value than the way to move between these vertices. In the event of locating such a path, it is the

value between these vertices which are to be tested. Each element of the matrix represents the least value of traversal

between the vertices with respect to its row and column. If the graph is directed, (i,j) and (j,i) may not be equal. Warshall’s

Algorithm This algorithm is more efficient in determining the access of all pairs of nodes in a graph whether directed or

undirected. For a graph G with n nodes, this method constructs a sequence of n adjacency matrices, P 1 ,..., P n , by using

the same set of nodes. One starts by setting P 0 = G. If P k is already defined then P k+1 has all the edges of P k , and

additional edges, if any, needed to ensure that every pair of nodes joined by an edge of P k to node k + 1 are joined by an

arc of P k+1 (in the undirected case) and also for every path a ? k + 1? b. The pair (a, b) is an edge of P k+1 (in the directed

case). The algorithm terminates after n iterations and P n contains all adjacency relationships which are shown as edges.

Floyd–Warshall’s algorithm is an algorithm for graph analysis that finds shortest paths in a graph that is weighted and

directed. The algorithm computes the shortest paths between all pairs of vertices. This algorithm is an example of dynamic

programming. A path in the matrix k is defined in such a way that path k[i][j] is true if and only if there is a path from node i

to node j and there is no node higher than k,

122 Self-Instructional Material Graph Theory NOTES except i and j themselves. For any i and j if path k[i][j] = True, it implies

that path (k+1)[i][j] is also true. If there is a situation in which path (k+1)[i][j] is true while path k[i][j] it is false, it is possible if

there is a path from i to j via node k + 1, but no path from i to j via nodes i through k. This means that there is a path from i

to k + 1 through nodes i through k and a similar path from k + 1 to j. This follows that the path (k+ 1)[i][j] is true if and only

if one of the following two conditions holds: (i) Path k[i][j] is true. (ii) (Path k[i][k+1]) ? (Path k[k+1][j]) is true. Also, path 0[i][j]

= adjacent. This is since, direct path is there from node i to node j with no intermediate node. It can also be noted that,

path (MAXNODES- 1)[i][j] = Path[i][j], because if a path exists through any node, then any path from node i to node j may

be selected. This is Warshall’s algorithm which is named, after its discoverer. This algorithm compares every possible path

between every pair of vertices in the graph. It makes only V 3 comparisons. Maximum number of edges may be given as V

2 in the graph with every combination of edges tested. It estimates the shortest path between two vertices, by improving it

incrementally to find an optimal solution. Let there be a graph with a set V, of vertices and each vertex numbered 1 through

N. Let there be a function defined as shortest path (i, j, k) which returns the shortest possible path from i to j using only

vertices 1, 2, 3, ….., k as intermediate nodes. The objective is to find the shortest possible path from each i to each j by using

only nodes 1, 2, 3, …., k + 1. There are two alternative paths: (i) Shortest path that uses nodes only in the set (1... k). or (ii)

Another path that goes from i to j, via k + 1. Best path from i to j is the one that uses only nodes 1…. k which is defined by

the function. If there was a better path from i to j via k + 1, then the length of this path would be the sum total of the

shortest path from i to k + 1, traversing vertices 1..... k and the shortest path from k + 1 to j by using same set of vertices, i.e.,

1….... k. One may define shortest path (i, j, k), that is recursive in nature. This formula is the heart of Floyd Warshall algorithm

which works by first computing shortest path (i, j, 1) for all (i, j) pairs, then using that to find shortest path (i, j, 2) for all (i, j)

pairs, and so on and terminates when k = n. This finds the shortest path for all (i, j) pairs by using any intermediate vertices.

Graph Theory NOTES Self-Instructional Material 123 2.5.2 Eulerian Path and Circuit Euler Path In this section, special graphs

and also the origin of the graph theory will be studied. The Koingsberg town in The Russian Republic was separated into

four lands by the river Pregel. These islands were connected by seven bridges. The problem was, could people walk from

one island, travel across all the seven bridges and return to the island where they had started without using any bridge

more than once? For almost two centuries, nobody was in a position to state whether such a walk was possible or not. In

1736, the great mathematician Leonhard Euler concluded that such a walk was impossible. He used multigraph to study

and solve this problem. Euler, today, is considered as the father of the graph theory. G: Figure 2.33 Euler Path The four

lands and the seven bridges are represented by vertices and edges respectively in G. (see Figure 2.33) This problem is called

as Koingsberg bridge problem. Euler Circuits

A trail that traverses every edge of G is called an Euler trail of G. A

circuit (

tour) of G is a closed walk that traverses each edge of G exactly once. An Euler tour is a tour which traverses each edge

exactly once.

https://secure.urkund.com/view/158826019-231749-951747#/sources 43/133

A graph is Eulerian if it contains an

Euler tour. Theorem 2.5: A connected graph is Eulerian iff it has no vertices of odd degree. Proof: Let G be Eulerian and let

C be an Euler tour of G,

which begins and ends at some vertex u. Claim: G has no vertices of odd degree, i.e., to prove that every vertex of G is

even. Consider a vertex w ? u. Since w is neither the first nor the last vertex of C, each time w is encountered, it is reached

by some edge and left by another edge. Hence, each occurrence of w in C contributes 2 to its degree. Thus w is of even

degree. This is true for all internal vertices of C. The initial occurrence and final occurrence of the vertex u in C contributes

1 to the degree of u. Therefore, every vertex of G is of even degree.

124 Self-Instructional Material Graph Theory NOTES Conversely, let us assume that every vertex of a connected graph G is

even. Claim: G is Eulerian. Suppose G be a connected non-Eulerian graph with no vertices of odd degree. Among such

graphs, choose one, say G having the least number of edges.

Since each vertex of G has atleast two edges, G contains a trail.

Let C be a closed trail of maximum possible length in G.

By assumption, C is not

a

Euler circuit of G and hence G – E(C) has edges. Therefore,

G – E(C) has some component G? with edges. Since C itself is Eulerian,

degree of every vertex in C is even. Hence, degree of every vertex in G – E(C) is also even. Therefore degree of every vertex

in G? is even. Since E(G?) > E(G), [by the choice of G in (1)]. G? is Eulerian and hence

G? has an Euler circuit (tour) say C?. Since G is connected, there is a vertex v in V(C) ? V(C?) and one may assume without

the loss of generality that v is the initial and the terminal vertex of both circuits C and C?. Now (C ? C?) is a closed trail of G

with E(C ? C?) < E(C). This contradicts the choice of C. Hence, every non-empty connected graph with no vertices of

odd degree is Eulerian. Figure 2.34 shows examples of Eulerian graphs. G: v 6 v 1 v 3 v 2 v 5 v 4 v 8 v 7 H: Figure 2.34 G and

H are Eulerian graphs. Theorem 2.6: A connected graph G has an Eulerian trail iff G has exactly two odd vertices. Proof: Let

G be a connected graph with an Eulerian (u – v) trail. By the similar argument in the previous theorem, it is concluded that

all the vertices on the trail except u and v, have even degree. Conversely, let G be connected graph with two odd vertices u

and v. Let G? be the graph obtain from G by adding a new edge e = uv between u and v. By applying the previous theorem

to G?, one can obtain an Eulerian tour in which the edge e is the first edge. Hence, this Eulerian trail of G can be obtained

that starts at v and ends at u. Therefore, G has an Eulerian trail.

Graph Theory NOTES Self-Instructional Material 125 Eulerian Digraphs An Eulerian trail of a connected directed graph D is a

trail that contains all the edges of D; while an Eulerian circuit of D is a circuit which contains every edge of D. A directed

graph that contains an Eulerian circuit is called Eulerian digraph(See Figure 2.35). D 1 : D 2 : Figure 2.35 Eulerian Digraphs

Theorem 2.7: Let D be a connected directed graph. D is Eulerian iff d + (v) = d – (v), v ? G, then G is called a balanced

digraph. Proof: Let D be an Euler directed graph. Then D contains an Euler circuit C with common initial and terminal

vertex v. Let, b u be the number of occurrence of an internal vertex u in C. Whenever C enters u through some edge

incident into u, there is another edge incident out of u through which C leaves u. Thus, each occurrence of u contributes

one in-degree and one out-degree. Moreover, C contains all the edges of D. Thus, d + (u) = d – (u) = bu Similarly, d + (v) =

d – (v) ? Hence, d + (v) = d – (v), v ? V(D) Conversely, suppose the connected digraph D is balanced. Then, for each vertex

u, d + (u) = d – (u) ? 0. Start with an arbitrary vertex u 1 , d + (u 1) ? 0. There exists an edge incident out of u 1 . Let u 2 be

the terminal vertex of this edge, d + (u 2) ? 0. Hence, there exists an edge incident out of u 2 . Continuing like this one

reaches a vertex which has been traversed directly. Thus a directed circuit C 1 in D is obtained. If E(C 1) = E(D), then C 1 is

the required Euler circuit. If not, i.e., E(C 1) ? E(D), then remove all the edges of C 1 from D to obtain a spanning subgraph D

1 . Since D is balanced, D 1 is also balanced. By applying the above process to D 1 , one will obtain a circuit C 2 in D 1 . If

E(D) = E(C 1) ? E(C 2) then C 1 and C 2 can be combined to obtain an Euler circuit in D 1 . Otherwise, edges of C 2 is

removed from D 1 to obtain a spanning subgraph D 2 of D. The above process is repeated in D 2 and after a finite number

of steps, one obtains an edge of disjoint circuits C 1 , C 2 , ..., C k such that E(D) = E(C 1) ? E(C 2) ?... ??E(C k). Since D is

connected, any two of

126 Self-Instructional Material Graph Theory NOTES these cycles have a common vertex and the circuits C 1 , C 2 , ... , C k

can be combined to obtain an Euler circuit in D. Hence, D is an Euler graph. 2.5.3 Hamiltonian Graphs In 1857, Sir William

Rowan Hamilton invented a game called ‘Around the World’. In this game, a solid regular dodecahedron (20 vertices, 30

edges and 12 faces) and a supply of string is given. Every vertex is given the name of an important city. The objective of the

game is to find a route along the edges of dodecahedron that visits every city exactly once and terminates where it started

D Figure 2.36 Hamiltonian Graphs The graph D is a dodecahedron. Another famous problem is ‘The Knight’s Puzzle’. Is it

possible for a knight to tour the chess board, i.e., visit each square exactly once and return to its initial square? It can be

represented by a graph G, where the vertices u i correspond to squares S i of the chess board and u j is adjacent to u i iff it

is possible for a knight to proceed from S i to S j in a single move. To solve ‘Around the World’ and ‘Knight’s Puzzle’, one

must determine if the given graph is Hamiltonian.

https://secure.urkund.com/view/158826019-231749-951747#/sources 44/133

A path that contains every vertex of G is called a Hamilton path of G. Similarly, a Hamilton cycle of G is a cycle

that contains every vertex of G in other words spanning cycle. A graph is Hamiltonian if it contains a Hamilton cycle

or a spanning cycle. Example 2.8: Prove that k n has a Hamiltonian circuit, n ? 3. Solution: Let us construct the Hamiltonian

circuit in k n (n ? 3) as follows: Choose a vertex arbitrarily in k n and begin the Hamiltonian circuit at this vertex. Such a

circuit can be built by traversing vertices in any order, as long as the path begins and terminates at the same vertex and

visits other vertices exactly once. This is possible in k n , since every vertex is adjacent to all other vertices. Also k 1 and k 2

has only Hamiltonian path, not circuit. Graphical: A sequence d = (d 1 , d 2 ,, d n) is graphical if there exists a simple

undirected graph on n vertices with the degrees of the vertices d 1 , d 2 , ..., d n respectively.

Graph Theory NOTES Self-Instructional Material 127 For example, a graph with degree sequence of vertices v 1 to v 6 (4, 4,

3, 2, 2, 1) is shown in the following figure. v 5 v 6 v 4 v 2 v 3 v 1 G: Closure: A closure (CG) of a n-vertex graph G is a graph

from G by recursively joining pairs of non-adjacent vertices whose degree sum is atleast n until no such pair remains.

For example, G: C G() The above figures explain one way of constructing a closure of a graph. Important Theorems

Theorem 2.8: Let G be a n-vertex graph. Suppose

G 1 and G 2 are two graphs obtained from G by recursively joining pairs of non-adjacent vertices whose degree sum is

atleast n. Then G 1 = G 2 . In other words, C(G), the closure of a graph G is unique. Proof: Let e 1 , e 2 , ..., e k and f 1 , f 2 , f

3 , ..., f e be the

edges added to G to obtain G 1 and G 2 , respectively. It has to be proved that every e i (1 ? i ? k) is an edge of G 2 and f j (1 ?

j ? l) is an edge of G 1 . Suppose that some edge in the sequence e 1 , e 2 , ..., e

k does not belong to G 2 . Let p be the smallest positive integer such that e p+1 is not an edge of G 2 . Let e p+1 = uv and H

= G + { e 1 , e 2 , ..., e p }. Then, H is a subgraph of G 1 and G 2 . By the construction of G 1 , one gets d H (u) + d H (v)? n

Therefore, d G 2 (u) + d G 2 (v) ? d H (u) + d H (v)? n. This is a contradiction since u and v are non-adjacent in G 2 .

Therefore, each e i is an edge of G 2 .

Similarly, each f j belongs to G 1 . Hence, G 1 = G 2 . Theorem 2.9: A graph G is Hamiltonian iff its closure C(G) is

Hamiltonian. Proof: Let e 1 , e 2 ,... e n be edges added to G to obtain its closure C(G). Let G i be the graph obtained from G

by adding the edge e i . By repeated application of Example (2.8). G is Hamiltonian ? C(G) is also Hamiltonian.

Corollary 1: Let G be a graph with atleast 3 vertices. If C(G) ? k n , (n ? 3) then G is Hamiltonian.

128

Self-Instructional Material Graph Theory NOTES Proof: By corollary 1, k n is Hamiltonian. Since C(G) ??k n , C(G) is

Hamiltonian and hence G is also Hamiltonian. Corollary 2: Let G be a graph with atleast 3 vertices iff d(u) + d(v) ? n(n ? 3),

for all pairs u and v of non-adjacent vertices of G, then G is Hamiltonian. Proof: Let G be a graph with atleast 3 vertices.

Given that d(u) + d(v) ? n (n ? 3) for all pairs of non-adjacent vertices of G. Hence, one can add edges between such pair of

vertices to obtain C(G). Since, C(G) is complete by corollary, G is also Hamiltonian. For example, G : H : G, Hamiltonian

graph and H, non-Hamiltonian graph.

Theorem 2.10: If G is Hamiltonian then, for every non-empty proper subset S of V, w(G – s) ? s . Proof: Let

G be a Hamiltonian graph and S be a proper subset of V. Since, G is Hamiltonian, G has a Hamiltonian cycle C. Suppose

w(G – S) = n, where G 1 , G 2 ,... G n are the components of G – S. Let u i (1 ? i ? v) be the last vertex of C that belongs to G i

and let v i be the vertex that immediately follows u i on C. Clearly v i ? S for each i and v j ? v k for j ? k. Hence, there are

atleast as many vertices in S as components in G – S. i.e., w(G – S) ? S . Weight graph: A graph G is called a weight graph if

every edge of G is assigned with a real number. Travelling Salesmen Problem (TSP) Suppose that a salesman is expected to

take a trip through a given collection of n cities (n ? 3). What route should he take to minimize the total distance travelled?

This can be represented as a weight graph. Let G be a connected weight graph whose vertices represent the cities to be

visited and let the weight of an edge v i v j be the distance between the cities v i and v j . Now TSP is equivalent to finding a

minimum Hamiltonian cycle in a connected weight graph. C HECK Y OUR P ROGRESS 9. What does a path mean in a

directed graph? 10. What is the function of Floyd’s algorithm? 11. What is the function of Warshall’s algorithm? 12. What is

Floyd–Warshall algorithm?

Graph Theory NOTES Self-Instructional Material 129 2.6 GRAPH COLOURING Colouring No two adjacent vertices having

the same colour is called the proper colouring or colouring of a graph. A graph G that requires K different colours

(minimum number) for its proper colouring can be referred to as k-chromatic graph, and the number k is called the

chromatic number of G. A graph consisting of only isolated vertices is 1-chromatic. A graph with one or more edges (not a

self-top) is at least 2-chromatic also called bichromatic. Bipartite

Graph: A graph G is called bipartite

if its

vertex set V can be decom- posed into two disjoint subsets v 1 and v 2 such that every edge

in G

https://secure.urkund.com/view/158826019-231749-951747#/sources 45/133

joins a vertex in v 1 with a vertex in v 2 . Note: Every tree is a bipartite graph. a 1 a 2 a 3 P 1 P 2 P 3 P 4 Positions Applicants

Theorem 2.11: Every tree with two or more vertices is bichromatic. Proof: Choose any vertex r in the given tree T. Let T be a

rooted tree at vertex v. Paint v with colour 1. Paint all vertices adjacent to v with colour 2. Next, paint the vertices adjacent

to these using colour 1. Repeat this process till every vertex in T has been painted. Hence all vertices at odd distances from

v have colour 2 while v and vertices at even distances from v have colour 1. Along any path in T the vertices are of

alternating colours. Since there is one and only one path between any two vertices in a tree, no two adjacent vertices have

the same colour. 2 1 2 1 V 2 2 1 2 1 1 1 2 1 Figure 2.37 Proper Colouring of a Tree

130 Self-Instructional Material Graph Theory NOTES Theorem 2.12: A tree with atleast one edge is bichromatic. Proof: Let T

be a tree and v be any vertex of T. For this vertex v assigns colour 1. Assign colour 2 to be adjacent vertex of v. Continuing

this process, we can see that all vertices at even distance from v are assigned colour 1 and the vertices at odd distance from

v are assigned colour 2. This gives a two colouring of T. Since T is a connected graph with atleast one edge, T is not 1-

coloured. ? T is bichromatic. Theorem 2.13: A graph is bipartite iff it is bichromatic. Proof: Let G a bipartite graph with at

least one edge. Let (v 1 , v 2) be the partition of the vertex set of G. In v 1 as well as in v 2 , no two vertices are adjacent.

Now assign colour 1 to the vertices in v 1 and assign colour 2 to the vertices in v 2 . Hence, G is bichromatic. Conversely, let

us assume that G is a bichromatic graph. Therefore x(G) = 2. Let v 1 be the set of all vertices for which colour 1 is assigned

and v 2 be the set of all vertices for which colour 2 is assigned. Clearly (v 1 , v 2) is the partition of the vertex set of G.

Otherwise at least two vertices in v 1 or v 2 have the same colour. Therefore, G

is a bipartite graph. Note: A graph G is bipartite if it contains no odd cycles.

Independent Set: A set U of vertices in a graph G is called an independent set if no two vertices in v are adjacent in G. An

independent set U of vertices in a graph G is called a maximal independent set if U is not a proper subset of any other

independent set of vertices

of G. The cardinality of a maximal independent set is called as an independence number and is denoted by ?(G).

For example, here {

v 1 , v 4 , v 2 , v 7 }, { v 1 , v 6 }, { v 1 , v 7 }, { v 2 , v 7 }

are

all indepen- dent set and the sets { v 1 , v 4 , v 2 , v 7 } is

a maximal independent set and ?(G) = 4. Dominating Set: A set S of vertices in a graph G is a dominating set if every vertex

not in S is adjacent to a vertex in S. A dominating set S is called as a minimal dominating set if no proper subset of S is a

dominating set. The cardinality of a minimal dominating set is called as domination number and is donoted by ?(G). G : v 5

v 4 v 3 v 1 v 2 v 6 v 7

Graph Theory NOTES Self-Instructional Material 131 For example, G, Graph with (G) = 2 Note: For every graph G, ?(G) ? ?

(G). Map Colourings When we colour the map of a country we see to it that its neighbouring states are coloured differently.

In such circumstances, one may ask what is the minimum number of colours needed to colour so that the adjacent states

receive different colours? From the following example, one can say that 3 colours are not sufficient. For example, s 3 c 3 s

3 c 4 c 1 s 4 s 4 c 4 In the above map, S i denotes the states and C i denotes the colours received by S i , clearly 3 colours

are not sufficient for map colouring so that no two adjacent states receive the same colour. The above map can be

represented as a graph. The states are denoted by vertices and the adjacency between states are denoted by edges. Now

the graph obtained in the above fashion is not 3-colourable. Note: Every map can be represented as a planar graph. The

four colour problem: Can the regions of a planar graph be coloured with four colours so that the adjacent states are

coloured differently? Yes, every planar graph is 4-colourable. Theorem 2.14: Every simple planar graph is 4-colourable. It is

discussed as follows: 2.6.1 Four Colour Theorem If we are given a graph which has many regions and we have to show

these regions separate in the graph, we should colour this graph such that no two adjacent regions have same colour. How

many colours we need so that every region is

132 Self-Instructional Material Graph Theory NOTES shown separate? It has been discovered that four colours are sufficient

for this purpose in case of a planar graph. This is ‘four colour theorem’ which is true for any planar graph. This is also

known as ‘four colour map theorem’. Although it is possible to colour a map by using only three colours, but this is

inadequate when a region is surrounded by three regions. In that case a fourth colour becomes necessary. Few map-

makers make use of fifth colour as an easier approach, but it is optional as four colours are sufficient for such applications.

In 1976, this theorem was proved. For this computer was used. All maps were categorized into more than 1900 cases. One

special-purpose computer program was run and the concept of four colour theorem was tested. But since this could not

be verified by hand, it was not accepted by all mathematicians. As per the four colour theorem, every planar map is four

colourable . This conclusion was based on the work of Appel and Haken. Although, not accepted by all, the original work of

Kempe has put forward some basic tools, which was used at a later stage, to prove it. Adding edges to a graph does not

decrease its chromatic number. Thus, a maximal planar graph, a kind of triangular graphs, where every face is bounded by

three edges, is to be considered here. Let

v, e, and f be the number of vertices, edges, and faces,

https://secure.urkund.com/view/158826019-231749-951747#/sources 46/133

respectively. We know that each edge is shared by two faces, hence, 2 e = 3 f. Using this fact with Euler’s formula v – e + f

= 2 ? 6v – 2 e = 12. Let v n be the number of vertices of degree n and D be the maximum degree. Then, 1 1 1 6 2 6 (6) 12 D

D D i i i i i i v e v iv i v ? ? ? ? ? ? ? ? ? ? ? ? Here, 12 < 0 and 6 – i ? 0 and so, i ? 6. Thus, there is at least one vertex of

degree 5 or less. There may be more than one vertex which may have degree 5. If a maximal planar graph exists that

requires 5 colours, then there is a minimal such graph and removing any vertex reduces it to four-colourable. Let us take a

graph G. This graph can not have a vertex having degree 3 or less than 3. If d(v) ? 3, v can be removed from G, we colour

the smaller graph using four-colour and then re-add v. After re-adding v, we extend the four-colouring to this graph by

selecting a colour different from its neighbours. Kempe argued that G can have no vertex of degree 4. Once again, we

remove a vertex v and apply four colours for remaining vertices. Figure 2.38 Colouring a Graph

Graph Theory NOTES Self-Instructional Material 133 If we select the four colours say red, green, blue, and yellow in

clockwise order in the neighbourhood of v, these are different. We look for an alternating path of vertices coloured red and

blue joining the red and blue neighbours. This path, on the name of Kempe, is known as Kempe chain. Thus, there may be

a Kempe chain that joins red and blue neighbours, similarly, there may be a Kempe chain that joins green and yellow

neighbours, but not both. This is so since these two paths will intersect, and the intersecting vertex can not be coloured.

Let us consider that the red and blue neighbours are not chained together. If we explore all vertices attached to the red

neighbour using red-blue alternating paths, and then reverse the colours on all these vertices. The result so obtained is

again a four-colouring which is valid and we add v back. The four colour theorem is not applicable in geopolitical mapping

where regions of a country are non-contiguous. For example, Alaska is a part of the United State and is noncontiguous

whereas Leningrad is a part of Russia. C HECK Y OUR P ROGRESS 13. What does the four colour theorem say? 14. In which

case is the four color theorem not applicable? 2.7

SUMMARY In this unit, you have learned that: ?A graph is a

triplet consisting of a non-empty set of vertices, a set of edges, a function that is assigned to each edge and a subset that

need not be distinct. ?Every graph has a diagram associated with it and this diagram is useful in understanding the

problems involved in the graph. ?

A simple graph is called bipartite if its vertex set can be partitioned into two disjoint non-empty sets

in such a way that every edge in the graph connects a vertex. ?In a graph’s structure, a trail is a walk in which no edge is

repeated and a path is a trail in which no vertex is repeated. ?

Two graphs G and H are said to be isomorphic if

there exists bijections in them. ?Bijection is a function f from a set X to a set Y with the property that, for every y in Y, there

is exactly one x in X such that f(x) = y and no unmapped element exists in either X or Y. ?Two graphs are homeomorphic if

an isomorphism is found from any subdivision of one graph to the subdivision of another graph.

134 Self-Instructional Material Graph Theory NOTES ?Subdivision of a graph refers to another graph that results from

subdivision of edges in that graph. ?Barycentric subdivision is a special subdivision that subdivides every edge of a graph. ?

The degree of a vertex is the number of edges having that vertex as an end point, and is denoted by d(v). ?

A vertex with

degree zero is called an isolated vertex. ?A vertex with degree one is called a pendant vertex. ?A

path from various vertices in a directed graph is a sequence of one or more edges. ?Floyd’s algorithm finds those paths

which have least value between all the vertices of a graph and it requires the matrix representation of the graph. ?Floyd’s

algorithm works for every non-direct path between pairs of vertices having least value than the way to move between

these vertices. ?Warshall’s algorithm is more efficient in determining the access of all pairs of node in a graph, whether

directed or undirected. 2.8 KEY TERMS ?Simple graph: A graph with no self loops and parallel edges is called a simple

graph. ?Pseudograph: A graph with self loops and parallel edges is called a pseudograph. ?Isolated vertex: A vertex with

degree zero is called an isolated vertex. ?Pendant vertex: A vertex with degree one is called a pendant vertex. ?

Adjacent vertices: A pair of vertices that determine an edge are called adjacent vertices. ?

Complete graph: A simple graph in which each pair of distinct vertices is joined by an edge is called a complete graph. ?

Bipartite graph:

A simple graph is called bipartite if its vertex set can be partitioned into two disjoint non-empty sets. ?

Floyd’s algorithm: It finds the paths which has least value between all the vertices of a graph. ?Floyd–Warshall algorithm:

Floyd–Warshall algorithm is an algorithm for graph analysis that finds shortest paths in a graph that is weighted and

directed.

Graph Theory NOTES Self-Instructional Material 135 2.9 ANSWERS TO ‘CHECK YOUR PROGRESS’ 1. In the diagrammatic

representation of a graph, vertices are represented by small circles and edges by lines whenever the corresponding pair of

vertices forms an edge. 2. A graph with no self loops and parallel edges is called a simple graph. 3. A graph with self loops

and parallel edges is called a pseudograph. 4. The various types of graphs are as follows: (i) Bipartite graphs (ii) Subgraph (iii)

Complete graph 5. The edge connectivity l(G) of a graph

is the minimum cardinality of a set S of edges of G such that G – S is disconnected. 6.

The vertex connectivity K(

https://secure.urkund.com/view/158826019-231749-951747#/sources 47/133

G) of a graph G is the minimum number of

vertices whose deletion makes G a disconnected or a trivial graph. 7. Two graphs are said to be isomorphic if there exist

bijections (it is a function f from a set X to a set Y with the property that, for every y in Y, there is exactly one x in X such that

f(x) = y and no unmapped element exists in either X or Y) amongst them. 8. Subdivision of a graph is another graph that

results from subdivision of edges in that graph. 9. A path from various vertices in a directed graph is a sequence of one or

more edges. 10. Floyd’s algorithm finds the paths which have least value between all the vertices of a graph and it requires

a matrix representation of the graph. 11. Warshall’s algorithm determines the access of all pairs of nodes in a graph,

whether directed or undirected. 12. Floyd–Warshall algorithm is an algorithm for graph analysis that finds the shortest paths

in a graph that is weighed and directed. 13. As per the four colour theorem, every planar map is four colourable . 14. The

four colour theorem is not applicable in geopolitical mapping where regions of a country are non-contiguous.

136 Self-Instructional Material Graph Theory NOTES 2.10 QUESTIONS AND EXERCISES Short-Answer Questions 1. What do

you understand by the degree of vertex? 2. Differentiate between edge-connectivity and vertex-connectivity. 3. What do

you understand by connectivity relation? 4. Write a short note on cyclic interchange. 5. Write a short note on Euler path.

Long-Answer Questions 1. Explain the various types of graphs and their operations. 2. Explain cut-vertices and cut-edges.

3. Explain the structures of various type of graphs. 4. Explain with the help of a diagram the concepts of adjacent and

incidence matrices. 5. Discuss the characteristics of Floyd–Warshall algorithm. 6. Describe Euler circuits. 2.11 FURTHER

READING Lipschutz, Seymour and Lipson Marc. Schaum’s Outline of Discrete Mathematics, 3rd edition. New York:

McGraw-Hill, 2007. Horowitz, Ellis, Sartaj Sahni and Sanguthevar Rajasekaran. Fundamentals of Computer Algorithms.

Hyderabad: Orient BlackSwan, 2008. Cormen,

Thomas H., Charles E. Leiserson, Ronald L. Rivest and Clifford Stein. Introduction to Algorithms .

The MIT Press, 1990. Brassard, Gilles and Paul Bratley. Fundamentals of Algorithms . New Delhi: Prentice Hall of India, 1995.

Levitin, Anany. Introduction to the Design and Analysis of Algorithms . New Jersey: Pearson, 2006. Baase, Sara and Allen

Van Gelder. Computer Algorithms – Introduction to Design and Analysis . New Jersey: Pearson, 2003. Mott, J.L. Discrete

Mathematics for Computer Scientists , 2nd edition. New Delhi: Prentice-Hall of India Pvt. Ltd., 2007. Liu, C.L. Elements of

Discrete Mathematics . New Delhi: Tata McGraw-Hill Publishing Company, 1977. Rosen, Kenneth. Discrete Mathematics and

Its Applications , 6th edition. New York: McGraw-Hill Higher Education, 2007.

Trees NOTES Self-Instructional Material 137 UNIT 3 TREES

Structure 3.0 Introduction 3.1 Unit Objectives 3.2 Trees: Basics 3.2.1 Trees and Sorting 3.3 Minimum Height and Minimum

Distance Spanning Trees 3.3.1 Depth-First Search and Breadth-First Search 3.3.2 Optimal Spanning Graph 3.4 Planar Graphs

3.5

100% MATCHING BLOCK 76/127

Summary 3.6 Key Terms 3.7 Answers to ‘Check Your Progress’ 3.8 Questions and Exercises 3.9 Further Reading 3.0

INTRODUCTION

In this unit, you will learn about the various types of tree structures and their applications. In a graph theory, a tree is

defined as a graph in which two vertices are connected by one and only one path. Generally, trees are known as open

graphs. An organizational hierarchy is considered to be a very good example of a tree structure. In a tree, every edge is a

cut-edge. Traversal algorithm is a methodical way for visiting each and every vertex of an ordered rooted tree. An ordered

rooted tree is primarily used for representing any arithmetic expressions and compound proposition expressions. You will

learn how trees are helpful in merge sort. In addition, you will learn to compute mathematical expressions by using

algorithms and formulae and their graphical representation by using tree structures. 3.1

89% MATCHING BLOCK 77/127

UNIT OBJECTIVES After going through this unit, you will be able to: ?Identify the

various types of trees ?Understand the

basics of a tree ?Explain the features of minimum height and minimum distance spanning trees ?Comprehend the meaning

and functions of planar graphs

138 Self-Instructional Material Trees NOTES 3.2 TREES: BASICS In this section, you will study the characteristics of a tree.

In graph theory, a tree is a

graph in which any two vertices are connected by exactly one path. Acyclic Graph: A

https://secure.urkund.com/view/158826019-231749-951747#/sources 48/133

graph G, which has no cycles is called an acyclic graph. Tree: A connected acyclic graph G is called a tree. Figure 3.1 shows

some tree graphs: G 1 : G 2 : G 3 : Figure 3.1 Tree Graphs Notes: 1. Trees are often also known as open graphs. 2. Any

organizational hierarchy is an example of tree. Before proceeding further to learn the types of trees, let us understand some

theorems. Theorem 3.1: Every two vertices in a tree, are joined by a unique path. Proof: (By contradiction) let G be a tree

and assume that there are two distinct, (v, w) paths P 1 and P 2 in G. Since P 1 ? P 2 , there is an edge e = V 1 V 2 of P 1 that

is not in P 2 . Clearly (P 1 ? P 2) –e is connected. Therefore, it contains a (V 1 – V 2) path P. Now P + e is a cycle in the

acyclic graph G, which is a contradiction to the fact that G is a tree. Theorem 3.2: If G is a tree on n vertices, then G has (n

– 1) edges. Proof: By induction on the number of vertices. When n = 1, E(G) = 0 = n – 1 (G ? K 1) When n = 2, E(G) = 1 = n

– 1 (G ? K 2) Let us assume that this theorem is true for all trees of G with fewer than

n vertices. Now, let G be a tree on n vertices. Let e =

uv be an edge in G. Then G – e is disconnected and G has two components say G 1 and G 2 of G – e. Since G is acyclic, G

1 and G 2 are also acyclic and hence G 1 and G 2 are also trees. Moreover G 1 and G 2 has fewer than n vertices say n 1 and

n 2 , respectively. Therefore, by induction hypothesis,

Trees NOTES Self-Instructional Material 139 G 1 has (n 1 – 1) edges and G 2 has (n 2 – 1) edges. ? E(G) = E(G 1) + (G 2) +

1 (Here, 1 in the sum corresponds to the edge e) = (n 1 – 1) + (n 2 – 1) + 1 = n 1 + n 2 – 1 = n – 1 Therefore, any vertex

tree, has (n – 1) edges. Theorem 3.3: Every tree has at least two vertices of degree one or in a tree, there are atleast two

pendant vertices. Proof: Let G be a tree on n vertices. Then, d(v) ? 1, v ? v(G) ...(3.1) Already we have, ? v?v(G) d(v) = 2 × E(G)

= 2 × e ...(3.2) Since G is an n-vertex tree, it has (n – 1) edges. ? ? v??v(G) d(v) = (2 n – 2) ...(3.3) From equations (3.1) and

(3.3), it follows that d(v) = 1 for at least two vertices. Note: In a tree, every edge is a cut-edge. Now, let us learn about the

various types of trees. 1. Rooted Tree In a directed tree (every edge assigned with a direction), a particular vertex is called a

root if that vertex is of degree zero. A tree together with its root produces a graph called a rooted tree as shown in Figure

3.2. Note that in the rooted tree, every edge is directed away from the root. For example, suppose T is a rooted tree. If a

vertex u is a vertex in T other than the root then the parent of u is the unique vertex u 1 such that there is a directed edge

from u 1 to u. Here, u is called as a child of u 1 . Vertices of the same parent are called as siblings. A vertex of a rooted tree is

called as a leaf if it has no children and those vertices which have children, are called as internal vertices. G: u 1 u 2 u 3 u 4 r

G 1 : r Figure 3.2 Rooted Trees

140 Self-Instructional Material Trees NOTES If v is a vertex in a tree, then a subtree with v as its root is the subgraph of the

tree consisting of v and its children and all edges incident to these children as shown in Figure 3.3: G: u u 1 u 3 u 4 u 2 v 1 v

r H: u 1 u u 2 u 3 u 4 Rooted Tree T Subtree of T with its Root u. Figure 3.3 Rooted Tree and Subtree Level and Height in a

Rooted Tree The level

of a vertex v in a rooted tree is the length of the path from the root to this vertex.

The height of a rooted tree is the length of the longest path from the root to any vertex as illustrated in Figure 3.4: w 1 w 2

w 3 T: u w r v v 1 v 3 v 3 v 1 v 5 v 4 v 6 v 7 level 0 level 1 level 2 level 3 level 4 Figure 3.4 Height of a Tree Rooted Tree T with

its different Levels. Height of T is 4. 2. k-ary Tree A rooted tree is called a k-ary tree if every internal vertex does not have

more than k-children. The tree is called a full k-ary tree if every internal vertex has exactly k-children. A k-ary tree with k = 2

is called a binary tree.

Trees NOTES Self-Instructional Material 141 Figure 3.5 shows some k-aray trees. T 2 : u T: T is 2-ary Tree (Binary Tree) T 1 : T

1 is 3-ary Tree T 2 is not a 2-ary Tree Figure 3.5 Types of k-ary Trees T 2 is not a 2-ary tree because vertex u has only one

child, whereas all the other vertices have two children. A tree T is called as a binary tree if there is at least one vertex with

degree 2 and the remaining vertices are of degree 1 or 2. Example 3.1: Prove that a full k-ary tree with i-internal vertices

contains k i+1 vertices. Solution: In a full k-ary tree, every internal vertex has k children and hence a full k-ary tree with i-

internal vertices can have k i vertices. If we include the root, the tree has k i + 1 vertices. By looking at the fall of k-ary tree,

we can observe the following: (i)n vertices has i = (n – 1)/ k internal vertices and p = [(k – 1) n + 1]/ k leaves. (ii)i internal

vertices has n = k i + 1 vertices and p = (m – 1) i + 1 leaves. (iii)p leaves has n = (kp – 1)/(k – 1) vertices and i = (p – 1)/(k –

1) internal vertices. 3. Balanced Tree A rooted k-ary tree of height h is balanced if all the leaves are at level h or (h – 1). 4.

Binary Search Trees Binary search tree is a binary tree in which each child is either a left or right child; no vertex has more

than one left child and one right child, and the data are associated with vertices.

142 Self-Instructional Material Trees NOTES Example 3.2: Build a binary search tree for the words banana, peach, apple,

pear, coconut, mango and papaya using the alphabetical order. Solution: apple banana peach pear papaya mango coconut

Figure 3.6 Binary Search Tree For, if apple > peach, coconut > pear. Further, mango

is the right child of coconut and papaya is the right child of

mango. 5. Decision Trees If in a rooted tree, each internal vertex is assigned to a decision with a sub- tree at the vertices,

then each possible outcome of the decision is called a decision tree. Traversal of a tree A systematic method of visiting

every vertex of an ordered rooted tree is called a ‘

Traversal Algorithm’. Pre-order: Let T be an ordered rooted tree with root r. Suppose T

has only one vertex say

r, then r is the pre-order traversal of T. Suppose that

https://secure.urkund.com/view/158826019-231749-951747#/sources 49/133

T 1 , T 2 , ..., T k

are the subtrees at r from left to right in T, then the

pre-order traversal begins by visiting r. It continues by traversing T 1 in pre-order, then T 2 in pre-order and so on, until T k

is reached. This is illustrated in Figure 3.7: T 1 T 2 S t e p 2 : Step 1: T k S k tep + 1 Step 3: T Figure 3.7 Pre-Order Traversal

Trees NOTES Self-Instructional Material 143 Step 1. Visit the root r. Step 2. Visit T 1 in pre-order. Step 3. Visit T 2 in pre-order.

Step k + 1. Visit T k in pre-order. An example of pre-order traversal is presented in Figure 3.8: T: a r d i j e b f o n m h g l k

Figure 3.8 Example of Pre-order Traversal Let T be an ordered root tree. The steps of the pre-order traversal of T are as

follows: In Figure 3.8, first you traverse T in pre-order by listing the root r, followed by the pre-order list of subtree with root

a, the pre-order list of subtree with root b, and the pre-order list of subtree with root c. These steps are shown in Figure 3.9

r a b c h g f k l e d i j m n o Step 1: r a d e b c f g h l k o n m i j Step 2: Step 3: r a d i j e b c f k l g h o n m Step 4: r a d i j m n

o e b c f k l g h Figure 3.9 Steps of Pre-order Travesal

144 Self-Instructional Material Trees NOTES Algorithm: Pre-order traversal Step 1. Visit root r and then list r. Step 2. For each

child of r from left to right, list the root of the first subtree then, the next sub-tree and so on until you complete listing the

roots of subtrees at level 1. Step 3. Repeat step 2, until you arrive at the leaves of the given tree. Step 4. Stop.

In-order Traversal Let T be an ordered, rooted tree with

its root at vertex r. Suppose T consists of

only root r, then r is the in-order traversal of T.

If not, i.e., suppose T has subtrees T 1 , T 2 , ..., T k at r from

left to right. The in-order traversal begins by traversing

T 1

in-order, then visiting r. It continues by traversing T 2 in- order, then

T 3 in-order and so on and finally T k in-order. This is shown in Figure 3.10: Step 1 T 1 T 2 T k S t e p 3 Step + 1 k Step 2 r

Figure 3.10 In-Order Traversal Step 1. Visit T 1 in-order. Step 2. Visit root. Step 3. Visit T 2 in-order. Step k + 1. Visit T k in-

order. Example 3.3: Determine the order in which the vertices of the rooted tree shown in Figure 3.11 is visited using an in-

order traversal. h c a d r b f e i j k m n l g Figure 3.11 Rooted Tree Solution: As shown in Figure 3.12, the in-order traversal

begins with an in- order traversal of the subtree with root at a, followed by the root r, and the in- order listing of the

subtree with root b.

Trees NOTES Self-Instructional Material 145 c h d a r b e i j k f g l m n Step 1: Step 2: a d r e b f g k j i h c m n l Step 3: Step 4:

h c a d r i e j b k f m l n g h c a d r i e j b k f l g m n Figure 3.12 Steps of

In-order Traversal Post-order traversal Let T be an ordered rooted tree with root r. If T has only one vertex r, then r is the

post-order traversal of T.

But if T has subtrees T 1 , T 2 , ..., T k at r from

left to right, the post-order traversal begins by traversing

T 1 in post- order, then T 2 in post-order and so on until T k is reached and ends by visiting r. This is shown in Figure 3.13:

Step k Step 2 Step 1 T 1 T 2 T k r k Step +1 (ii) T : a d e b f g h c r i j k Figure 3.13 Post-order Traversal

146 Self-Instructional Material Trees NOTES The post-order traversal begins with the post-order traversal of the subtree

with root a, the post-order traversal of the subtree with root b, and the post- order traversal of the subtree with root c,

followed by the root r. These steps are shown in Figure 3.14: Step 1: a d e f g h c b i j k r Step 2:d e f a g h b i c f j k d e a f g b

i k j c t Step 3: Figure 3.14 Steps of post-order traversal Infix, Prefix and Postfix Notation One can represent any expression

(like arithmetic, compound proposition) using ordered rooted trees. An ordered rooted tree can be used to represent

expressions, where the internal vertices represent operations, the leaves represent the variables or numerals. Example 3.4:

What is the ordered rooted tree that represents the expression ((a + b)?3) + ((a – 6)/3)? Solution: First construct a subtree

for a + b. Then this tree is included as a part of the next subtree of ((a + b)?3). Similarly a subtree is constructed for (a – 6)

then this tree is included as a part of the next subtree of (a – 6)/3. Finally the subtrees ((a + b)?3) and (a – 6)/3 are

combined to form the required tree corresponding to the given expression. This is shown in Figure 3.15: Step 1: + – a b a 6

/ + 3 – 3 b a a 6 Step 2: Figure 3.15 Ordered Rooted Tree Corresponding to the Expression ((a + b) ?3) + ((a – b)/3)

Trees NOTES Self-Instructional Material 147 (Figure 3.15 contd...) Step 3: + / 3 + – 3 6 a b a An in-order traversal of the

binary tree representing an expression, produces the original expression with the elements and operations in the same

order as they originally appeared (except unary operator). If you use parenthesis, whenever you encounter an operation

where there will be no ambiguity. Such fully parenthesized expression is said to be infix form . To get the prefix form of an

expression, we traverse its rooted tree in pre- order. Expressions written in prefix form are called polish notations. Example

3.5: What is the prefix form of ((a + b)?3) + ((a – 6)/3)? Solution: The ordered rooted tree corresponding to the expression

((a + b)?3) + ((a – 6)/3) is shown in Figure 3.16: + / + 3 – 3 6 a b a Figure 3.16 Ordered rooted tree of ((a +b) ?3) + ((a–

6)/3) One obtains the prefix form of the given expression, one has to traverse the binary tree in pre-order. Prefix form of the

expression ((a + b)?3) + ((a – 6)/3 is + ?ab 3/ – a 63. One obtains the postfix form of an expression by traversing its binary

tree in pre-order.

https://secure.urkund.com/view/158826019-231749-951747#/sources 50/133

148 Self-Instructional Material Trees NOTES Example 3.6: What is the postfix form of ((a + b)?3) + ((a – 6)/3)? Solution: The

binary tree corresponding to the expression is given in the Figure 3.17: + – 3 + 3 a b a 6 / Figure 3.17 Binary Tree for ((a +b)

?3) + ((a–6)/3) To obtain the postfix form of the given expression, one has to traverse its binary tree in post-order. The

required postfix form is ab + 3 ? a6 –3/+. Example 3.7: Draw the decision tree that orders the elements of the list

43% MATCHING BLOCK 78/127

a,b,c. Solution: a b : a c : b c : b c : c a b < < a c : c a b < < b c a < < b a c < < a c b < < a b c < < a

b < a b > a

c <

b

c < b c >

b c < b c > a

c <

a c > Figure 3.18 Decision Tree 3.2.1 Trees and Sorting To sort a list of elements there are several methods. Here, it will be

seen how trees are helpful in merge sort. In general, a merge sort proceeds by iteratively splitting lists into two sublists of

equal size (nearly) until each sublist consists of only one element. This succession of sublists can be represented by a

balanced binary tree. The procedure continues by successively merging pairs of lists (where both lists

Trees NOTES Self-Instructional Material 149 are in increasing order) into a larger list with elements in increasing order until

the original list is put into increasing order. The succession in a merged list can be represented by a balanced binary tree.

Example 3.8: Draw the recursive tree for merge sort of the list 9, 7, 11, 4, 5, 3, 6, 8, 12, 10. Solution: The list of elements

92% MATCHING BLOCK 79/127

can be represented as: a[0] = 9; a[1] = 7; a[2] = 11; a[3] = 4; a[4] = 5; a[5] = 3; a[6] = 6; a[7] = 8; a[8] = 12;

a[9] = 10.

Let us denote 0–9 as the position of the elements. Given list is [9, 7, 11, 4, 5, 3, 6, 8, 12, 10]. As a first step, this list is splitted

into two sublists of size 0-4 and 5-9, respectively. Then these two sublists are further splitted into two sublists until each

sublist consist of only one element. The required tree is given in Figure 3.19: [9,7,11,4,5,3,6,8,12,10] 0–9 [9,7,11,4,5] 0–4 5–9

[3,6,8,12,10] [9,7,11] 0–2 3–4 [4,5] [3,6,8] 5–7 [12,10] 8–9 [9,7] 0–1 2–2 3–3 4–4 [11] [4] [5] 5–6 7–7 8–8 9–9 [3,6] [8] [12]

[10] [9] 0–0 1–1 [7] [3] [6] 5–5 6–6 Figure 3.19 Recursive Tree C HECK Y OUR P ROGRESS 1. What is an acyclic graph? 2.

Define a rooted tree. 3. What is the vertex of a rooted tree known as? 4. Define a binary tree. 5. What is a decision tree?

150 Self-Instructional Material Trees NOTES 3.3 MINIMUM HEIGHT AND MINIMUM DISTANCE SPANNING TREES In this

section, study will be done for the spanning acyclic subgraph of a connected subgraph, and its optimality. Let G be a simple

connected graph.

A spanning tree of G is a subgraph of G, i.e., a tree

containing every vertex of G. This is shown in Figure 3.20: G: T : Figure 3.20 Simple Graph G and its Spanning Tree T

Theorem 3.4: A simple graph is connected if there exists atleast one spanning tree. Proof: Let G be a simple connected

graph. Suppose G has no circuits then G itself is a spanning tree. Suppose G has a simple circuit. By deleting an edge from

one of these simple circuits, the resulting subgraph is still connected if it is a spanning subgraph. If this subgraph has simple

circuits, then delete an edge from one of these simple circuits. Repeat this process until no simple circuits are there. Thus

in this manner a tree T is obtained in which V(T) = V(G). Therefore, T is a spanning tree of G. Note: The converse of this

theorem also holds true. 3.3.1 Depth-First Search and Breadth-First Search One can build the spanning tree of a connected

graph by using Depth-First Search (DFS) and Breadth-First Search (BFS). First, it will be seen how DFS are useful in

construction of a spanning tree from a given connected graph. Depth-First Search Let G be the given connected graph.

Arbitrarily, select a vertex as the root. Find a path starting from this choosen vertex by successively adding edges, where

each edge is incident with the last vertex in the path and a vertex not already in the path. Continue adding edges to this

path as long as possible. If this path consists of all the vertices of G, then this path is the required spanning tree. If not, then

more edges should be added. Navigate back to the vertex next to last that is in this path, and if possible, form a new path

starting at this vertex passing through vertices that were not already visited. If this is not possible, move to another vertex in

this path (i.e., 2 vertices back from the last) and try again. Repeat this procedure, beginning at the last vertex visited, moving

back up the path one vertex at a time, forming

https://secure.urkund.com/view/158826019-231749-951747#/sources 51/133

Trees NOTES Self-Instructional Material 151 new long paths until no more edges can be added. This process ends with a

spanning tree. When this procedure returns to the vertices previously visited, it is also called as backtracking. Example 3.9:

Construct a spanning tree for the graph G which is shown in Figure 3.21. a b c d f e G: Figure 3.21 Graph G Solution: First,

arbitrarily choose a vertex, say e as the root. Form a path at e, i.e., cdf is the path. Backtrack to d. Form a path beginning at

d in such a way that it has to visit the vertices which where not visited in the previous path, d e b a. Since all the vertices of

G are visited, this procedure gives the spanning tree T, which is shown in Figure 3.22 . a b T c d f Figure 3.22 Spanning Tree

T of Graph G Breadth-First Search First, choose a vertex arbitrarily as the root. Add the edges of G which are incident with

this vertex. The new vertices added at this stage becomes level 1 in the spanning tree. Order these vertices arbitrarily. Next,

for each vertex at level 1 visited in order, add each edge incident to this vertex to the tree as long as it does not- create a

simple circuit. Order the children of each vertex at level 1 arbitrarily. This produces the vertices at level 2 in the tree.

Continue in this manner until all the vertices of G have been added. Ultimately a spanning tree, is created. Example 3.10:

Construct a spanning tree of the graph G. Which is shown in Figure 3.23: e 1 a c e f d b e 4 e 3 e 5 e 6 e 7 e 8 e 9 e 2 Figure

3.23 Graph G

152 Self-Instructional Material Trees NOTES Solution: First choose a vertex say d (arbitrarily) as the root. Add the edges

incident to this vertex d. Hence, the edges e 2 , e 5 , e 7 , e 8 are incident with the vertex d. These vertices create level 1, as

shown in Figure 3.24: b d f e c e 2 e 7 e 8 e 5 Figure 3.24 Level 1 Now, add the edges which are incident to the vertices b, c,

e, f in such a way, that the resulting graph does not contain any circuit. Thus, at this level itself you have got the spanning

tree T. Which is shown in Figure 3.25: a b d e 1 e 2 e 5 e 7 e 8 T : Figure 3.25 Spanning tree Note: If the given graph is a

directed graph, then you can construct the underlying undirected graph and apply DFS or BFS to obtain a spanning graph.

3.3.2 Optimal Spanning Graph Let G be a weighted graph. Every edge of the graph is associated with a real number. We

have to find the minimum weight spanning tree of the graph G. The minimum weight spanning tree is called an optimal

spanning tree. Weight of a tree is the sum of weights

of the edges in a tree and is denoted by wt(T). There are three algorithms to find the optimal spanning tree. (i) Kruskal’s

algorithm (ii) Prim’s algorithm (iii) Boruvka’s algorithm Kruskal’s Algorithm Let G be a connected graph on n vertices. Step 1:

Arrange the edges in ascending order according to their weights. Choose the minimum weight edge say e 1 . Step 2:

Having selected e 1 , e 2 , ..., e k in such a way that the subgraph formed by these edges > e 1 , e 2 , ..., e k < is acyclic,

choose e k + 1 such that of the remaining edges, weight of e k + 1 is minimum. Step 3: Repeat steps 1 and 2 until (n – 1)

edges are selected.

Trees NOTES Self-Instructional Material 153 This

is shown in Figure 3.26: v 5 v 4 v 1 e 4 v 2 v 3 e 3 e 1 e 6 e 7 e 8 e 2 e 5 5 5 6 3 4 e 9 1 2 2 2 Figure 3.26 Connected Graph G

according to Weights Equations: e 9 , e 7 , e 8 , e 3 , e 2 , e 5 , e 4 ,

e 1 , e 6 Among these equations e 9 has the minimum weight 1. v 4 v 5 1 After applying step 2 and step 3, the spanning tree

created is shown in Figure 3.27: v 1 v 2 v 4 v 5 v 3 2 1 3 2 Figure 3.27 Spanning Tree according to Weights Weight of the

optimal spanning tree is 2 + 3 + 1 + 2 = 8 Prim’s Algorithm Let G be a connected graph. Step 1: Arbitrarily choose a vertex

say v 1 and an edge e 1 with minimum weight among the edges incident with v 1 . Step 2: Having selected the vertices v 1 ,

v 2 ,..., v k and the edges e 1 , e 2 ,..., e k choose the edge e k + 1 as follows. e k + 1 in incident with any one of the vertices {

v 1 , v 2 , ..., v k } and incident with v(G) –{ v 1 , v 2 , ..., v k }. Moreover the subgraph formed with v 1 , v 2 ,..., v k , v k + 1 and

the edges e 1 , e 2 ,.., e k , e k + 1 is acyclic and of the remaining edges e k + 1 has minimum weight. Step 3: Repeat steps 1

and 2 till (n – 1) edges are arrived.

154 Self-Instructional Material Trees NOTES This is shown in Figure 3.28: v 1 v 2 v 3 v 4 v 5 1 2 2 3 4 6 5 5 Figure 3.28

Connected Graph n according to Prim’s Algorithm Step 1: Choose arbitrarily vertex v 3 and apply step 2 and step 3. Now,

you will get the spanning trees. Which are shown

in Figure 3.29:

v 4 v 2 2 v 4 v 5 v 2 2 1 v 4 v 5 v 3 v 2 3 2 1 v 1 v 2 v 3

v 5 v 4 1 2 3 2

Figure 3.29 Spanning Trees according to Prim’s Algorithm So the final weight of the spanning tree is 8. Boruvka’s Algorithm

Boruvka’s algorithm finds a minimum spanning tree in a weighted graph. Boruvka developed this for constructing an

efficient electrical network. Every vertex in the graph finds its lightest edge, and then the vertices at the ends of each

lightest edge are marked. This process goes and the entire graph collapses into a single point. The tree consists of all the

lightest edges are so found. The algorithm starts by examining every vertex one-by-one and selecting the cheapest edge

from that vertex to another in the graph, without regard about

https://secure.urkund.com/view/158826019-231749-951747#/sources 52/133

Trees NOTES Self-Instructional Material 155 the already added edges. It continues joining these groupings in a similar

manner and a tree spanning all vertices is formed. Every vertex or set of connected vertices is termed as a ‘component’.

The pseudocode for this algorithm is given as follows: 1. Start with a connected graph G containing edges of distinct

weights, and an empty set of edges T. 2. While vertices of G connected by T are disjoint, ?Start with an empty set of edges

E. ?For each edge in the component, – Start with an empty set of edges S. ?For each vertex in the component, – Add the

cheapest edge from the vertex in the component to another vertex in a disjoint component to S. – Add the cheapest edge

in S to E. – Add the resulting set of edges E to T. 3. The resulting set of edges T is the minimum spanning tree of G.

Boruvka’s algorithm takes O(log V) iterations of the outer loop before termination, and runs in time O(Elog V), where E is

the number of edges, and V is the number of vertices in G. Faster algorithms can be obtained by combining Prim’s

algorithm with Boruvka’s. C HECK Y OUR P ROGRESS 6. Define an optimal spanning tree. 7. What is the weight of a tree? 8.

What is the working of the Boruvka’s algorithm? 9. Define a ‘component’. 3.4 PLANAR GRAPHS A graph G is said to be

planar if a geometric representation of G exists, which can be drawn on a plane such that no two of its edges intersect

(‘meeting’ of edges at a vertex is not considered an intersection). A graph that cannot be drawn on a plane without a cross

over between its edges is called a non-planar graph. A drawing of a geometric representation of a graph on any surface

such that no edges intersect is called embedding. Some planar graphs are presputed in Figure 3.30. Note: To show a that

graph G is nonplanar you have to prove that all

the possible geometric representations of G, cannot be embedded in a plane.

156

Self-Instructional Material Trees NOTES Theorem 3.5: The complete graph of five vertices is non-planar. Proof: Let the five

vertices in the complete graph be v 1 , v 2 , v 3 , v 4 and v 5 . By using the definition of the complete graph, you must have a

circuit going from v 1 - v 2 - v 3 - v 4 - v 5 to v 1 , i.e, a pentagon. This pentagon must divide the plane of the paper into

two regions, one inside and the other, outside. Since v 1 is to be connected to v 3 by means of an edge, this edge may be

drawn inside or outside the pentagon (without intersecting the five edges drawn previously). Suppose you choose to draw

a line from v 1 to v 3 inside the pentagon. In this case have to draw an edge from v 2 to v 3 and another one from v 2 to v 5

. Since neither of these edges can be drawn inside the pentagon without crossing over the edge already drawn, you need

to draw both these edges outside the pentagon. The edge connecting v 3 and v 5 cannot be drawn outside the pentagon

without crossing the edge between v 2 and v 4 . Therefore, v 3 and v 5 have to be connected with an edge inside

the pentagon.

v v v v v v v v v v v

v

v v v

v v v v v v v

v

v

v

Figure 3.30 Planar Graphs Note: A complete graph is nothing but a simple graph in which every vertex is joined to every

other vertex by means of an edge. Theorem 3.6: Kurtowski’s (Polish mathematician) second graph is also nonplanar. (k 3,3

is nonplanar). Note: In the plane, a continuous non-self intersecting curve whose origin and terminus coincide is said to be

a Jordan curve. If j is a Jordan curve in the plane ? , then ? – j is a union of two disjoint connected open sets called the

interior and the exterior of j. Example 3.11: Prove that K 5 is nonplanar. Solution: Step 1. Draw a circuit c on 5 vertices. This

circuit c divides the plane into two regions called interior and exterior of c as shown in Figure 3.31:

Trees NOTES Self-Instructional Material 157 V 1 V 2 V 5 V 4 V 3 Figure 3.31 Circuit C Step 2. Draw the edges v 1 v 3 , v 1 v 4

in the interior as shown in Figure 3.32. You cannot draw any more edge in the interior of c, without intersecting any edge. V

1 V 2 V 5 V 4 V 3 Figure 3.32 Circuit c with edges in the interior Now, draw the edges v 2 v 5 , v 2 v 4 in the exterior of c as

shown in Figure 3.33. But the edge v 3 v 5 cannot be drawn in the interior or exterior of c, without intersecting the edge of

c. V 1 V 2 V 5 V 3 V 4 Figure 3.33 Circuit c with interior and exterior edges Thus, k 5 is nonplanar. In addition, you can prove

that k 3, 3 is nonplanar in the following manner: Assume that k 3,3 is planar. Let the vertex of k 3,3 is {

v 1 ,..., v 6 }. Let P = { v 1 , v 3 , v 5 } and Q = { v 2 , v 4 , v 6 }. Let C be the cycle v 1 v 2 v 3 v 4 v 5 v 6 v 1 . It is a Jordan curve.

The other three edges v 1 v 4 , v 2 v 5 , v 3 v 6

are chords of the cycle C. So, either the interior of C or exterior of C contains two of these three chords. Say there are two

chords in Int c. These two chords must cross each other, which is a contradiction, hence k 3,3 is nonplanar.

https://secure.urkund.com/view/158826019-231749-951747#/sources 53/133

158 Self-Instructional Material Trees NOTES Contour: Let G be a connected planar graph. A region of G is the domain of

the plane surrounded by edges of the graph such that any two points in it can be joined by a line not crossing any edge.

The edges ‘touching’ a region contain a simple cycle called the contour of the region. Two regions are said to be adjacent if

the contours of the two regions have atleast one edge in common. This is illustrated in Figure 3.34. R2 R1 R3 R4 G: Figure

3.34 Connected Planar Graph In a planar graph G: R i , i = 1, 2, 3, 4, are the regions of G. Here, R 4 is the infinite region.

Euler’s Formula If G, a connected planar graph has n vertices, e edges and r regions, then, n – e + r = 2 Proof: By induction

on e, the number of edges: If e = 0, then G = K 1 (G is connected) ? n = 1 ; r = 1 (Infinite face) ? n – e + r = 1 – 0 + 2 = 3 If e

= 1 then n = 2 (G is connected) and r = 1 (Infinite face) ? n – e + r = 2 – 1 + 1 = 2 ? This result is true for e = 0 and e = 1.

Let us assume that this result is true for all

the connected planar graphs on (e – 1) edges. Let G be a connected planar graphs with e edges. Case (i)If G is a tree with

e edges then n = e +1 Tree on n vertices has (n – 1) edges. r = 1 ? n – e + r = e + 1 – e + 1 = 2. Case (ii)If G is not a tree.

Since G is connected, it contains cycles. Let e 1 be an edge in some simple circuit of G. Let G 1 be the graph obtained from

G by deleting the e 1 , i.e., G 1 = G – e 1

Trees NOTES Self-Instructional Material 159 Now, number of vertices in G 1 = n Number of edges in G 1 = e–1 Number of

regions in G 1 = r–1 Since G 1 has less then e edges, the result is true for G 1 also. ? By induction hypothesis, n 1 – e 1 +r 1 =

2, where n 1

is the number of vertices, e 1 is the number of edges

and r 1 is the number of

regions of G 1 respectively. ? n–(e–1) + r–1 = 2 ? n – e + r = 2. ? In all these cases, the result in true. Corollary: If G is a

connected simple planar graph without loops and has n vertices, e ? 2 edges and r regions, then 3/2 r ? e ? 3n–6. Proof: If r

= 1 then 3/2 ? e ? 3n – 6 is true, since e ? 2. If r < 1. Let k be the number of edges in the contours of the finite regions.

Since G is simple, each region (finite) is bounded by atleast 3 edges. Therefore k ? 3 (r – 1) ...(3.4) But, in a planar graph, an

edge belongs to the contours of atmost two regions and atleast 3 edges touch the infinite region. ? k ? 2e – 3 ...(3.5) From

equations (3.4) and (3.5), 3 r–3 ? k ? 2e–3 ? 3r – 3 ? 2e – 3 ? 3r ? 2e ? 3/2 r ? e ...(3.6) Since G is planar, n – e + r = 2, by

Euler’s Formula. ? n – e + 2/3 e ? 2 [From equation (3.10) r ? 2/3 e] ? 3n – 3 e + 2 e ? 6 ? – e ? – 3n + 6 ? e ? 3n – 6 ...(3.7)

From equations (3.6) and (3.7), 3/2 r ? e ? 3n – 6

Example 3.12: Prove that K 5 is nonplanar. Solution: Suppose K 5 is planar, then

by the above corollory, e ? 3n – 6. In K 5 n = 5, e = 10; ? 10 ? 3 × 5 – 6 = 9, which is absurd. ? K 5 is nonplanar. . Remark: K

5 , K 3,3 are called Kuratowski’s first graph, second graph respectively. Corollary: If G is a simple connected planar graph on

n vertices, e edges and r regions and does not contain any triangle, then 2 r ? e ? (2 n – 4).

160 Self-Instructional Material Trees NOTES Subdivision: A subdivision of a graph G is obtained by inserting vertices of

degree 2 into the edges of G, as shown in Figure 3.35: G: H: Figure 3.35 Subdivision of Graph G H is the subdivsision of G.

Kuratowski theorem: A graph is planar if it contains no subgraph that is isomorphic or is a subdivision of K 5 or K 3,3 . C

HECK Y OUR P ROGRESS 10. What is a non-planar graph? 11. Define a complete graph? 3.5 SUMMARY In this unit, you

have learned that: ?In graph theory, a tree refers to a graph in which two vertices are attached by only one path. ?Trees are

generally open graphs. ?In a tree, every edge is a cut-edge. ? Traversal algorithm refers to the systematic method for

visiting every vertex of an ordered rooted tree. ?Arithmetic expression and compound proposition can be represented by

using ordered rooted trees. ?A merge sort proceeds by repeatedly splitting lists into two sub-lists of equal size (nearly) to a

point such that each sub-list consists of only one element. ?A spanning tree of a connected graph using either of the two

methods: o Depth-First Search (DFS) o Breadth-First Search (BFS) ?A graph G is considered to be planar if there exists some

geometric representation of G which can be drawn on a plane in such a manner that no two of its edges intersect

(‘meeting’ of edges at a vertex is not considered an intersection). ?Euler’s Formula states that in case G, a connected planar

graph has n vertices, e edges and r regions, then, n – e + r = 2

Trees NOTES Self-Instructional Material 161 3.6 KEY TERMS ?Tree: A connected acyclic graph G is called a tree. ?Vertex: It

refers to a point of intersection in any diagram containing two or more edges. ?Rooted tree: In a directed tree a particular

vertex is called a root if that vertex is of degree zero. ?Balanced tree: A rooted k-ary tree of height h is balanced if all the

leaves are at level h or (h – 1). 3.7 ANSWERS TO ‘CHECK YOUR PROGRESS’ 1. A graph G, which has no cycles is called an

acyclic graph. 2. A tree together with its root produces a graph called a rooted tree. 3 A vertex of a rooted tree is known as

a leaf. 4. A tree is called as a binary tree if there is at least one vertex with degree 2 and the remaining vertices are of degree

1 or 2. 5. If in a rooted tree, each internal vertex is assigned to a decision with a sub- tree at the vertices, then each possible

outcome of the decision is called a decision tree. 6. The minimum weight spanning tree is called an optimal

spanning tree. 7. The weight of a tree is the sum of weights

https://secure.urkund.com/view/158826019-231749-951747#/sources 54/133

of the edges in the tree and is denoted by wt(T). 8. Boruvka’s algorithm finds a minimum spanning tree in a weighted graph.

9. Every vertex or set of connected vertices is termed as a ‘component’. 10 A graph that cannot be drawn on a plane

without a cross-over between its edges is called a non-planar graph. 11 A complete graph is nothing but a simple graph in

which every vertex is joined to every other vertex by means of an edge. 3.8 QUESTIONS AND EXERCISES Short-Answer

Questions 1. Briefly explain how trees are helpful in the process of merge sort. 2. State the three types of algorithms used to

find the optimal spanning tree. 3. What is a fundamental circuit? 4. Diagrammatically state what a contour.

162 Self-Instructional Material Trees NOTES Long-Answer Questions 1. In a graph theory, prove that G has (n-1) edges, if G

is a tree with n number of vertices. 2. Explain the concept of traversal of a tree. 3. Discuss the algorithms used to find

optimal spanning trees. 4. ‘The complete graph of five vertices is non-planar.’ Prove it. 3.9 FURTHER READING Lipschutz,

Seymour and Lipson Marc. Schaum’s Outline of Discrete Mathematics, 3rd edition. New York: McGraw-Hill, 2007. Horowitz,

Ellis, Sartaj Sahni and Sanguthevar Rajasekaran. Fundamentals of Computer Algorithms. Hyderabad: Orient BlackSwan,

2008. Cormen,

Thomas H., Charles E. Leiserson, Ronald L. Rivest and Clifford Stein. Introduction to Algorithms .

The MIT Press, 1990. Brassard, Gilles and Paul Bratley. Fundamentals of Algorithms . New Delhi: Prentice Hall of India, 1995.

Levitin, Anany. Introduction to the Design and Analysis of Algorithms . New Jersey: Pearson, 2006. Baase, Sara and Allen

Van Gelder. Computer Algorithms – Introduction to Design and Analysis . New Jersey: Pearson, 2003. Mott, J.L. Discrete

Mathematics for Computer Scientists , 2nd edition. New Delhi: Prentice-Hall of India Pvt. Ltd., 2007. Liu, C.L. Elements of

Discrete Mathematics . New Delhi: Tata McGraw-Hill Publishing Company, 1977. Rosen, Kenneth. Discrete Mathematics and

Its Applications , 6th edition. New York: McGraw-Hill Higher Education, 2007.

Recursion NOTES Self-Instructional Material 163 UNIT 4 RECURSION

Structure 4.0 Introduction 4.1 Unit Objectives 4.2 Mergesort 4.3 Insertion Sort 4.4 Bubble Sort and Selection Sort 4.4.1

Bubble Sort 4.4.2 Selection Sort 4.5 Binary and Decimal Numbers 4.5.1 Binary Number System 4.5.2 Decimal Number

System 4.5.3 Binary to Decimal Conversion 4.5.4 Decimal to Binary Conversion 4.5.5 Double-Dabble Method 4.5.6 Decimal

Fraction to Binary 4.6 Recursion and Recurrence Relations 4.6.1 Recursion and Iteration 4.6.2 Closed Form Expression 4.6.3

Sequence of Integers 4.6.4 Recurrence Relations 4.6.5 Linear Homogenous Recurrence Relations (LHRR) 4.6.6 Solving

Linear Homogeneous Recurrence Relations 4.6.7 Solving Linear Non-Homogeneous

Recurrence Relations 4.6.8 Linear Homogeneous Recurrence Relations with Constant Coefficient (LHRRWCC) 4.6.9

Divide and Conquer Recurrence Relation (DCRR) 4.7 Recursive Procedures 4.7.1 Functional Recursion 4.7.2 Recursive

Proofs 4.7.3 The Recursion Theorem 4.7.4 Infinite Sequences 4.7.5 Recursive Function and Primitive Recursive Function 4.8

100% MATCHING BLOCK 80/127

Summary 4.9 Key Terms 4.10 Answers to ‘Check Your Progress’ 4.11 Questions and Exercises 4.12 Further Reading 4.0

INTRODUCTION

Recursion is a concept prevalent in mathematics and computer science. It is a method of defining functions in which the

function being defined is applied within its own definition. This specifically means defining an infinite statement using finite

components. The term is also used more generally to describe a process of repeating objects in a self-similar way. For

instance, when the surfaces of two mirrors are

164 Self-Instructional Material Recursion NOTES exactly parallel with each other, the nested images that occur are a form

of infinite recursion. This in plain English means that recursion is the process a procedure goes through when one of the

steps of that procedure involves re-running the procedure. A procedure that goes through recursion is recursive, that is, if

one of the steps that makes up the procedure calls for a new running of the procedure. A recursive procedure must

complete each of all its steps. Even if a new running is called for in one of its steps, each running must run through the

remaining steps. In this unit, you will learn about merge sort, insertion sort, bubble sort and selection sort, binary and

decimal numbers, recursion and recurrent relations and recursive procedures. 4.1

100% MATCHING BLOCK 81/127

UNIT OBJECTIVES After going through this unit, you will be able to: ?Understand the

concepts of

merge sort, bubble sort, insertion sort and selection sort ?Describe binary and decimal numbers ?Convert binary numbers

to decimal numbers and vice versa ?Explain the concepts of recursion and recurrence relations ?Describe the various

features of recursive procedures 4.2 MERGESORT The Mergesort algorithm basically works according to

https://secure.urkund.com/view/158826019-231749-951747#/sources 55/133

100% MATCHING BLOCK 82/127

a divide and conquer strategy in which the sequence is divided into two halves. Each half is independently sorted and

then both halves are merged to make a combine sequence. In this process, the validity of input data required in

Mergesort is as follows: ?Check the input sequences. If there is only one element then the Mergesort operation is not

performed. ?The input sequences are separated into two halves. ?Sort the input sequences. ?Merge both sorted input

sequences to generate the result. In the merging process, the elements of two arrays are combined, creating a new array.

The algorithm is based on the merging process where all the elements are copied in one array and kept in the separate

new array. Then it adds the second array to the new array. After combining the sorted array a Mergesort array is created.

For example, the two arrays A[5] and B[3] are manipulated and then merged to create a new array. The newly created

array, namely C, will have 5+3=8 elements. The required steps are as follows:

Recursion NOTES Self-Instructional Material 165 ?

100% MATCHING BLOCK 83/127

Compare the very first elements of both A[0] and B[0]. If A[0] > B[0] then the value of A[0] is shifted to C[0]. Then the

size of both arrays [Arrays A and C] current pointers are increased by one. ?The elements of array A and array B are

compared where the pointers are pointing, that is, the first element of array A and the null element of B, i.e., A[1] and B [0]

. ?If B[0]>A[1] then B[0] is moved to C[1]. The current pointer of B is incremented to point the next element in array B.

The following algorithm checks

the sequences of validation of arrays: Function Mergesort(M1, M2) { list A ? Empty while (neither M1 nor M2) { compare first

items of M1 and M2 remove smaller of the M1 and M2 from the list add to end of A } catenate remaining list to end of A

return A } Mergesort problem: Sort a sequence of given n elements in a non-decreasing way. It follows the DCC

mechanism that represents Divide, Conquer and Combine: Divide : Divides the n element sequence that is sorted into two

subsequences of n/2 elements. Conquer : Sorts by using Mergesort the two recursive subsequences. Combine : Merges

both subsequences to produce the sorted result. The required steps in the Mergesort algorithm are as follows: Input : Sort

a sequence of n numbers that is stored in an array. Output: Produce an ordered sequence of n numbers. The following

algorithm is applied in mergesort mechanism: Mergesort(A,m,n) //It sorts A[m…n] by divide and conquer method Step 1: if

m>n Step 2: then r?[(m+n)/2] Step 3: Mergesort (A,m,r) Step 4: Mergesort (A, r+1, n) Step 5: Merge(A,m,n,r) //This step

merges A[m…n] with A[r+1…n] Merge (A,m,n,p)

166 Self-Instructional Material Recursion NOTES Step 1: n1?n – m+1 Step 2: n2?p – n Step 3: for i ? 1 to n1 Step 4: do L[i] ?

A[m+i–1] Step 5: for j ?1 to n2 Step 6: do R[j] ?A[n+j] Step 7: L[n1+1] ?? Step 8: R[n2+1] ?? Step 9: i?1 Step 10: j?1 Step 11: for

k ?m to p Step 12: do if L[i]>=R[j] Step 13: then A[k] ?L[i] Step 14: i? i+1 Step 15: else A[k] ?R[j] Step 16: j? j+1 In the above

algorithm, L[i] and R[j] are the smallest elements of L and R that are not copied back into A. Figure 4.1 shows the Mergesort

process that is based on this algorithm: j 6 8 26 32 1 9 42 43 … … A k 6 8 26 32 1 9 42 43 k k k k k k k i i i i ? ? i j j j j 6 8 26 32

1 9 42 43 1 6 8 9 26 32 42 43 L R 6 8 26 32 1 9 42 43 … … A 6 8 26 32 1 9 42 43

merge m

p Figure 4.1 Elements sorted [1, 6, 8, 9, 26, 32, 42, 43] using Mergesort Analysis of Mergesort Algorithm In Figure 4.2, an

array A is taken in which there are eight elements. The operation of Mergesort on the array A is [5, 2, 4, 7, 1, 3, 2, 6]. The

length of the sorted sequences is merged as the steps required in algorithm from bottom to top.

Recursion NOTES Self-Instructional Material 167 Figure 4.2 A Mergesort Algorithm Implementation

100% MATCHING BLOCK 84/127

of Mergesort for Two Vectors of Seven Elements /*—————————— START OF PROGRAM ——————————*/

#include >stdio.h< #include >conio.h< void Mergesort(int [], int [], int [], int, int); void main() { int A_Array[50],

B_Array [50], C_Array [100], m, n, i; printf(“\n Enter the array elements for first array [max 50]: “); scanf(“%d”, &m);

printf(“\mEnter the array elements in ascending order:”); for (i=0; i>m; i++) scanf(“%d”, &A_Array[i]); printf(“\nEnter the

array elements for second array [max 50]: “); scanf(“%d”, &n); printf(“Enter the array elements in ascending order:”); for

(i=0; i>n; i++) scanf(“%d”, &B_Array[i]); Mergesort(A_Array, B_Array, C_Array, m, n); printf(“\n The sorted array is : “); for

(i=0; i>m+n; i++) printf(“%d\n”, C_Array[

i]); }

168 Self-Instructional Material Recursion NOTES

https://secure.urkund.com/view/158826019-231749-951747#/sources 56/133

void Mergesort(int A_Array[], int B_Array[], int C_Array[], int m, int n) { int a_ele=0, b_ele=0, c_ele=0; for (a_ele =0,

b_ele=0, c_ele =0; a_ele>m && b_ele>n;) { if (A_Array[a_ele]> B_Array[b_ele]) //Check the elements of A_Array

are less than elements of B_Array C_Array[c_ele++] = A_Array[a_ele++]; //Assign the values of C_Array in A_Array

otherwise B_Array else C_Array[c_ele++] = B_Array [b_ele++]; } if (a_ele>m) while (a_ele>m) C_Array[c_ele++] =

A[a_ele++]; else while (b_ele>n) C_Array[c_ele++] = B_Array[b_ele++]; } The arrays A_Array and B_Array are the input

arrays that contain elements in ascending order. Their sizes are m and n respectively. The C_Array is the output array

containing the elements from the two combined arrays in sorted order. The result comes in the following way: Enter the

array elements for first array [max 50]: 3 Enter the array elements in ascending order: 4 8 10 Enter the array elements for

second array [max 50]:4 Enter the array elements in ascending order: 3 5 7 9

Recursion NOTES Self-Instructional Material 169 Output : The sorted array is: 3 4 5 7 8 9 10 4.3

94% MATCHING BLOCK 85/127

INSERTION SORT Insertion sort refers to a simple sorting algorithm. In it, the sorted array (or list) is built one entry at a

time. As compared to more advanced algorithms, such as quick sort, heap sort or merge sort, it is less efficient on large

lists. However, insertion sort has many advantages, such as: ?Its implementation is simple. ?It is efficient for (quite) small

data sets. ?It is efficient for data sets that are already substantially sorted. The time complexity is O(n + d), where d is the

number of inversions. ?It is more

efficient in practice

93% MATCHING BLOCK 86/127

as compared to most other simple quadratic i.e., O(n 2) algorithms, such as selection sort or bubble sort. The average

running time of insertion sort is n 2 /4. Further, in the best case scenario, the running time is linear. ?It is stable. In other

words, it does not change the relative order of elements with equal keys. ?It is in place, i.e., it only requires a constant

amount O(1) of additional memory space. ?It is online, i.e., it

can sort

100% MATCHING BLOCK 87/127

a list as it receives it. Most people while sorting—ordering a deck of cards, for example—use the insertion sort like

method.

In abstract terms,

75% MATCHING BLOCK 88/127

each iteration of insertion sort removes an element from the input data and then inserts it into the correct position in the

list that is already sorted. The process continues till all input elements are inserted. The element to be removed from the

input is chosen arbitrarily. Almost any choosen algorithm can be used for this. Sorting is typically done in-place. The

resulting array after k iterations has the

property where the first k entries are sorted. In each iteration, the first remaining entry of

the input is removed, inserted into the result at the correct position, thus

170 Self-Instructional Material Recursion NOTES extending the result: > x < x x Sorted partial result Unsorted data

becomes > x < x x Sorted partial result Unsorted data with each element greater than x copied to the right

as it is compared against x.

https://secure.urkund.com/view/158826019-231749-951747#/sources 57/133

100% MATCHING BLOCK 89/127

Consider a function called Insert, which is designed for inserting a value into a sorted sequence at the beginning of an

array. It starts operating at the end of the sequence and shifts each element one place to the right unless an appropriate

position becomes available for the new element. This function has a problem. It can overwrite the value that is stored just

after the sorted sequence in the array. For performing an insertion sort, you need to begin at the leftmost element of the

array and invoke Insert in order to insert each element which is encountered into its correct position. The ordered

sequence of inserted elements is stored at the beginning of the array. These elements are stored in the set of indices

already examined. Each insertion overwrites a single value, i.e., the value which is being inserted. Algorithm for Insertion

Sort Procedure InsSort(A,N). [Where A is a vector and N denotes number of elements in the vector. I,J acts as indices of

vector A and Max]. 1. [Initialize I] I = 0 2. [Perform sort] REPEAT THRU Step 6 until I > N 3. [Initialize Max,J] Max = A[I]

J = I 4. [Backtrack and change] REPEAT WHILE J < 0 AND Max > A[J – 1]) /*Backtrack */ A[J] = A[J – 1] J = J – 1 5.

[Assign Max] A[J] = Max 6. [Increment I] I = I + 1 7. [Finished] RETURN.

Recursion NOTES Self-Instructional Material 171 1 2 3 … (i-1) i (i+1)

90% MATCHING BLOCK 90/127

N Sorted list Unsorted list Example 4.1: Sort the elements 16, 19, 4,1, 20, 2 using Insertion sort. Solution: Set of elements

2nd Iteration 3rd Iteration 4th Iteration 5th Iteration 6th Iteration 16 16 4 1 1 1 19 19 16 4 4 2 4 4 19 16 16 4 1 1 1 19 19 16

20 20 20 20 20 19 2 2 2 2 2 20 From the insertion sort algorithm, sorting is achieved by each iteration as shown in the

diagram. In each row, the elements are in sorted order relative to each other above the element within a block; below

this element, the elements are not affected. Analysis of Insertion sort: The time complexity of the insertion sort is O(N 2),

where ‘ N’ is the number of elements in the array. On an average, the number of interchanges required is (N 2 /4) and in

worst cases about (N 2 /2). The insertion sort is highly efficient if the array is already in almost sorted order.

Implementation of Insertion Sort for a Vector having Numbers as its Elements #include>stdio.h< #define MAX 100

typedef VECTOR[MAX]; void InsSort(VECTOR a, int n) {int i, j, Max; for(i = 0; i > n; ++i) { Max = a[i]; j = i; while(j < 0 &&

Max > a[j – 1]) /*backtrack */ { a[j] = a[j – 1]; j = j – 1; } a[j] = max; } } void main() {VECTOR a = {5, 4, 3, 2, 1}; 172 Self-

Instructional Material Recursion NOTES int i; InsSort(a, 5); for(i = 0; i > 5; ++i) printf(“%d “, a[i]); } Output : 1 2 3 4 5

Implementation of Insertion Sort for a Vector having Strings as its Elements #include>stdio.h<

#include>string.h< #define MAXROWS 10 #define MAXCOLS 20 typedef char STRINGS[MAXROWS][MAXCOLS];

typedef char STRING[MAXCOLS]; void InsSort(STRINGS A,int N) { int I, J; STRING MaxStr; for(I = 0; I > N; ++I) {

strcpy(MaxStr, A[I]); J = I; while(J < 0 && strcmp(MaxStr, A[J – 1])>0) /*backtrack */ { strcpy(A[J], A[J – 1]); J = J – 1; }

strcpy(A[J], MaxStr); } } void main() { STRINGS A = {“EE”, “AA”, “BB”, “DD”, “CC”}; int i; InsSort(A, 5); for(i = 0; i > 5; ++i)

printf(“%s”, A[i]); } OUTPUT: AA BB CC DD EE The array which is already sorted is considered the best case input. In the

given case, insertion sort has a linear running time, i.e., O(n). During each iteration,

Recursion NOTES Self-Instructional Material 173

100% MATCHING BLOCK 91/127

the first remaining element of the input would only be compared with the rightmost element of the sorted subsection of

the array. An array sorted in the reverse order is the worst case input. In the given case, insertion sort has a quadratic

running time, i.e., O(n 2). Every iteration of the inner loop scans and shifts the entire sorted subsection of the array

before the next element is inserted. The average case is also quadratic. That is why the insertion sort is not practical for

sorting large arrays. However, for sorting arrays having less than ten elements, insertion sort is one of the fastest

algorithms.

C HECK Y OUR P ROGRESS 1. What is the Mergesort algorithm based on? 2. List out any two advantages of Insertion sort.

3. What is the role of the insert function? 4.4 BUBBLE SORT AND SELECTION SORT

https://secure.urkund.com/view/158826019-231749-951747#/sources 58/133

99% MATCHING BLOCK 92/127

In the fields of computer science and mathematics, a sorting algorithm refers to an algorithm whose function is to put

elements of a list in a certain order. The numerical and lexicographical orders are the most used orders. In order to

optimize the use of other algorithms, such as search and merge algorithms, efficient sorting is essential, as these

algorithms require sorted lists to work correctly. Sorting is often used to canonicalize data and to produce human-

readable output. The output must meet the following two conditions: ?The output should be in non-decreasing order

(each element should not be smaller than the previous element according to the desired total order). ?The output should

be a permutation or reordering of the input. Since the beginning of computing, the sorting problem has greatly attracted

the attention of researchers, perhaps due to the complexity of solving it efficiently despite its simple, familiar statement.

For example, the analysis of bubble sort was done as early as 1956. Many consider it a solved problem. However, the

invention of new sorting algorithms has not stopped. Library sort, for example, was first published in 2004. Sorting

algorithms are taught in introductory computer science classes. Students are introduced to a variety of core algorithm

concepts, such as big O notation, divide and conquer algorithms, data structures, randomized algorithms, best, worst

and average case analysis, time-space tradeoffs and lower bounds. Sorting is a method of arranging keys in a file in the

ascending or descending order. Sorting makes handling of records in a file easier. 174

Self-Instructional Material Recursion NOTES

100% MATCHING BLOCK 93/127

Sorting can be classified into the following two types: Internal sorting : Sorting of records in a file, which is stored in the

main memory. External sorting : Sorting of records in a file, which is stored in the secondary memory. Some sorting

techniques are as follows: ?Bubble sort ?Insertion sort ?Selection sort ?Quick sort ?Tree sort ?Arrangement of elements in

a list according to the increasing (or decreasing) values of some key field of each element. ?Sorting will be useful to

search, insert or delete a data item in a list. There are various methods for sorting

explained in the following sections. 4.4.1 Bubble Sort

97% MATCHING BLOCK 94/127

Bubble sort comes under the category of exchange sort technique. ?Consider an array A has n elements A[0] to A[n – 1].

The array is to be sorted in the ascending order. ?Compare A[0] and A[1] and arrange such that A[0] > A[1] . Then

compare A[1] and A[2] and arrange such that A[1] > A[2]. Repeat this process till the largest element is bubbled to the

nth position. ?Since the largest value is now in the last position as required for the ascending order, consider the first (n –

1) elements. Repeat the above process as to bubble the next largest value to (n – 1)th position. Then consider the first (n

– 2) elements and in this way proceed to bubble till all the elements are bubbled to their respective positions. Then

sorting will be completed. Algorithm for Bubble Sort or Exchange Sort BUBBLE_SORT(B,N). Where B is a vector having N

elements 1. [Initialization] Last = N (entire list assumed unsorted at this point) 2. [Loop on I index] REPEAT THRU STEP 5

FOR I = 1 TO N – 1 DO 3. [Initialize exchanges counter for this pass] EXS = 0 4. [Compare the unsorted pairs] REPEAT

FOR J = 1 TO Last – 1 DO IF B[J] > B[J+1] THEN B[J] = B[J+1] EXS = EXS + 1

Recursion NOTES Self-Instructional Material 175 5. [

100% MATCHING BLOCK 95/127

Check whether any exchanges occur or?] IF EXS = 0 THEN RETURN (Sorting finished) ELSE Last = Last – 1(reduce the

size of unsorted list) 6. [maximum number of passes finished] RETURN Example 4.2: Sort the elements 74, 13, 52, 34, 6

using bubble sort.

Solution: 74 13 52 34 6 13 74 52 34 6 13 52 74 34 6 13 52 34 74 6 13 52 34 6 74 13 52 34 6 74

https://secure.urkund.com/view/158826019-231749-951747#/sources 59/133

100% MATCHING BLOCK 96/127

Unsorted Array Sorted Array Apply the same procedure for the unsorted array and repeat the same process until the

elements are not exchanged in any of the pass, then result will be the sorted list: 6, 13, 34, 52, 74. Implementation of

Bubble Sort to Sort Strings of Vector/Array Program for Bubble Sort of Numbers /*—————————START OF

PROGRAM—————————*/ #include>stdio.h< #include>conio.h< #define MAXCOLS 20 #define

MAXROWS 10 176

Self-Instructional Material Recursion NOTES

98% MATCHING BLOCK 97/127

typedef char STRINGS[MAXROWS][MAXCOLS]; typedef char STRING[MAXCOLS]; void bub_sort(STRINGS a,int n) { int i,j;

for(i = 0;i >n – 1; ++i) { int pass = 0; for(j = 0; j > n – 1 – i; ++j) { if(strcmp(a[j], a[j + 1]) < 0) { STRING temp;

strcpy(temp,a[j]); strcpy(a[j], a[j + 1]); strcpy(a[j + 1],temp); pass = 1; } } if(pass == 0) break; } } void main() { STRINGS a =

{“EE”,”BA”,”AB”,”CD”,”AA”}; int i; clrscr(); bub_sort(a,5); for(i = 0; i > 5; ++i) printf(“%s “,a[i]); } /*——————————END

OF PROGRAM——————————*/ OUTPUT: AA AB BA CD EE Implementation of Bubble Sort to Sort Integers of a

Vector/Array /*———————START OF PROGRAM——————————*/ #include>stdio.h< #include>conio.h<

#define MAXCOLS 20

Recursion NOTES Self-Instructional Material 177

typedef int VECTOR[

MAXCOLS]; void bub_sort(VECTOR a,int n) { int i, j; for(i = 0; i > n – 1; ++i) {

int

pass = 0;

for(j = 0; j > n – 1 – i; ++j){ if(a[j] < a[j + 1]) { int temp; temp = a[j]; a[j] = a[j + 1]; a[j + 1] = temp;

pass = 1; } } if(pass == 0) break; } } void main() { VECTOR a = {5, 4, 3, 2, 1}; int i; bub_sort(a, 5); for(i = 0; i > 5; ++i)

printf(“%d “, a[i]); } /*—————————END OF THE PROGRAM—————————*/ OUTPUT: 1 2 3 4 5 4.4.2 Selection Sort

Selection sort is a simple sorting technique to sort a list of elements. This method

helps to

60% MATCHING BLOCK 98/127

find the smallest value in the array. This is exchanged with the first element. The next smallest is found and exchanged

with the second element.

This is continued till

100% MATCHING BLOCK 99/127

all elements are completed. A disadvantage of selection sort is that its running time depends only slightly on the amount

of order already in the given list of elements. 178

Self-Instructional Material Recursion NOTES

SELECTION_SORT (A,N) [Where A is a vector having N elements] 1.[Loop on I index] REPEAT THRU Step 4 FOR I = 1, 2,...,

N “ 1 2.[Initially assume minimum index is in I] Mindex = I 3. [For each pass, get small value] REPEAT FOR J = I + 1 to N IF

A[MIndex] <A[J] THEN Mindex = J 4.[Interchange Elements] IF Mindex >< I THEN A[I]A[Mindex] 5.[Sorted values will

be returned] RETURN Explanation: In this algorithm, for each I to N – 1 , exchange A[I] with the minimum element in the

array A[I],…,A[N] . As the index I travels from left to right, the elements to its left are in their final position in the array and will

not be touched again, so the array is fully sorted when I reaches the right end. Example 4.3: Sort the elements 16, 19, 4, 1,

20, 2 using selection sort. Solution: 1 2 3 … (i-1) i (i+1) N In the ith pass select the lowest between A[i] and A[N] and swap it

with A[i]. Set of elements 1st Iteration 2nd Iteration 3rd Iteration 4th Iteration 5th Iteration 16 1 1 1 1 1 19 19 2 2 2 2 4 4 4 4 4

4 1 16 16 16 16 16 20 20 20 20 20 19 2 2 19 19 19 20 Implementation of Selection Sort to Sort Values of a Vector/Array

Program for Selection Sort of Numbers /*——————————START OF PROGRAM————————*/

#include>stdio.h< #include>conio.h< #define MAXCOLS 10

Recursion NOTES Self-Instructional Material 179

https://secure.urkund.com/view/158826019-231749-951747#/sources 60/133

90% MATCHING BLOCK 100/127

typedef int VECTOR[MAXCOLS]; void sel_sort(VECTOR a, int n) { int i, j, flag, index; for(i = 0; i > n – 1; ++i) { index = i;

Flag = 0; for(j = i + 1; j > n; ++j) { if(a[index] < a[j]) { index = j; flag = 1; } } if(flag) { int temp; temp = a[i]; a[i] =a[index];

a[index] = temp; } } void main() { VECTOR a = {5, 4, 3, 2, 1}; int i; sel_sort(a, 5); for(i = 0; i > 5; ++i) printf(“%d “, a[i]); } /*

——————————END OF PROGRAM——————————*/ OUTPUT: 1 2 3 4 5 Implementation of Selection Sort to

Sort Strings of Vector/Array /*——————————START OF PROGRAM————————————*/ #include>stdio.h<

#include>conio.h< #define MAXCOLS 20 #define MAXROWS 10 180 Self-Instructional Material Recursion NOTES

typedef char STRINGS[MAXROWS][MAXCOLS]; typedef char STRING[MAXCOLS]; void sel_sort(STRINGS a, int n) { int i, j,

flag, index; for(i = 0; i > n – 1; ++i) { flag = 0, index = i; for(j = i + 1; j > n; ++j){ if(strcmp(a[index], a[j]) < 0) { index =

j; flag = 1; } } if(flag) { STRING temp; strcpy(temp, a[i]); strcpy(a[i], a[j]); strcpy(a[j], temp); } } } void main() { STRINGS a =

{“EE”, “BB”, “EA”, “DD”, “AA”}; int i; sel_sort(a, 5); for(i = 0; i > 5; ++i) printf(“%s “, a[i]); } /*—————————END OF THE

PROGRAM—————————*/ OUTPUT: AA BB DD EA EE

C HECK Y OUR P ROGRESS 4. What do you understand by sorting? 5. What is internal sorting? 6. Name any two sorting

techniques.

Recursion NOTES Self-Instructional Material 181 4.5 BINARY AND

91% MATCHING BLOCK 101/127

DECIMAL NUMBERS 4.5.1 Binary Number System A number system that uses only two digits, 0 and 1, is called the binary

number system. The binary number system is also called a base two system. The two symbols 0 and 1 are known as bits

or binary digits. The binary system groups numbers by two and by powers of two, shown in Figure 4.3. The word binary

comes from a Latin word meaning two at a time. Figure 4.3 Binary Position Values The weight or place value of each

position can be expressed in terms of 2, and is represented as 2 0 , 2 1 , 2 2 , etc. The least significant digit has a weight of

2 0 (= 1). The second position to the left of the least significant digit is multiplied by 2 1 (= 2). The third position has a

weight equal to 2 2 (= 4). Thus, the weights are in the ascending powers of 2 or 1, 2, 4, 8, 16, 32, 64, 128, etc. The

numeral 10 two or 10 2 (one, zero, base two) stands for two, the base of the system. In binary counting, single digits are

used for none and one. Two-digit numbers are used for 10 two and 11 two (2 and 3 in decimal numerals). For the next

counting number, 100 two (4 in decimal numerals) three digits are necessary. After 111 two (7 in decimal numerals), four-

digit numerals are used until 1111 two (15 in decimal numerals) is reached, and so on. In a binary numeral, every position

has a value 2 times the value of the position to its right. A binary number with 4 bits is called a nibble and a binary number

with 8 bits is known as a byte . For example, the number 1011 2 actually stands for the following representation: 1011 2 =

1 × 2 3 + 0 × 2 2 + 1 × 2 1 + 1 × 2 0 = 1 × 8 + 0 × 4 + 1 × 2 + 1 × 1 ? 1011 2 = 8 + 0 + 2 + 1 = 11 10 In general, [b n ,b n – 1

... b 2 , b 1 , b 0] 2 =b n 2 n + b n – 1 2 n–1 + ... + b 2 2 2 + b 1 2 1 + b 0 2 0 Similarly, the binary number 10101.011 can

be written as, 1 0 1 0 1 . 0 1 1 2 4 2 3 2 2 2 1 2 0 . 2 – 1 2 – 2 2 – 3 (MSD) (LSD) 182

Self-Instructional Material Recursion NOTES ? 10101.011 2 = 1 × 2 4 + 0 × 2 3 + 1 × 2 2 + 0 × 2 1 + 1 × 2 0 + 0 × 2 –1 + 1 ×

2 –2 + 1 × 2 –3 = 16 + 0 + 4 + 0 + 1 + 0 + 0.25 + 0.125 = 21.375 10

96% MATCHING BLOCK 102/127

In each binary digit, the value increases in powers of two starting with 0 to the left of the binary point and decreases to

the right of the binary point starting with power –1. Use of Binary Number System in Digital Computers The binary

number system is used in digital computers because all electrical and electronic circuits can be made to respond to the

two-state concept. A switch, for instance, can be either opened or closed, only two possible states exist. A transistor can

be made to operate either in cut-off or saturation; a magnetic tape can be either magnetized or non-magnetized; a

signal can be either High or Low; a punched tape can have a hole or no hole. In all of these illustrations, each device is

operated in any one of the two possible states and the intermediate condition does not exist. Thus, 0 can represent one

of the states and 1 can represent the other. Hence, binary numbers are convenient to use in analysing or designing digital

circuits. 4.5.2

https://secure.urkund.com/view/158826019-231749-951747#/sources 61/133

96% MATCHING BLOCK 103/127

Decimal Number System The number system which utilizes ten distinct digits, i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 is known as

decimal number system. It represents numbers in terms of groups of ten, as shown in Figure 4.4. We would be forced to

stop at 9 or to invent more symbols if it were not for the use of positional notation. It is necessary to learn only 10 basic

numbers and positional notational system in order to count any desired figure. Figure 4.4 Decimal Position Values The

decimal number system has a base or radix of 10. Each of the ten decimal digits 0 through 9 has a place value or weight

depending on its position. The weights are units, tens, hundreds and so on. The same can be written as the power of its

base as 10 0 , 10 1 , 10 2 , 10 3 ... etc. Thus, the number 1993 represents quantity equal to 1000 + 900 + 90 + 3. Actually,

this should be written as {1 × 10 3 + 9 × 10 2 + 9 × 10 1 + 3 × 10 0 }. Hence, 1993 is the sum of all digits multiplied by

their weights. Each position has a value 10 times greater than the position to its right. For example, the number 379

actually stands for the following representation.

Recursion NOTES Self-Instructional Material 183 100 10 1 10 2 10 1 10 0 3 7 9 3 × 100 + 7 × 10 + 9 × 1 ? 379 10 = 3 × 100 +

7 × 10 + 9 × 1 = 3 × 10 2 + 7 × 10 1 + 9 × 10 0

100% MATCHING BLOCK 104/127

In this example, 9 is the least significant digit (LSD) and 3 is the most significant digit (MSD). Example 4.4: Write the

number 1936.469 using decimal representation. Solution: 1936.469 10 = 1 × 10 3 + 9 × 10 2 + 3 × 10 1 + 6 × 10 0 + 4 ×

10 –1 + 6 × 10 –2 + 9 × 10 –3 = 1000 + 900 + 30 + 6 + 0.4 + 0.06 + 0.009 = 1936.469 It is seen that powers are

numbered to the left of the decimal point starting with 0 and to the right of the decimal point starting with –1. The

general rule for representing numbers in the decimal system by using positional notation is as follows: a n a n – 1 ... a 2 a

1 a 0 = a n 10 n + a n – 1 10 n–1 + ... a 2 10 2 + a 1 10 1 + a 0 10 0 Where n is the number of digits to the left of the

decimal point. 4.5.3 Binary

to Decimal Conversion A binary number can be converted into decimal number by multiplying the binary 1 or 0 by the

weight corresponding to its position and adding all the values. Example 4.5: Convert the binary number 110111 to decimal

number. Solution: 110111 2 = 1 × 2 5 + 1 × 2 4 + 0 × 2 3 + 1 × 2 2 + 1 × 2 1 + 1 × 2 0 = 1 × 32 + 1 × 16 + 0 × 8 + 1 × 4 + 1 ×

2 + 1 × 1 = 32 + 16 + 0 + 4 + 2 + 1 = 55 10 We can streamline binary to decimal conversion by the following procedure:

Step 1: Write the binary, i.e., all its bits in a row. Step 2: Write 1, 2, 4, 8, 16, 32, ..., directly under the binary number working

from right to left. Step 3: Omit the decimal weight which lies under zero bits. Step 4: Add the remaining weights to obtain

the decimal equivalent. The same method is used for binary fractional number.

184 Self-Instructional Material Recursion NOTES Example 4.6: Convert the binary number 11101.1011 into its decimal

equivalent. Solution: Step 1: 1 1 1 0 1 . 1 0 1 1 ?? Binary Point Step 2: 16 8 4 2 1 . 0.5 0.25 0.125 0.0625 Step 3: 16 8 4 0 1 . 0.5

0 0.125 0.0625 Step 4: 16 + 8 + 4 + 1 + 0.5 + 0.125 + 0.0625 = [29.6875] 10 Hence, [11101.1011] 2 = [29.6875] 10 Table 1.1

lists the binary numbers from 0000 to 10000. Table 4.2 lists powers of 2 and their decimal equivalents and the number of

K. The abbreviation K stands for 2 10 = 1024. Therefore, 1K = 1024, 2K = 2048, 3K = 3072, 4K = 4096, and so on. Many

personal computers have 64K memory this means that computers can store up to 65,536 bytes in the memory section.

Table 4.1 Binary NumbersTable 4.2 Powers of 2 Decimal Binary Powers of 2 Equivalent Abbreviation 0 0 2 0 1 1 01 2 1 2 2 10

2 2 4 3 11 2 3 8 4 100 2 4 16 5 101 2 5 32 6 110 2 6 64 7 111 2 7 128 8 1000 2 8 256 9 1001 2 9 512 10 1010 2 10 1024 1K 11

1011 2 11 2048 2K 12 1100 2 12 4096 4K 13 1101 2 13 8192 8K 14 1110 2 14 16384 16K 15 1111 2 15 32768 32K 16 10000 2 16

65536 64K 4.5.4 Decimal to Binary Conversion There are several methods for converting a decimal number into a binary

number. The first method is to simply subtract values of powers of 2 from the decimal number until nothing remains. The

value of the highest power of 2 is subtracted first, then the second highest and so on.

https://secure.urkund.com/view/158826019-231749-951747#/sources 62/133

Recursion NOTES Self-Instructional Material 185 Example 4.7: Convert the decimal integer 29 to the binary number system.

Solution: First, the value of the highest power of 2 which can be subtracted from 29 is found. This is 2 4 = 16. Then, 29 – 16

= 13. If the value of the highest power of 2 which can be subtracted from 13 is 2 3 , then 13 – 2 3 = 13 – 8 = 5. The value of

the highest power of 2 which can be subtracted from 5 is 2 2 . Then 5 – 2 2 = 5 – 4 = 1. The remainder after subtraction is

1 or 2 0 . Therefore, the binary representation for 29 is given by, 29 10 = 2 4 + 2 3 + 2 2 + 2 0 = 16 + 8 + 4 + 0 × 2 + 1 = 1 1

1 0 1 [29] 10 = [11101] 2 Similarly, [25.375] 10 = 16 + 8 + 1 + 0.25 + 0.125 = 2 4 + 2 3 + 0 + 0 + 2 0 + 0 + 2 –2 + 2 –3

[25.375] 10 = [11011.011] 2 This is a laborious method for converting numbers. It is convenient for small numbers and can

be performed mentally, but is seldom used for larger numbers. 4.5.5 Double-Dabble Method A popular method called

double-dabble method, also known as divide-by-two method, is used to convert a large decimal number into its binary

equivalent. In this method, the decimal number is repeatedly divided by 2 and the remainder after each division is used to

indicate the coefficient of the binary number to be formed. Notice that the binary number derived is written from the

bottom up. Example 4.8: Convert 199 10 into its binary equivalent. Solution: 199 ? 2 = 99 + remainder 1 (LSB) 99 ? 2 = 49 +

remainder 1 49 ? 2 = 24 + remainder 1 24 ? 2 = 12 + remainder 0 12 ? 2 = 6 + remainder 0 6 ? 2 = 3 + remainder 0 3 ? 2 = 1

+ remainder 1 1 ? 2 = 0 + remainder 1 (MSB) The binary representation of 199 is, therefore, 11000111. Checking the result

we have, [11000111] 2 = 1 × 2 7 + 1 × 2 6 + 0 × 2 5 + 0 × 2 4 + 0 × 2 3 + 1 × 2 2 + 1 × 2 1 + 1 × 2 0 = 128 + 64 + 0 + 0 + 0

+ 4 + 2 + 1

186 Self-Instructional Material Recursion NOTES ? [11000111] 2 = [199] 10 Notice that the first remainder is the LSB and the

last remainder is the MSB. This method will not work for mixed numbers. 4.5.6 Decimal Fraction to Binary The conversion

of decimal fraction into binary fractions may be accomplished by using several techniques. Again, the most obvious

method is to subtract the highest value of the negative power of 2 from the decimal fraction. Then, the next highest value

of the negative power of 2 is subtracted from the remainder of the first subtraction, and this process is continued until

there is no remainder or to the desired precision. Example 4.9: Convert decimal 0.875 to a binary number. Solution: 0.875 –

1 × 2 –1 = 0.875 – 0.5 = 0.375 0.375 – 1 × 2 –2 = 0.375 – 0.25 = 0.125 0.125 – 1 × 2 –3 = 0.125 – 0.125 = 0 ? [0.875] 10 =

[0.111] 2 A much simpler method of converting longer decimal fractions to binary consists of repeatedly multiplying them

by 2 and recording any carriers in the integer position. Example 4.10: Convert 0.6940 10 to a binary number.

Solution:0.6940 × 2 = 1.3880 = 0.3880 with a carry of 1 0.3880 × 2 = 0.7760 = 0.7760 with a carry of 0 0.7760 × 2 =

1.5520 = 0.5520 with a carry of 1 0.5520 × 2 = 1.1040 = 0.1040 with a carry of 1 0.1040 × 2 = 0.2080 = 0.2080 with a carry

of 0 0.2080 × 2 = 0.4160 = 0.4160 with a carry of 0 0.4160 × 2 = 0.8320 = 0.8320 with a carry of 0 0.8320 × 2 = 1.6640 =

0.6640 with a carry of 1 0.6640 × 2 = 1.3280 = 0.3280 with a carry of 1 We may stop here as the answer would be

approximate. ? [0.6940] 10 = [0.101100011] 2 If more accuracy is needed, continue multiplying by 2 until you have as many

digits as necessary for your application. Example 4.11: Convert 14.625 10 to binary number. Solution: First, the integer part

14 is converted into binary and then, the fractional part 0.625 is converted into binary as follows:

Recursion NOTES Self-Instructional Material 187 Integer part Fractional part 14 ? 2 = 7 + 0 0.625 × 2 = 1.250 with a carry of

1 7 ? 2 = 3 + 1 0.250 × 2 = 0.500 with a carry of 0 3 ??2 = 1 + 1 0.500 × 2 = 1.000 with a carry of 1 1 ??2 = 0 + 1 ? The

binary equivalent is [1110.101] 2 C HECK Y OUR P ROGRESS 7. What is a base two system? 8. Why is a binary number

system used in digital computers? 9. State any one method used for the conversion of a decimal number into a binary

number. 4.6 RECURSION AND RECURRENCE RELATIONS The numbers in the sequence 0, 1, 2, 3, 5, 8, 13, 21,..... in which

each new term is the sum of the previous two terms are called the Fibonacci numbers. If we denote the (n + 1)th Fibonacci

number by f n , we have, f n = f n–1 + f n–2 for n ? 2 and f 0 = 0 and f 1 = 1. This is called a recursive definition in which

each element of the sequence is defined in terms of the previous numbers in the sequence. We can define a function with

the set of non-negative intergers and its domain by, 1. Specifying the value of the function at zero 2. giving a rule for finding

its value at an integer from its values at smaller integers Such a function is called a recursively defined function or such a

definition is called recursive definition. For example, consider the sequence of powers of 3 given by, a n = 3 n for n = 0, 1,

2,..... This sequence can also be defined by giving the first term of the sequence, namely a 0 = 1 and a rule for finding a

term of the sequence from the previous one, namely, a n+1 = 3 a n for n = 0, 1, 2,.... Example 4.12: Find a recursive

definition of binomial coefficients. Solution: Denote the binomial coefficient n k by C (n, k). Then the recursive definition

for C (n, k) where n ? 0, k ? 0 and n ? k is given by, C (n, 0) = 1;

https://secure.urkund.com/view/158826019-231749-951747#/sources 63/133

188 Self-Instructional Material Recursion NOTES C (n, n) = 1; and C (n, k) = C (n – 1, k) + C (n – 1, k – 1) for n < k < 0.

Example 4.13: Suppose that f is recursively defined as follows, f(0) = 2 f(n + 1) = 3 f(n)+2 Find f(1), f(2), f(3) and f(4). Solution:

From the recursive definition, it follows that: f(1) = 3 f(0) + 2 = 3.2 + 2 = 8 f(2) = 3 f(1) + 2 = 3.8 + 2 = 26 f(3) = 3 f(2) + 2 =

3.26 + 2 = 80 f(4) = 3 f(3) + 2 = 3.80 + 2 = 242 Example 4.14: Give a recursive definition of f(n) = n! Solution: Since 0! = 1

and (n + 1)! = (n + 1) n!, the desired rule is, f(0) = 1 f(n + 1) = (n + 1) f(n) Example 4.15: Give a recursive definition of a n

where a is a non-zero number and n is a non-negative integer. Solution: It can be stated as, a 0 = 1; and a n+1 = a.a n for n

? 0. Where a n uniquely defined is for all non-negative integers n. Example 4.16: Give a recursive definition for polynomial

expression. Solution: An expression of the form, f(x) =a 0 x n + a 1 x n–1 + + a n–1 x + a n Where a’s are constants (a 0 ?

0) and n ? 0, is called polynomial in x of degree n. Let S be a set of coefficients. Then, recursive definition for polynomial is,

1. A zeroth degree (constant) polynomial is an element of S. 2. For n ? 1, an nth degree polynomial expression is an

expression of the form q(x)x+a, where q(x) is an (n – 1)th degree polynomial and a ? S. Example 4.17: Using recursive

definition for polynomial expression prove that

f(n) = 3 n 3 – 8 n 2 + 2 n + 4 is a third-degree polynomial expression Solution: Given

f(

n) = 3n 3 – 8n 2 + 2 n + 4 = (3n 2 – 8 n + 2) n + 4 = ((3 n – 8) n + 2) n + 4 = (((3) n – 8) n + 2)

n + 4

Recursion NOTES Self-Instructional Material 189 Now, 3 is a zeroth degree polynomial. ? (3) n – 8 is a first degree

polynomial. ? ((3) n – 8) n + 2 is a second degree polynomial ? f(n) = (((3) n – 8) n + 2) n + 4 is a third degree polynomial.

Note: The final expression is, f(n) = (((3) n – 8) n + 2) n + 4 This is called its telescoping form. If you use it to calculate f(6),

you need only three multiplications and three additions or substractions. This is called Horner’s method for evaluating a

polynomial expression. Example 4.18: Write p(x) = x 3 – 6 x 2 + 11 x – 6 in telescoping form. Solution: The telescoping form

is as follows:

p(

x) =

x 3 – 6 x 2 + 11 x – 6 = (((1) x – 6) x + 11) x – 6 Example 4.19: Write g(x) = – x 5 + 3 x 4 + 3 x 3 + 2 x 2 + x

in telescoping form. Solution: The telescoping form is as follows:

g(x) =x 5 + 3 x 4 + 3

x 3 + 2 x 2 + x = (((((– 1) x + 3) x + 3) x + 2) x + 1)

x + 0 4.6.1

Recursion and Iteration There is another way to evaluate a function from its recursive definition. Instead of sucessively

reducing the computation to evaluate the function at small integers, we can start with the basis and successively apply the

recursive definition to find the values of the function at successive larger intergers. Such a procedure is called an iterative

procedure. For Example, to find n! using an iterative procedure, we start with 1, the value of the factorial function at 0, and

multiply it successively by each positive integer less than or equal to n. Note: Often an iterative approach for the evaluation

of a recursively defined sequence requires much less computation than a procedure using recursion. However, is

sometimes preferable to use a recursive procedure even if it is less efficient than the iterative procedure. 4.6.2 Closed Form

Expression Let f(x 1 , x 2 , x n) be an algebraic expression involving variables, x 1 , x 2 , x n which are allowed to take

values from some predetermined set. f is a closed form expression if there exists a number F such that the evaluation of f

with any allowed values x 1 , x 2 , x n will take no more than F operations. For example, (i) A closed form expression for 1

+ 2 + ... + n is, 1 + 2 + ... + n= nn()1 2

190 Self-Instructional Material Recursion NOTES (ii) A closed form expression for 1 2 + 2 2 + ... + n 2 is, 1 2 + 2 2 + ... + n 2

= nn n ()() ? ? 12 1 6 4.6.3 Sequence of Integers A sequence of integers is a function from the natural numbers into

integers. That is, if f is a sequence of integers, then f: N ? Z is a function. We use the notation f n or f(n) to denote the image

of any natural number n. We call f n and nth term of the sequence. Note: A sequence is often called a discrete function.

Example 4.20: Prove by induction that f(k) = 3 k + 2, k ? 0 is a closed form expression of the sequence f defined recursively

by f(0) = 2 and f(k) = f(k – 1) + 3 for k ? 1. Solution: 1. Basis of induction: If k = 0, then f(0). But f(0) = 3(0) + 2 = 2 as defined.

2. Induction step: Now assume that for some k < 0, f(k) = 3k + 2 …(1) We have, f(k + 1) = f(k) + 3 by the recursive definition

= 3k + 2 + 3 = 3 k + 3 + 2 = 3(k + 1) + 2 Therefore, by the principle of mathematical induction the result follows. Hence, f(k)

= 3 k + 2, k ? 0 is a closed form expression for the sequence f. Example 4.21: Define the sequence of numbers f by f 0 =

100 and f n = 1.08 f n–1 for n ? 1. Prove by induction that f n = 100 (1.08) n , n ? 0 is a closed form of expression for the

sequence f. Solution: 1. Basis of induction: If k = 0, then f 0 = 100 (1.08) 0 = 100 as defined. 2. Induction step: Now assume

that for some k < 0 f k = 100 (1.08) k Then, f (k+1) = (1.08) f k by the recursive definition = (1.08)100 k = 100 (1.08) k+1

Therefore, by the principle of mathematical induction the result follows. Hence, f n = 100 (1.08) n , n ? 0 is closed form

expression for the sequence f.

https://secure.urkund.com/view/158826019-231749-951747#/sources 64/133

Recursion NOTES Self-Instructional Material 191 Notes: 1. The sequence f:N ? Z, defined by f(n) = n 3 – n, is a sequence of

integers. 2. The sequence f:N ? Z, defined by f(0) = 1 and f(n) = f(n – 1) + 2 for n ? 1 is a sequence of integer. 3. The

codomain of a sequence can be any set. We use the notation { f n } to describe the sequence. We describe sequences by

listing the terms of the sequence in the order of increasing subscripts. For example, (i) Consider the sequence f:N ? S

defined by f(n) = f n = 1 1 n . The list of the terms of this sequence f 0 , f 1 , f 2 ,... begins with: 1, 1 2 , 1 3 , 1 4 , (ii)

Consider the sequence f:N ? Z defined by f n = 4 n . The list of the terms of the sequence f 0 , f 1 , f 2 ,... begins with: 1, 4,

16, 64, 4.6.4 Recurrence Relations The expressions for permutations and combinations are one of the most fundamental

tools for counting the elements of finite sets. They often prove to be inadequate and many problems of computer sciences

require a different approach. An important alternative approach uses recurrence relations (often called recurrence

equations or difference equation) to define the terms of a sequence. A formal definition of recurrence relations is difficult

because of the wide variety of forms in which such relations can be written, but the concept is straightforward. You have

already seen an example of a recurrence relation in the definition of the Fibonacci sequence, where for n ? 2, the term f n is

defined by the recurrence relation, f n =f n–1 + f n–2 The salient characteristic of a recurrence relation is the specification

of the term f n as a function of the terms f 0 , f 1 ,, f n–1 . By itself, however, a recurrence relation is not sufficient to

define the terms of a sequence. You must also specify the values of some initial terms of the sequence. Thus, in our

definition of the Fibonacci sequence, we set f 0 = 0 and f 1 = 1. These are called the boundary conditions or initial

conditions of the sequence. Recall that a recursive definition of a sequence specifies one or more initial terms and a rule

for determining subsequent terms from those that precede them. Recursive definitions can be used to solve counting

problems. When they are, the rule for finding terms from those that precede them is called a recurrence relation.

Recurrence relation: A recurrence relation for the sequence { f n } is a formula that expresses f n in terms of one or more of

the previous terms of the sequence,

192 Self-Instructional Material Recursion NOTES namely, f 0 , f 1 , f n–1 , for all integers n with n ? n 0 , when n 0 is a

non-negative integer. A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.

Example 4.22: Determine whether the sequence { f n } is a solution of the recurrence relation, f

n = 2f n–1 – f n–2 for n = 2, 3, 4, Where f n = 3 n for every non-negative integer n. Solution: Suppose that, f n = 3 n for

every non-negative integer n. Then for n ? 2, f

n = 2f n–1 – f n–2 = 2[3(n – 1)] – 3(n – 2) since f n = 3 n = 6n – 6 – 3 n + 6 = 3 n Therefore, { f n }, where f n = 3 n

is a solution of the

recurrence relation. Example 4.23: Show that the sequence { f n } is a solution

of the recurrence relation

f

n = – 3 f n–1 + 4 f n–2 if f n = 2(–4) n + 3. Solution: Suppose that, f n = 2(– 4) n + 3. Then f n = –3f n–1 + 4

f n–2 = – 3 [2(– 4) n–1 + 3] + 4 [2(– 4) n–2 + 3] = – 6(– 4) n–1 – 9 + 8(– 4) n–2 + 12 = – 6(– 4) n–1 – 2(– 4) n–1 + 3 = –

8(– 4) n–1 + 3 = 2(– 4) n + 3 Therefore { f n } where f n = 2(– 4) n + 3

is

a solution of the recurrence relation.

Now you will study about a class of recurrence relations known as linear recurrence relations with constant coefficients.

Linear recurrence relation:

A recurrence relation of the form a 0 f n + a 1 f n–1 + a 2 f n–2 + + a k f n–k =

f(n) ...(4.1) Where a 1 , a 2 and so on are constants, is called a linear recurrence relation with constant coefficients. The

recurrence relation as shown in Equation 4.1 is known as a kth-order recurrence relation, provided that both a 0 and a k are

non zero. Note:The phrase ‘ kth-order’ means that each term in the sequence depends only on the previous k terms. For

example, consider the Fibonacci

sequence defined by the recurrence relation f n = f n–1 + f n–2 , n ? 2 and the initial condition f 0 = 0 and f 1 = 1. The

recurrence relation

is called a second-order relation because f n depends on the two previous terms of f.

Recursion NOTES Self-Instructional Material 193 For example, consider the recurrence relation f(k) – 5 f(k – 1) + 6 f(k – 2) =

4 k + 10 defined for k ? 2, together with the initial condition f(0) = 7 3 and f(1) = 5. Clearly, , it is a second-order linear

recurrence relation. Homogeneous recurrence: A kth-order linear relation is a homogeneous recurrence relation if f(n) = 0

for all n. Otherwise, it is called non-homogeneous. For example, consider the recurrence relation c(k) – 5 c (k – 1) + 8 c (k

– 2) = 0 together with the initial condition c(0) = 5 and c(1) = 2. It is a second-order homogeneous recurrence relation.

Example 4.24: Which of the recurrence relations of the following are homogeneous and which are non-homogeneous? (i)f

n = nf n–2 (ii)a n = a n–1 + a n–3 (iii)b n = b n–1 + 2 (iv)s (n – 2) + s (n – 4) Solution: The relation f n = nf n–2 , a n = a n–

1 + a n–3 , s(n) = s(n – 2) + s (n – 4)

https://secure.urkund.com/view/158826019-231749-951747#/sources 65/133

are all homogeneous and the relation b n = b n–1 + 2 is non-homogeneous. 4.6.5 Linear Homogenous Recurrence

Relations (LHRR) Before writing an algorithm for solving a recurrence relations, let us examine a few recurrence relations

that arise from certain closed form expressions. The procedure is illustrated by the following examples. Example 4.25: Form

the recurrence relation given f

n = 3.5 n , n ? 0. Solution: If, n?1, Thenf n = 3.5 n = 3.5.5 n–1 = 5.3.5 n–1 = 5 f n–1 So, the recurrence relation is f n – 5 f n–

1 = 0 with f 0 = 3.

Example 4.26: Find the recurrence relation which satisfies that y

n = A(3) n + B(– 2) n . Solution: Given,y n = A(3) n + B(– 2) n Therefore, y

n+1 = A(3) n+1 + B (– 2) n+1 = 3 A(3) n – 2 B(– 2) n and y n+2 = A(3) n+2 + B (– 2) n+2 = 9 A(3) n + 4

B(– 2) n

Eliminating A

and B from these equations, we get y y y n n n 1 1 3 9 4 0 1 2 ? ? ? –2 Or y n+2 – y n+1 – 6 y n = 0, which is the required

recurrence relation.

194 Self-Instructional Material Recursion NOTES

Example 4.27: Find the recurrence relation which satisfies that y n = A(3) n + B(– 4) n Solution: Given,y n+1 = A(3) n + B(–

4) n Therefore, y n+1 = 3A (3) n – 4 B(– 4) n and y n+2 = 9 A(3) n + 16 B (– 4) n Eliminating A and B from these equation,

we get y y y n n n 1 1 3 9 16 0 1 2 ? ? ? –4 Or y n+2 + y n+1 – 12 y n = 0, which is the required recurrence relation. Example

4.28: Find the recurrence relation which satisfies that y

n = (A + Bn)4 n Solution: Given,y n = (A + Bn) 4 n =A4 n +

nB4

n Therefore, y n+1 = 4A4 n + 4 (n + 1) B4 n and y n+2 = 16A4 n + 16 (n + 2) B4 n

Eliminating A and B from these equation, we get y n y n y n n n n 1 4 4 (1) 16 16 (2) ? ? ? ? 1 2 = 0 Or y n+2 – 8 y n+1 = 0,

which is the required

recurrence relation. 4.6.6 Solving Linear Homogeneous Recurrence Relations Consider a linear homogeneous recurrence

relations of degree k with constant coefficients. f n =a 1 f n–1 + a 2 f n–2 + ... + a k f n–k Where a 1 , a 2 ,, a k are real

numbers and a k ? 0. The basic approach for solving linear homogeneous recurrence relations is to look for solutions of the

form f n = r n , where r is a constant. Note that f n = r n is the solution of the recurrence relation f n = a 1 f n–1 + a 2 f n–2

+ + a k f n–k if and only if, r n = C 1 r n–1 + C 2 r n–2 + ... + C k r n–k When both sides of this equation are divided by r

n–k and the right-hand side is substracted from the left, we obtain: r k – C 1 r k–1 – C 2 r k–2 – – C k–1 T – C k = 0

Consequently, the sequence { f n } with f n = r n is the solution if and only if r is a solution of this last equation.

Recursion NOTES Self-Instructional Material 195 Characteristic equation: The characteristic equation of the homogeneous

kth order linear relation, f n + a 1 f n–1 + a 2 f n–2 + ... + a k f n–k = 0 This is the kth degree polynomial equation r k + C 1 r

k–1 + C 2 r k–2 + ... + C k–1 r + C k = 0 The solutions of this equation are called the characteristic roots of the recurrence

relation. Example 4.29: What is the characteristic equation of, Q(k) + 2 Q(k – 1) – 3 Q(k – 2) – 6 Q(k – 4) = 0 Solution: The

characteristic equation of the given equation Q(k) + 2 Q(k – 1) – 3 Q(k – 2) – 6 Q(k – 4) = 0 is r 4 + 2 r 3 – 3 r 2 – 6 = 0.

Note that the absence of a Q(k – 3) term means that there is no r 4–3 = r term in the characteristic equation. Example

4.30: What is the characteristic equation of T(k) – 7 T(k – 2) + 6 T(k – 3) = 0? Solution: The characteristic equation is r 3 – 7

r + 6 = 0 and 1, 2 and – 3 are the characteristic roots. Algorithm for solving kth-order homogeneous linear recurrence

relation Step 1: If f n + a 1 f n–1 + a 2 f n–2 + ... + a k f n–k = 0 is a given recurrence relation, then write its characteristic

equation. It is, r k + C 1 r k–1 + C 2 r k–2 + ... + C k–1 r + C k = 0. Step 2: Find all the characteristic roots of this equation.

Step 3: Case (i) If there are k distinct roots, say c 1 , c 2 , ... c k , then the general solution of the recurrence relation is, f n =

A 1 c 1 k + A 2 c 2 k + ... + A k c k k Case (ii) Suppose that c 1 is a root of multiplicity m. Then the corresponding solution is,

f n = (A 1 r m–1 + A 2 r m–2 + ... + A m – 2 r2 + A m–1 T + A m)c T 1 + ... Step 4: Use the boundary conditions to

determine the constants A 1 , A 2 , A k . Example 4.31: Solve the Fibonacci sequence { f n } defined by, f n = f n–1 + f n–2

for n ? 2 with the initial conditions f 0 = 1 and f 1 = 1. Solution: The first step is to form the characteristic equation

corresponding to the given difference equation. In this case it is, r 2 – r – 1 = 0

196 Self-Instructional Material Recursion NOTES Solving, we get c 1 = 1 5 2 and c 2 = 1 5 2 as the characteristic roots. It

follows that the general solution is, f n = A 1 c 1 n + A 2 c 2 n Where A 1 and A 2 are constants. Since f 0 = 1 and f 1 = 1, we

get 0 =A 1 + A 2 and 1 = A 1 c 1 + A 2 c 2 1 =A 1 1 5 2 F H G I K J + A 2 1 5 2 F H G I K J On solving, we get A 1 = 1 5 and A 2

= 1 5 Hence, the solution is, f n = 1 5 1 5 2 1 5 2 F H G I K J F H G I K J L N M M O Q P P n n Example 4.32: If the recurrence

relation is u n+1 – 2 u n = 0, then find the closed form expression (solution) for u n . Solution: The characteristic equation

of the given recurrence relation is r – 2 = 0, i.e., r = 2. Therefore, the general solution is u n = A2 n . Hence, u n = u 0 . 2 n is

the closed form expression, where the value of u 0 is the initial condition. Example 4.33: Find f(n) if f(n) = 7 f(n – 1) – 10 f(n

– 2), given that f(0) = 4 and f(1) = 17. Solution: The characteristic equation of the given recurrence relation is r 2 – 7 r + 10 =

0. Its characteristic roots are r = 2, 5. So, the general solution of the recurrence relation is, f(n) =A 1 (2) n + A 2 (5) n Since,

f(0) = 4, 4 = A 1 + A 2 Again, f(1) = 17 implies 17 = 2 A 1 + 5 A 2 Solving, we get A 1 = 1 and A 2 = 3. Therefore, f(n) = (2) n +

3(5) n

https://secure.urkund.com/view/158826019-231749-951747#/sources 66/133

Recursion NOTES Self-Instructional Material 197 Example 4.34: Find T(k) if T(k) – 7 T(k –2) + 6 T(k – 3) = 0, where T(0) = 8,

T(1) = 6 and T(2) = 22. Solution: The characteristic equation is r 2 – 7 r + 6 = 0 Its roots are 1, 2 and –3. Therefore, the

general solution is T(k) = A 1 (1) k + A 2 (2) k + A 3 (– 3) k . Now, T(0) = 8 ? A 1 + A 2 + A 3 = 8 T(1) = 6 ? A 1 + 2 A 2 – 3 A 3

= 6 T(2) = 22 ? A 1 + 4 A 2 + 9 A 3 = 22 Solving, we get A 1 = 5, A 2 = 2 and A 3 = 1. Hence, T(k) = 5 + 2(2) k + 1 (– 3) k = 5 +

2 k+1 + (– 3) k Example 4.35: Solve f k – 8 f k–1 + 16 f k–2 = 0, where f 2 = 16 and f 3 = 80. Solution: The characteristic

equation is r 2 – 8 r + 16 = 0 (or) (r – 4) 2 = 0 So, r = 4 is a double characteristic root. Therefore, the general solution is f k

= (A 1 + A 2 k) 4 k Now, f 2 = 16 ? (A 1 + 2 A 2) 16 = 16 And, f 3 = 80?? (A 1 + 3 A 2) 64 = 80 Solving, we get A 1 = 1 2 and A

2 = 1 4 Hence, the solution is, f k = 1 2 1 4 F H I K k 4k = (2 + k)4 k–1 Example 4.36: Find a solution to the recurrence

relation C n = – 3 C n–1 – 3C n–2 – C n–3 for n ? 3 with initial conditions C 0 = 1, C 1 = – 2 and C 2 = 1. Solution: The

characteristic equation is r 3 + 3 r 2 + 3 r + 1 = 0 (or) (r + 1) 3 = 0. So r = – 1 is a characteristic root of multiplicity 3.

Therefore, the general solution is, C n = (A 1 + A 2 n + A 3 n 2) (– 1) n Now, C 0 = 1 ? A 1 = 1

198 Self-Instructional Material Recursion NOTES C 1 = 2 ? – (A 1 + A 2 + A 3) = – 2 C 2 = 1?? A 1 + 2 A 2 + 4 A 3 = 1

Solving, we get A 1 = 1, A 2 = 2, A 3 = 1. Hence, the solution is C n = (1 + 2 n – n 2) (– 1) n . 4.6.7 Solving Linear Non-

Homogeneous Recurrence Relations The solution of a linear non-homogeneous recurrence relation

with constant coefficient is the sum of the two parts: the homogeneous solution, which satisfies the recurrence relation

when the right-hand side of the equation is set 1 to 0, and the particular solution, which satisfies the difference equation

with f(n) on the right-hand side.

There is no general procedure for determining the particular solution of a difference equation. However, in simple cases,

this solution can be obtained by the method of inspection. To determine the particular solution, the following rules are

used: Rule 1:When f(n) is of the form of a polynomial of degree m in n, k 0 + k 1 n + k 2 n 2 + ... + k m–1 n m–1 + k m n m

Then the corresponding particular solution will be of the form, Q 0 + Q 1 n + Q 2 n 2 + ... + Q m–1 n m–1 + Q m n m Rule

2:When

f(n) is of the form, (k 0 + k 1 n + k 2 n 2 + ... + k m+1 n m–1 + k m n m)a n Then the corresponding particular solution is of

the form, (Q 0 + Q 1 n + Q 2 n 2 + + Q m–1 n

m–1 + Q m n m)a n If a is not a characteristic root of the recurrence relation. Example 4.37: Solve S(k) – S(k – 1) – 6 S(k –

2) = – 30, where S(0) = 20, S(1) = – 5. Solution: The associated homogeneous relation is S(k) – S(k – 1) – 6 S(k – 2) = 0. The

characteristic equation is r 2 – r – 6 = 0. Its characteristic roots are r = – 2, 3. So, the homogeneous solution is A 1 (– 2) k +

A 2 (3) k . Since the right-hand side of S(k) – S(k – 1) – 6 S(k – 2) = – 30 is a constant, by rule 1, the particular solution will

also be a constant, say Q into (1). Thus, Q – Q – 6Q = – 30 ? – 6 Q = – 30 ??????? Q = 5 Therefore, the general solution is

S(k) = A 1 (– 2) k + A 2 (3) k + 5

Recursion NOTES Self-Instructional Material 199 Using the initial conditions, S(0) = 20, S(1) = – 5 20 = A 1 + A 2 + 5 – 5 = –

2 A 1 + 3 A 2 + 5 This will yield A 1 = 11 and A 2 = 4. Hence, the complete solution is S(k) = 11 (– 2) k + 4(3) k + 5. Rule 3:If a

is a characteristic root of multiplicity r – 1, when f(n) is of the form, (k 0 + k 1 n + k 2 n 2 + ... + k m–1 n m–1 + k m n m)a n

Then the corresponding particular solution is of the form, n r–1 (Q 0 + Q 1 n + Q 2 n 2 + ... + Q m–1 n m–1 + Q m n m)a n

. Note:The general solution of the

recurrence relation is the sum of the homogeneous solution and particular solution. If no initial conditions are given, then

you have obtained the solution. If m initial conditions are given, obtain m linear equations in m unknowns and solve the

system, if possible, to get a complete solution. Example 4.38: Solve the recurrence relation f n – 5 f n–1 + 6 f n–2 = 1. ...(1)

Solution: The associated homogeneous relation is f n – 5 f n–1 + 6 f n–2 = 0. The characteristic equation is r 2 – 5 r + 6 =

0. Its characteristic roots are r = 2, 3 so the homogeneous solution is, A 1 (2) n + A 2 (3) n Since the right-hand side

f(n) = 1 is a constant, by rule 1, the particular solution will also be a constant,

say Q. Substituting Q into Equation (1), we obtain: Q – 5 Q + 6 Q = 1 This implies that Q = 1 2 . Therefore,

the complete solution is, f n = A 1 (2) n + A 2 (3) n + 1 2 . Example 4.39: Find the particular solution of the recurrence

relation, f(n) + 5 f(n – 1) + 6 f(n – 2) = 3 n 2 – 2 n + 1 …(1) Solution:

By rule 1, the particular solution is of the form, Q 0 + Q 1 n + Q 2 n 2 …(2) Substituting Equation (2) into Equation (1), you

obtain: (Q 0 + Q 1 n + Q 2 n 2) + 5 (Q 0 + Q 1 (n – 1) + Q 2 (n – 1) 2) + 6(Q 0 + Q 1 (n – 2) + Q 2 (n – 2) 2) = 3 n 2 – 2 n

+ 1

200 Self-Instructional Material Recursion NOTES Which simplifies to, (12Q 0 – 17 Q 1 + 29 Q 2) + (12 Q 1 – 34 Q 2)n +

12Q 2 n 2 = 3 n 2 – 2 n + 1 (3) Comparing the two sides of Equation (3), you obtain, 12Q 2 = 3; 12 Q 1 – 34 Q 2 = – 2; 12 Q

0 – 17 Q 1 + 29 Q 2 = 1 Which yields Q 2 = 1 4 , Q 1 = 13 24 , Q 0 = 71 288 . Therefore, the particular solution is 71 288 + 13

24 n + 1 4 n 2 . Example 4.40: Solve a r + 5 a r–1 = 9 with initial condition a 0 = 6. Solution: The associated homogeneous

recurrence relation is a r + 5 a r–1 = 0. The characteristic equation is r + 5 = 0. Therefore, r = – 5. So, the homogeneous

solution is A 1 (– 5) r . Since the right-hand side of the given relation is a constant,

the particular solution will also be a constant Q. Substituting in the recurrence relation,

we get: Q + 5 Q = 9 So, Q = 3 2 . Therefore, the general solution is a r = A 1 (– 5) r + 3 2 . Using the initial condition a 0 = 6,

we get 6 = A 1 + 3 2 ? A 1 = 9 2 Hence, the complete solution is, a r = 9 2 (– 5) r + 3 2 Example 4.41: Solve the recurrence

relation f(n) – 7 f(n – 1) + 10 f(n – 2) = 6 + 8n with f(0) = 1 and f(1) = 2. …(1) Solution:

https://secure.urkund.com/view/158826019-231749-951747#/sources 67/133

The homogeneous solution is A 1 (2) n + A (2) n + A 2 (5) n . By rule 1, the particular solution is of the form Q 0 + Q 1 n .

Substituting in Equation (1), we get : (

Q 0 + Q 1 n) – 7(Q 0 + Q 1 (n – 1)) + 10(Q 0 + Q 1 (n – 2)) = 6 + 8 n Comparing the two sides, you obtain 4Q 0 – 13 Q 1

= 6 and 4 Q 1 = 8 Which yields, Q 0 = 8, Q 1 = 2. Therefore, the particular solution is 8 + 2 n and the general solution is, f(n)

= A 1 (2) n + A 2 (5) n + 8 + 2 n Now the initial conditions, f(0) = 1 ? A 1 + A 2 + 8 = 1

Recursion NOTES Self-Instructional Material 201 and f(1) = 2 ? 2A 1 + 5 A 2 + 10 = 2 Solving, we get A 1 = – 9 and A 2 = 2.

Hence, the complete solution is, f(

n) = – 9(2) n + 2(5) n + 8 + 2 n Example 4.42: Find the particular solution of the recurrence relation a n + 5 a n–1 + 6 a n–2

= 42(4) n . …(1) Solution:

Now r 2 + r + 6 = 0, r = – 2, – 3 are characteristic roots. Since 4 is not a characteristic root, by rule 2, you can assume that

the general form of the particular solution is Q (4) n . Substituting in Equation (1), you will obtain Q.(4) n + 5 Q.(4) n–1 + 6

Q.(4) n–2 = 42 (4) n ? Q.4 n–2 [16 + 20 + 6] = 42 (4) n ? Q.4

n–2 (42) = 42 (4) n ? Q = 4 2 = 16 Therefore, the particular solution is 16 (4) n = 4 n+2 Example 4.43: Find the particular

solution of the recurrence relation, f n + f n–1 = 3 n2 n . Solution: The

characteristic equation is r + 1 = 0. Therefore, r = –1 is a characteristic root. Since 2 is not a characteristic root, by rule 2,

the general form of the particular solution is (Q 0 + Q 1 n)2 n . Substituting in Equation (1), we obtain: (Q 0 +

Q 1

n)2 n + (Q 0 + Q 1 (

n –1))2 n – 1 = 3 n2 n Which simplifies to, Q 0 2

n + Q 1 n2 n + 1 2 Q 0 2 n + 1 2 Q 1 n2 n – 1 2 Q 1 n2 n = 3 n2 n ? (3 2 Q 0 – 1 2 Q 1)2 n + 3 2 Q 1 n2 n = 3n2 n

Comparing the

two sides, we obtain: 3 2 Q 0 – 1 2 Q 1 = 0 3 2 Q 1 = 3 Thus, Q 0 = 3 2 and Q 1 = 2 and the particular solution is (3 2 + 2

n)2

n . Example 4.44: Find the particular solution of the recurrence relation f(n) – 2 f(n – 1) = 3.2 n Solution: The characteristic

equation is r – 2 = 0. Since, r = 2 is the charactertistic root of multiplicity 1, by rule 3, the general form of the particular

solution is Qn2 n . Substituting in Equation (1), you will obtain:

202 Self-Instructional Material Recursion NOTES Qn2 n – 2 Q.(n – 1)2 n – 1 = 3.2 n ? Q.2 n = 3.2 n ? Q = 3 Thus, the

particular solution is 3 n2 n . Example 4.45: Find the general solution of

f(

n) – 3 f(n – 1) – 4 f(n – 2) = 4 n …(1) Solution: The associated homogeneous relation is, f(n) – 3 f(n – 1) – 4 f(n – 2) = 0 Its

characteristic equation is r 2 – 3 r – 4 = 0

Solving, we get r = – 1, 4 as characteristic roots. Therefore, the homogeneous solution is A 1 (– 1) n + A 2 (4) n . Since, 4 is

a charactetistic root, by rule 3, we assume that the general form of

the particular solution is Qn4 n . Substituting in Equation (1), we get: Qn4

n – 3 Q(n – 1)4 n – 1 – 4 Q(n – 2)4 n – 2 = 4 n ? Qn4 n – 3 Qn4 n – 1 + 3

Q4 n – 1 – 4 Qn4 n – 2 + 8 Q4 n – 2 = 4 n ? (16 Qn – 12 Qn + 12 Q – 4 Qn + 8 Q)4 n – 2 = (16)4 n – 2 ????? 20

Q = 16 ? Q = 4 5

Therefore, the particular solution is 4 5 n4 n . Hence, the general solution of the recurrence relation of, f(n) = A 1 (– 1) n + A

2 (4) n + 4 5 n4 n

Note:What if the characteristic equation gives rise to complex roots? Here, the methods are still valid, but the method for

expressing the solutions of the recurrence relations is different. Since an understanding of these representations require

some background in complex numbers, it is suggested that an interested reader refer to a more advanced treatement of

recurrence relations. 4.6.8 Linear Homogeneous Recurrence Relations with Constant Coefficient (LHRRWCC) We know

that a recurrence relation is an equation defining a sequence recursively in which each term of the sequence is defined as a

function of the preceding terms. A linear homogeneous

recurrence relation of k-order with constant coefficients is a recurrence relation of the form, a n = c 1 a n-1 + c 2 a n-2 + …

+ c k a n-k Where c 1 ,

c 2 ,…, c k are real numbers and c k ? 0

Recursion NOTES Self-Instructional Material 203 ?The equation is linear since RHS consists of the sum of the previous

terms, each multiplied by a function of n. ?The equation is homogeneous since there is no term that is not a multiple of a j

s. ?The equation is order k as a n is expressed in terms of previous k terms in the sequence. ?The equation has constant

coefficients c 1 , c 2 ,…, c k . ?The relation is recurrence of kth order and has k initial conditions such as a 0 = c 0 , a 1 = c 1 ,

… a k–1 = c k–1 Thus, the above relation is a linear homogeneous recurrence relation of order k with constant coefficient.

The following is an example on the order of the recurrence relation: ?P n = 2.5 P n-1 Order one ?f n = f

n-1 + f n-2 Order two ?a n = a n-5 Order five ?a n = 2 a n-1 + 3a n-2 + 5 a n-6

https://secure.urkund.com/view/158826019-231749-951747#/sources 68/133

Order six Note : Terms in a recurrence relation is written either by subscript notation or functional notation. For example, f

n = f n–1 + f n–2 is also written as f(n) = f(n-1) + f(n-2). Theorem 4.1: If ? and ? are two distinct (real or complex) solutions

of the equation x 2 – ax – b = 0, where a, b ? R and b ? 0, then every relation of LHRRWCC a n = a·a n–1 + b·a n–2 where a

0 = C 0 and a 1 = C 1 is of the form a n = A? n + B? n for some constant A and B. Proof: This theorem will be proved in two

parts: (i) First it will be proved that a n = A? n + B? n is a solution of recurrence relation for constants A and B. From initial

conditions, given values of A and B is determined. Since ? and ? are roots of the equation x 2 – ax – b = 0, a 2 = aa + b and

? 2 = a? + b. Now, it will be shown that a n = A? n + B? n

is the solution of the recurrence relation,

a n =

35% MATCHING BLOCK 105/127

a·a n-1 + b·a n-2 . a·a n-1 + b·a n-2 =a(A? n-1 + B? n-1) + b(A? n-2 + B? n-2) =A? n-2 (a? + b) + B? n-2 (a? + b) =A? n-2

? 2 + B? n-2 ? 2 =A? n + B? n i =a

n

204

Self-Instructional Material Recursion NOTES This proves that a n = A? n + B? n is a solution of recurrence relation, a n = a·a

n–1 + b·a n–2

If a n = A? n +

B? n is a solution of the recurrence relation, then values of A and B should be calculated. Initial conditions are used to

evaluate these two. Initial given conditions are: a 0 = C 0 and a 1 = C 1 Using this, you get the following two equations. C 0

= A + B and C 1 = A? + B?. The values of A and B are as: A = (C 1 ? C 0 ?)/(? ? ?) and B = (C 0 ? ? C 1)/(? ? ?) and ? ? . After

these values are determined, a n = A? n + B? n is the unique solution. However, this formula to determine A and B can not

be applied when ?????????? = ?. Solution is looked for the form a n = r n , where r is constant. Here, a n = r n is a solution

of

recurrence relation given by, a

n = c 1 a n-1 + c 2 a n-2 +…+ c k a n-k

iff r n = c 1 r n – 1 + c 2 r n – 2 + c 3 r n – 3 +….+ c

k r n – k Dividing both sides by r n – k and bringing RHS to the left, a characteristic equation is obtained which is shown as

follows:

r k ? c 1 r k – 1 ? c 2 r k – 2 ? c 3 r k – 3 ? …. ? c k r k – k ? r k ? c 1 r k – 1 ? c 2 r k – 2 ? c 3 r k – 3 ? …. ?

c k r By solving this equation, you get the characteristics roots. Example 4.46: Solve recurrence relation a n = 5a n–1 – 6 a

n–2 where a 0 = 4 and a 1 = 7. Solution: To solve this problem, we follow the given steps: To get general solution of the

recurrence relation, find the characteristic equation which is givn by r 2 – 5 r + 6 = 0. r 2 – 5 r + 6 = (r – 2)(r – 3) = 0 that

leads to characteristic roots as 2 and 3. Hence, general solution is given by a n = A·2 n + B·3 n , where A and B are

constants. These are to be determined from the given initial conditions. Putting n = 0, you get a 0 = A + B = 4 and a 1 = 2A

+ 3B = 7. Solving equations A + B = 4 and 2 A + 3B = 7, you get A = 5, B = ?1. Thus, solution is given as

a

n = 5·2 n ? 3 n Example 4.47: Solve the recurrence relation a n = 6 a n–1 ? 11a n–2 + 6 a n–3 where a 0 = 2, a 1 =5,

and a 2 = 15.

Solution: General solution is obtained for the given recurrence relation by finding the characteristic equation first which is

given by r 3 – 6 r 2 + 11 r – 6 = 0 ? (r – 1) (r – 2)(r – 3) = 0. Thus characteristic roots are given as 1, 2 and 3. /n b ? ? ? ?

https://secure.urkund.com/view/158826019-231749-951747#/sources 69/133

Recursion NOTES Self-Instructional Material 205 General solution is given by : a n = A·1 n + B·2 n + C·3 n . Now evaluate

constants by using initial conditions. Get equations a 0 = A + B + C = 4; a 1 = A + 2B + 3C = 5 and a 2 = A + 4B + 9C = 15.

Solving these three equations you will get values of A B and C as A = 1, B = ?1, C = 2. Thus, the unique solution is: a n = 1 ?

2 n + 2·3 n for n ? 0. Example 4.48: Find f(n) if f(n) = 7 f(n – 1) – 10 f(n – 2), given that f(0) = 4 and f(1) = 17. Solution: The

characteristic equation of the given recurrence relation is r 2 – 7 r + 10 = 0 Its characteristic roots are r = 2, 5. So, the

general solution of the recurrence relation is, f(n) =A 1 (2) n + A 2 (5) n Since, f(0) = 4, A 1 + A 2 = 4 Again, f(1) = 17 implies 2

A 1 + 5 A 2 = 17 Solving these two equations, You will get A 1 =1 and A 2 = 3. Therefore, unique solution is: f (n) = (2) n +

3(5) n Note: If roots of a characteristic equation are equal, i.e., ? = ?, then the general solution is a bit different in form and

this has a form a n = (A 1 + A 2 n) ? n . This is illustrated in the following examples. Example 4.49: Solve f k – 8 f k–1 + 16 f

k–2 = 0, where f 2 = 16 and f 3 = 80. Solution: Characteristic equation is r 2 – 8 r + 16 = 0 ? (r – 4) 2 = 0 So, r = 4 is a

double characteristic root. Therefore, the general solution is f k = (A 1 + A 2 k) 4 k Now, f 2 = 16 ? (A 1 + 2 A 2) 16 = 16 and

f 3 = 80?? (A 1 + 3 A 2) 64 = 80 Solving, you get A 1 = 1/2 and A 2 = 1/4 and hence, unique solution is, fk = (1/2 + k/4) 4 k =

(2 + k)4k–1 Example 4.50: Find a solution to the recurrence relation C n = – 3 C n–1 – 3 C n–2 – C n–3 for n ? 3 with

initial conditions C 0 = 1, C 1 = – 2 and C 2 = 1. Solution: The characteristic equation is r 3 + 3 r 2 + 3 r + 1 = 0 or (r + 1) 3

= 0. So, r = – 1 is a characteristic root of multiplicity 3. Therefore, the general solution is, C n = (A 1 + A 2 n + A 3 n 2) (– 1)

n Now, C 0 = 1 ? A 1 = 1 /n b ? ? ? ?

206 Self-Instructional Material Recursion NOTES C 1 = 2 ? – (A 1 + A 2 + A 3) = – 2 C 2 = 1?? A 1 + 2 A 2 + 4 A 3 = 1

Solving, we get A 1 = 1, A 2 = 2, A 3 = 1. Hence, the solution is, C n = (1 + 2 n – n 2) (– 1) n . 4.6.9 Divide and Conquer

Recurrence Relation (DCRR) There are many recurrence relations that are not linear or are linear with variable coefficients.

Such problems are complex and require some strategy to find a method or design an algorithm to solve such recurrence

relations. This strategy is known as ‘divide and conquer’ strategy. A problem is divided into many smaller problems and such

reduction is done repeatedly to find solutions of smaller problems quickly. This procedure is called divide and conquer.

Note: We will use functional form of notation for writing recurrence relation that describes a function of time- complexity

for an algorithm, and f(n) will be written instead of a n . Let the given problem be the computation of f(n) and strategy is

‘divide and conquer; so it is divided into b number of small sub-problems of the same type. Each problem size can be given

by floor-function n/b ? ? ? ? or ceiling-function /n b ? ? ? ? . In either case, the result is an integer. The basic idea is to know

roughly the time required to compute f(n) using a ‘divide and conquer’ algorithm. The process of solving the smaller

problems may be shown by a function and let this function be h(n). Now, the function f(n) can be written as f(n) = af(n/b) +

h(n) to get an idea of the time that may be required to solve f(n) using such strategy. You will be calculating to get an

approximation about the time needed to compute f(n/b) and time to compute h(n). For this an O notation is used and is

denoted as O(f(n)). It is said that O(f(n)) is the greater of O(f(n/b)) and O(h(n)). If you do not know O(f(n)), then you also do

not know O(f(n/b)); hence you cannot compare O(f(n/b)) and O(h(n)). Thus, you need tools to help, you find the answer.

You may compute f(n) for n = 1 and find f(1) = c and f(n) = af(n/b)+c, n = b k , k ? Z + . The basic idea is find the asymptotic

bound for f(n). Theorem 4.2: Let f be an increasing function that satisfies the rec. rel. f(n) = af(n/b) + c, whenever n is

divisible by b, where a, b ??N, b < 1 and c ??R, c < 0, then f(n) is log () b a O n if a < 1 and O(logn) if a = 1.

Furthermore, when n = b k , k ??N, then f(n) = C 1 log b a n + C 2 , where C 1 = f(1) + c/(a – 1) and C 2 = – c/(a – 1).

Recursion NOTES Self-Instructional Material 207 1. Binary Search Binary Search is an example of ‘divide and conquer’

policy. If a function f(n) denotes numbers of comparisons required for searching an element in the list with, size n then let

us take n as even. In this, the search list is reduced to two lists each of size n/2. Then there are two types of comparisons

needed, one to check that part of the list for use and the other to check whether there is any term remaining in the list. So,

f(n)=f(n/2)+2 for even n. 2. Finding Maximum and Minimum in a List Let { a 1 , a 2 , …, a n } denote a list. For n = 1, there is a

single list a 1 which is both maximum and minimum for n < 1, and f(n) as total numbers of comparisons for finding

maximum and minimum elements in the list of n elements. If n is even, then list is reduced to two lists of equal elements,

otherwise if n is odd, one sub-list will have one element more than the other one. Here also two comparisons are required,

one that makes comparison for maximum and another for minimum of the two sub-lists. Hence, the recurrence relation is

f(n)=2 f(n/2)+2 for even n. 3. Fast Multiplication of Integers For this job, ‘divide and conquer’ strategy is used. Suppose a and

b are 2n-bit integers. You split each into two blocks with each block having n-bits. Integers a and b have binary expansions

of length 2n. Further,

a = (

a 2n–1 a 2n–2 …a 1 a 0) 2 , b = (b 2

n–1 b 2 n–2 …b 1 b 0) 2 a = 2 n A 1 + A 0 , b = 2 n B 1 + B 0 and where A 1 =(a 2n–1 …a n+1 a n) 2 , A 0 =(a n–1 …

a 1

a 0) 2 , B 1 =(b 2n–1 …b n+1 b n) 2 , B 0 =(b n–1 …b 1 b 0) 2 . So, we can write ab = (2 2n + 2 n) A 1 B 1 + 2 n (A 1 – A 0)(B

0 – B 1) + (2 n + 1) A 0 B 0 .

https://secure.urkund.com/view/158826019-231749-951747#/sources 70/133

Thus multiplication of two 2n-bit integers may be carried by use of multiplication of three n-bit integers combined by

some shifts, subtractions and additions. Thus, if f(n) stands for total number of bit operations required to multiply two n-bit

integers, then this can be mathematically denoted as f(2n)=3f(n)+Cn. Here, Cn gives the number of shifts, subtractions and

additions required to carry out multiplication of three n-bit integers which is 3 f(n). 4. Fast Matrix Multiplication Matrix

multiplications between two n ? n matrices need n 3 multiplications and n 2 (n –1) additions and such an operation is O(n 3

). This obviously is high resource consuming operation. Adopting ‘divide and conquer’ strategy, multiplication of two n ? n

matrices can be reduced to 7 multiplication and 15 additions of two half size matrices. This reduction was used by V.

Strassen. If f(n) shows the number of both the operations, multiplications and additions, then f(n)=7f(n/2)+15 /4 for even n.

So, in ‘divide and conquer’ strategy, the recurrence relation of the type f(n)=af(n/b)+g(n) appears mostly. Here, instead of

g(n), h(n) can also be written. To solve this, let us assume that f satisfies the recurrence relation whenever,

n = b k , k?N, where k ?N. Then, f(n) =a f(n/b) + g(n)

208 Self-Instructional Material Recursion NOTES =a 2 f(n/b 2) + ag(n/b) + g(n) =a 3 f(n/b 3) + a 2 g(n/b 2) + ag(n/b) + g(

n) . . =a k f(n/b

k) + –1 0 (/) k j j j a g n b ? ? Since, n = b k , we have f(n) = a k f(1) + –1 0 (/) k j j j a g n b ? ? This equation can be used for

estimating the size of functions satisfying ‘divide and conquer’ recursive relations. Example 4.51: Let f(n)=5f(n/2)+3 and

f(1)=7. Find f(2 k) , k ?N. Also estimate f(n) assuming f as an increasing function. Solution: By applying theorem 4.2 with a =

5, b = 2, c = 3, if n = 2 k then f(n) = 5 k (31/4) ? 3/4. If f is increasing, then by theorem 4.2, f(n) is O(n log5). Example 4.52:

Estimate the number of comparisons by a binary search. Solution: As you know, f(n)=f(n/2)+2 when n is even. If f(n)

denotes the number of comparisons for ascertaining whether an element x exists in a list of size n, then by theorem 4.2

where a = 1, b = 2, c = 2, f(n) is O(log n). Example 4.53: Estimate the number of comparisons required to find maximum and

minimum elements of the list with n elements. Solution: This type of problem has been discussed in earlier examples. Here,

f(n)=2f(n/2)+2 for even n, if f(n) denotes the number of comparisons for finding maximum and minimum on the list.

Applying theorem 4.2 where a = 2, b = 2, c = 2, it is clear that f(n) is O(n log b a) = O(n). Hence, a more general version of

the theorem 4.2 is obtained known as Master Theorem; it is used in complexity analysis of many ‘divide and conquer’

algorithms. Master Theorem Let f be an increasing function that satisfies the recurrence relation f(n) = af (n/b) + cn d ,

whenever n = b k , k ?N, where a, b ?N, b < 1 and c, d?R, c < 0, d is non-negative. Then f(n) is O(n d) if a > b d , O(n d

logn) if a = b d and log () b a O n if a < b d . Example 4.54: Estimate the number of bit operations needed to multiply two

n-bit integers using the fast multiplication algorithm for f(n) = 3 f (n/2) + C n where n is even. Solution: Here, f(n)=3f(n/2)+C

n when n is even and f(n) denotes the number of bit operations required for multiplication of two n-bit integers using the

fast multiplication algorithm. Applying the Master Theorem for a = 3, b = 2, d = 1, it is clear that f(n) is O(n log 2 3) = O(n

1.6). This is a faster method than O(n 2).

Recursion NOTES Self-Instructional Material 209 According to Master Theorem, let there be two constants a and b, where

a ? 1, b < 1, and a function f(n) is defined recursively by f(n) = af(n/b) + h(n). Here n/b is either taken as ‘floor function’ or

‘ceiling function’ giving integral value in either case. Then, f(n) is bounded asymptotically. These may be expresed as

follows: 1. If h(n) ? O(n (log b a)-?) for some ? < 0, then f(n) O(n logba). 2. If h(n) ? O(n (log b a)), then f(n) ?O(n logba ln

n). 3. If h(n) ? O(n (log b a)+?) for some ? < 0, and if a h (n/b) ? c h(n) for some 0 ? c > 1 and for sufficiently large n, f(n)

? O(h(n)). The role played by the term n log ba is important. If you take n = b k , then f(n) = f(b k) = af(b k-1) = a 2 f(b k-2)

= · · · = akf (1). However, a k = a log b n = (b logb a) logb n = b (log b n)(log b a) = n logb a So, it will be f(n) ?O(n log b a)

in the homogeneous case. Thus, the interpretation of this theorem is that if h(n) grows slower than the homogeneous case,

the homogeneous case is dominant and the inhomogeneous f(n) ?O(n logba). If the rate of growth is the same then the

inhomogeneous f(n) ?O(n log ba ln n). Lastly, if h(n) grows faster than the homogeneous case, then f(n) ?O(h(n)). C HECK Y

OUR P ROGRESS 10. What is an iterative procedure used for? 11. When is a linear relation considered to be a homogeneous

recurrence relation? 12. What is the ‘divide and conquer’ strategy? 4.7 RECURSIVE PROCEDURES A recursive procedure is a

unique method of defining functions. In it, the function is applied within its own definition. This term also describes the

process of repetition in a similar way. An example of recursion is seen when reflecting surfaces of two mirrors are placed

parallel to each other. You see the nesting of images and is a form of recursion. Mathematics and computer science do a

lot to define rules and apply these rules in breaking down complex cases into simpler ones. They do it by defining few

simple base cases or methods and build recursions on that. These base cases or methods are kept to minimum, preferably

just one.

https://secure.urkund.com/view/158826019-231749-951747#/sources 71/133

210 Self-Instructional Material Recursion NOTES For example, we take the case of defining ancestors. Base case: Parents

are ancestors. Recursion step: Parents of ancestors are also ancestors. Thus putting this fact in simple words, recursion

defines objects in terms of ‘previously defined’ objects belonging to that class. Such facts are often seen in mathematics.

For example, in a set of natural numbers, 1 is a natural number and each natural number has a successor, which in turn is

also a natural number. Functions, sets, and fractals are examples of mathematical objects defined recursively. A fractal is

based on the property of self similarity. If you take a fragmented geometrical shape such that each fragmented part is a

reduced size copy of the original whole it is known as fractal. Recursion is in use in India since 5th century when the

ancient Indian linguist Pânini used the principle of recursion in framing rules for grammar of Sanskrit language. 4.7.1

Functional Recursion Common examples of functional recursion are Fibonacci number sequence, Ackermann function,

Lucas number sequence, etc. A function that is partly defined in terms of itself is also a recursive function. A familiar

Fibonacci number sequence is given by F(n) = F(n–2) + F(n–1) where n < 2, is an example. To make it useful, few values

are non-recursively defined. In Fibonacci number sequence the initial two values are defined non-recursively. These are

F(0) = 0 and F(1) = 1. Here f(0) is the first term and for this reason the condition n < 2 is given in the definition of Fibonacci

number sequence. Ackermann function is not like Fibonacci sequence. It is always expressed with recursion and it is not

primitive recursive. If P is a set of primitive recursive functions and R is that of general recursive functions, then P is a subset

of R. The Ackermann function, defined recursively for non-negative integers, m and n, are given as, 1 if 0 (,) (–1,1 if and 0 (

–1, (, –1)) if 0and 0 n m A m n A m m n A m A m n m n ? ? ? ? ? ? ? ? ? ? ? ? Now take an example of Lucas number

sequence which is defined as, L 1 = 1, L 2 =3 and L x + 1 = L x + L x –1 for x < 2, where x a positive integer. This is like

Fibonacci number sequence in which initial two values are defined non-recursively. For example, to find the first six terms

of this recursive sequence the follwing method is used. From the definition of Lucas number sequence, L 3 = L 2 + L 1 = 1+

3 = 4, L 4 = L 3 + L 2 = 4 + 3 = 7, L 5 = L 4 + L 3 = 7 + 4 = 11 and L 6 = L 5 + L 4 = 11 + 7 = 18.

Recursion NOTES Self-Instructional Material 211 So the first six terms are 1, 3, 4, 7, 11 and 18. We now give example of

factorial function defined as

f(

n) = n!. This leads to

n ! = n(n – 1)! = n(n – 1)(n – 2)! ? f(n) = n.f (n – 1) = n(n – 1). F(n – 2).

Here, n ? N,

set of

natural numbers. Catalan numbers are another example of recursive functions; it is given as: C 0 = 1, C n + 1 = (4 n + 2) C n

/ (n + 2) Catalan numbers form a sequence of natural numbers that exists in the problems using recursively defined objects

in combinational mathematics. 4.7.2 Recursive Proofs New systems in mathematics or logical constructs are defined as

‘true’ and ‘false’ or ‘all natural numbers’. These are taken as base cases and after this, subsequent computations in the

system are made according to predefined rules. If base cases and rules as predefined are computable, then any formula

can be computed. 4.7.3 The Recursion Theorem This theorem guarantees the existence of recursively defined functions.

Let X be a set whose element is x and a function f: X ? X. The theorem opines the existence of a unique function F : N ? X,

where N stands for the set of natural numbers and zero. The function is stated as, F(0) = x F(n + 1) = f(F(n)) for any natural

number n. Proof of Uniqueness Let there be two functions f and g. Domain of f is N and codomain of g is X such that, f(0) =

x g(0) = x f(n + 1) = F(f(n)) g(n + 1) = F(g(n)), where x is an element of X. It is required to prove that f = g. Equality of two

functions is possible when they have equal domains/ codomains and follow the same curve. Recursively Defined Functions

and Procedures The basic requirement for a function to be recursive is that at least one value ƒ(x) is defined in terms of

another value ƒ(y), when x ? y. In a similar way, if there is a procedure P, it is defined recursively only when the action of

P(x) is defined in terms of another action P(y), provided x ? y.

https://secure.urkund.com/view/158826019-231749-951747#/sources 72/133

212 Self-Instructional Material Recursion NOTES The argument domain is already inductively defined. Steps in defining

recursive functions: 1. A value ƒ(x) or an action P(x) is to be specified for each basis element x of S. 2. Rules for each

inductively defined element x in S is to be specified. Value ƒ(x) or action P(x) is to be defined in terms of previously defined

values. Example 4.55: A function ƒ : N ? N is defined as ƒ(n) = 0 + 3 + 6 + … + 3 n. Develop a recursive definition for this

function. Solution: The set N which is inductively defined should be understood first. This includes 0 too, hence 0 ? N and n

? N ? n + 1 ? N. Now f(0) should be given a value in N and then define ƒ(n + 1) in terms of ƒ(n). As given, set ƒ(0) = 0. Next

a definition for ƒ(n + 1) is obtained. According to definition of f(n), ƒ(n + 1) = (0 + 3 + 6 + … + 3 n) + 3(n + 1) = ƒ(n) + 3(n

+ 1). Thus, a recursive definition has been developed as, ƒ(0) = 0 and ƒ(n + 1) = ƒ(n) + 3(n + 1). This recursive function can

be stated in different ways: • Putting n – 1 in place of n, you get ƒ(0) = 0 and ƒ(n) = ƒ(n – 1) + 3 n (n < 0). • It may be

expressed as a conditional statement. If n = 0, then ƒ(n) = 0 else ƒ(n) = ƒ(n–1) + 3 n. Example 4.56: A function ƒ : N ? N is

defined recursively as ƒ(0) = 0, ƒ(1) = 0 and ƒ(x + 2) = 1 + ƒ(x). This function can be written as a conditional statement. If x

= 0 or x = 1, then f(x) = 0; else 1 + ƒ(x – 2). What does ƒ do? Solution : Following the rule of the function, find few values of

the function for x = 0 to 9. f(0) = 0, f (1) = 0, f (2) = 1, f (3) = 1… and like that f(8) = 4 and f(9) = 4. Now do the mapping (ƒ(0,

1, 2, 3, 4, 5, 6, 7, 8, 9)) = (0, 0, 1, 1, 2, 2, 3, 3, 4, 4) and find ƒ(x) = [x/2]. 4.7.4 Infinite Sequences It is possible to define

recursive functions for infinite sequences. For this, define a value ƒ(x) in terms of x and ƒ(y) for some value y in a

sequence. Example 4.57: An infinite sequence ƒ(x) = (x, x 2 , x 4 , x 8 , …) is to be represented as a recursive function.

Solution: Follow the given definition and develop a solution: The function is defined as, ƒ(

x) = (x, x 2 , x 4 , x 8 , …) = (x :: (x 2 , x 4 , x 8 , …)) = x ::

ƒ(x 2). So the developed definition is, ƒ(x) = x :: ƒ(x 2).

Recursion NOTES Self-Instructional Material 213 Example 4.58: A recursive function is defined as g(x, c) = x c :: g(x, c + 1).

Find the sequence represented by this function. Solution: According to definition, g(x, c) = x c :: g(x, c + 1) = x c :: x c+1 ::

g(x, c + 2) =… = (x c , x c+1 , x c+2 , …). 4.7.5 Recursive Function and Primitive Recursive Function Consider a function, g(x

1 , x 2 , …

x n) and h(x 1 , x 2 , … x n ,y,z) of n and n+2 variables. Now define a function f(x 1 , x 2 , … x n , y) of n+1 variables as f(x 1 , x

2 , … x n , 0) = g(x 1 , x 2 , … x n ,) and f(x 1 , x 2 , … x n , y + 1) = h(x 1 , x 2 , … x n , , y, f(x 1 , x 2 , … x

n , y)); here f is called a recursive function or simply a recursion. A function f is primitive recursive if it can be obtained from

initial functions by a finite number of operations of composition and recursion. C HECK Y OUR P ROGRESS 13. What do

you understand by a recursive procedure? 14. Give some examples of functional recursion. 4.8 SUMMARY In this unit, you

have learned that: ?The Mergesort algorithm works according to

100% MATCHING BLOCK 106/127

a ‘divide and conquer’ strategy in which the sequence is divided into two halves. ?

100% MATCHING BLOCK 107/127

In the merging process, the elements of two arrays are combined, creating a new array. ?

In insertion

83% MATCHING BLOCK 108/127

sorting algorithm, the sorted array is built one entry at a time. ?

100% MATCHING BLOCK 109/127

The ordered sequence of inserted elements is stored at the beginning of the array. ?

Each

100% MATCHING BLOCK 110/127

iteration of the inner loop scans and shifts the entire sorted subsection of the array before the next element is inserted. ?

https://secure.urkund.com/view/158826019-231749-951747#/sources 73/133

Sorting can be classified into two types, viz., internal sorting and external sorting. ?A binary system groups numbers by two

and by powers of two. ?

89% MATCHING BLOCK 111/127

A binary number with 4 bits is called a nibble and a binary number with 8 bits is called a byte. ?

A

87% MATCHING BLOCK 112/127

number system that utilizes ten distinct digits, i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 is known as

a decimal number system. ?A binary number can be converted into decimal number by multiplying the binary 1 or 0 by the

weight corresponding to its position and adding all the values.

214 Self-Instructional Material Recursion NOTES ?The numbers in the sequence 0, 1, 2, 3, 5, 8, 13, 21 … in which each new

term is the sum of the previous two terms are called Fibonacci numbers. ?A recursive relation is an equation defining a

sequence in which each term of the sequence is defined as a function of the preceding terms. ?A kth order linear relation is

a homogeneous recurrence relation if f(n)=0 for all n. ?The general solution of the recurrence relation is the sum of the

homogeneous solution and particular solution. 4.9 KEY TERMS ?Selection sort: It refers to a simple technique of sorting a

list of elements by finding the smallest value in an array. ?Binary number system: It refers to the number system in which

only two digits, viz., 0 and 1, are used. ?Nibble: A binary number with 4 bits is called a nibble. ?Double-dabble method: It

refers to a method that is used to convert a large decimal number into its binary equivalent by repeatedly dividing it by 2. ?

Recursive relation: It is an equation defining a sequence in which each term of the sequence is defined as a function of the

preceding terms. 4.10 ANSWERS TO ‘CHECK YOUR PROGRESS’ 1. The Mergesort

100% MATCHING BLOCK 113/127

algorithm is based on the merging process where all the elements are copied in one array and kept in

a separate new array. 2. Two advantages of insertion sort are as follows: (i) Its implementation is simple. (ii) It can sort a list

even as it receives it. 3. The insert function

100% MATCHING BLOCK 114/127

is designed for inserting a value into a sorted sequence at the beginning of an array. 4.

100% MATCHING BLOCK 115/127

Sorting is a method of arranging keys in a file in the ascending or descending order. 5.

Internal sorting occurs when the records in a file that are stored in the main memory are sorted. 6. Two common sorting

techniques are: (i) Bubble sort (ii) Tree sort

Recursion NOTES Self-Instructional Material 215 7. A base two system is another term for a binary number system. Such a

number system uses two digits, 0 and 1, only. 8. A

93% MATCHING BLOCK 116/127

binary number system is used in digital computers because all electrical and electronic circuits can be made to respond

to the two-state concept. 9.

https://secure.urkund.com/view/158826019-231749-951747#/sources 74/133

One method to convert a decimal number into a binary number is to subtract values of power of 2 from the decimal

number until nothing remains. 10. An iterative procedure is used to evaluate a function from its recursive definition. 11. A k-

th order linear relation is considered to be a homogeneous recurrence relation if f(n)=0 for all n. 12. When a problem is

divided into many smaller problems and such reduction is done repeatedly to find solutions of smaller problems, such a

procedure is called a ‘divide and conquer’ strategy. 13. A recursive procedure is a unique method of defining functions. In it,

the function is applied within its own definition. This term also describes the process of repetition in a similar way. 14.

Common examples of functional recursion are Fibonacci number sequence, Ackermann function, Lucas number

sequence, etc. 4.11 QUESTIONS AND EXERCISES Short-Answer Questions 1. Give an algorithm illustrating the use of

Mergesort mechanism. 2. Write a short note on the Insertion sort algorithm. 3. What are the different types of sorting

algorithms? 4. Differentiate between the binary number system and decimal number system. 5. Write a short note on the

double-dabble method. Long-Answer Questions 1. Write a program illustrating the use of Insertion sort. 2. Explain the

functions of Bubble sort and Selection sort. Write one program each to illustrate their implementation. 3. Explain the

various techniques that are used to convert binary numbers into decimal numbers and vice versa. 4. What do you

understand by recursion and recurrence relations? Give examples to illustrate both the relations.

216 Self-Instructional Material Recursion NOTES 4.12 FURTHER READING Lipschutz, Seymour and Lipson Marc. Schaum’s

Outline of Discrete Mathematics, 3rd edition. New York: McGraw-Hill, 2007. Horowitz, Ellis, Sartaj Sahni and Sanguthevar

Rajasekaran. Fundamentals of Computer Algorithms. Hyderabad: Orient BlackSwan, 2008. Cormen,

Thomas H., Charles E. Leiserson, Ronald L. Rivest and Clifford Stein. Introduction to Algorithms .

The MIT Press, 1990. Brassard, Gilles and Paul Bratley. Fundamentals of Algorithms . New Delhi: Prentice Hall of India, 1995.

Levitin, Anany. Introduction to the Design and Analysis of Algorithms . New Jersey: Pearson, 2006. Baase, Sara and Allen

Van Gelder. Computer Algorithms – Introduction to Design and Analysis . New Jersey: Pearson, 2003. Mott, J.L. Discrete

Mathematics for Computer Scientists , 2nd edition. New Delhi: Prentice-Hall of India Pvt. Ltd., 2007. Liu, C.L. Elements of

Discrete Mathematics . New Delhi: Tata McGraw-Hill Publishing Company, 1977. Rosen, Kenneth. Discrete Mathematics and

Its Applications , 6th edition. New York: McGraw-Hill Higher Education, 2007.

Number Theory NOTES Self-Instructional Material 217 UNIT 5 NUMBER THEORY

Structure 5.0 Introduction 5.1 Unit Objectives 5.2 Number Theory: Basics 5.2.1 Fundamental Theorem of Arithmetic 5.2.2

Prime Numbers 5.2.3 Division Algorithms 5.2.4 Divisibility 5.2.5 Absolute Value 5.2.6 Order and Inequalities 5.3 Greatest

Common Divisor 5.3.1 Linear Diophantine Equation 5.4 Euclidean Algorithm 5.5 Fibonacci Numbers 5.6 Congruences and

Equivalence Relations 5.6.1 Congruences Relations 5.6.2 Equivalence Relations 5.7 Public Key Encryption Schemes 5.7.1

Message Authentication Code 5.7.2 Digital Structure 5.8

89% MATCHING BLOCK 117/127

Summary 5.9 Key Terms 5.10 Answer to ‘Check Your Progress’ 5.11 Questions and Exercises 5.12 Further Reading 5.0

INTRODUCTION

Numbers form the very basis for any type of calculation. There are primarily two types of numbers—prime and composite

numbers. A prime number refer to those numbers which have only 1 and the number itself as its factors and does not

contain any multiple. In this unit, you will learn about the various types of numbers, their properties and their applications. A

common calculation that is used frequently is the finding of the greatest common divisor (GCD) and the Euclid’s algorithm.

You will learn about the application of GCD, least common multiple (LCM), and Euclidean algorithm. Fibonacci numbers

refer to numbers that are a sum of the previous two numbers. Among other things, this unit will talk about Fibonacci

numbers, congruent relations, equivalence relations and also encryption schemes.

218 Self-Instructional Material Number Theory

NOTES 5.1

UNIT OBJECTIVES After going through this unit, you will be able to: ?Understand the

basics of

https://secure.urkund.com/view/158826019-231749-951747#/sources 75/133

the number theory ?Identify the greatest common divisor (GCD), Euclidean algorithm and Fibonacci numbers ?Explain the

concepts of congruence and equivalent relations ?Comprehend the public key encryption schemes and their application

5.2 NUMBER THEORY: BASICS 5.2.1 Fundamental Theorem of Arithmetic Let a, b be two integers such that a = bc, where b

and c are called factors of a and a is called multiple of b and c. If b is a factor of a, this implies that b divides a and it is

written as b | a. It is easy to prove that ± 1 are factors of a and every non-zero integers is a factor of 0. For example, 6 = (–

2) (– 3) ? – 2 and – 3 are factors of 6. Again 7 = 7. 1, so 7 and 1 are factors of 7. An integer n different from ± 1 is called a

prime integer provided its only factors are ± 1 and ± n. Thus, 2, – 3, 7, 11, – 13 are some prime integers, while – 4, 16, 12 are

not prime integers as – 4 = 2 (– 2), 16 = 4 . 4, 12 = 6 . 2 A positive prime integer is called a prime number. Properties of

Prime Numbers (i) If a prime number p divides ab then either p|a or p|b. (ii) If a prime number p does not divide an integer a

then the Highest Comman Factor (HCF) of p and a is 1 (by convention take HCF to be a +ve integer). Fundamental

Theorem of Arithmetic Every integer n < 1 can be factorized into a product of finite numbers of prime numbers. This

expression is unique except for the order in which the prime factors are written. For example, 56 = 2 . 2 . 2 . 7 = 2 3 . 7 72 =

2 . 2 . 2 . 3 . 3 = 2 3 . 3 2

Number Theory NOTES Self-Instructional Material 219 5.2.2 Prime Numbers An integer p < 1 is called a prime number if 1

and p are the only divisors of p. We prove it using Greatest Comnon Divisor (GCD) which is normally represented as g.c.d.

Theorem 5.1: If a prime number p divides ab, then either p divides a or p divides b. Proof: Let ab = pc for some integer c.

Suppose p does not divide a. Then, g.c.d. (a,p) = 1 ? p?ab and g.c.d.(a,p) = 1 ? p?b This result can be generalized in the

following theorem. Theorem 5.2: If p divides a 1 , a 2 , ... , a n , then p divides a i for some i. Proof: This result can be proved

by induction on n. If n = 1, then this result is clearly true. If n = 2, then the result is true. Let the result be true for natural

numbers less than n. Suppose, p?

a 1 ... a n = (a 1 ... a n–1)a n ? p?a 1 ... a n–1 or p?a n

If p divides a 1 , ..., a n–1 , then by induction hypothesis, p divides a i for some i. So, the result is true in this case also. By

induction, result is true for all n < 1. Composite Numbers A composite number is an integer n < 1 such that n is not

prime. It is a positive integer with a positive divisor other than one or itself. For example, the integer 14 is a composite

number as it can be factorized as 2 ? 7. The integers 2 and 3 are not composite numbers because these can only be divided

by one and the number itself. The example of composite numbers are 4, 6, 8, 9, 10, 12, 14, 15, 16 etc. Example 5.1: Prove

that if 2 n – 1 is prime, then n is also prime. Solution: Let 2 n – 1 = p = Prime. Let n is not prime. Then, n = rs, 1 > r, s >

n ? p= 2 n – 1 = 2 rs – 1 = (2 r) s – 1 =x s – 1, x = 2 r < 2 as r < 1 = (x – 1) (x s – 1 + x s – 2 + ... + x + 1)

220 Self-Instructional Material Number Theory NOTES Either, x – 1 = 1 or, x s – 1 + ... + x + 1 = 1 x – 1 = 1 ? x = 2, which is

not true. And x s – 1 + ... + x + 1 = 1 ? x s – 1 + ... + x = 0, which is not true. ? n is prime. Example 5.2: Prove that n 4 + 4 is

composite if

n < 1.

Solution:

n 4 + 4 = (n 2 + 2) 2 – 4n 2 = (n 2 + 2 – 2 n) (n 2 + 2 + 2

n) n < 1 ? n ??2 ? n 2 ??2n? n 2 – 2n ? 0 ? n 2 – 2n + 2 ? 2

Also,n 2 + 2 + 2

n < 1 ? n 4 + 4

is

composite as both n 2 + 2 + 2 n and n 2 + 2 – 2 n >

n 4 + 4. 5.2.3

Division Algorithms In mathematics, the division algorithm is a theorem which expresses the outcome of the usual process

of division of integers. It is a well-defined procedure for achieving a specific task and can be used to find the greatest

common divisor of two integers. The term ‘division algorithm’ is the study of algebra. Specifically, the division algorithm

states that for given

50% MATCHING BLOCK 118/127

two integers a and d with d ? 0, there exist unique integers q and r such that a = qd + r and 0 > r > | d |, where | d |

denotes the absolute value of

d. In such a case, the integer: ?q is called the quotient ?r is called the remainder ?d is called the divisor ?a is called the

dividend The following examples will make the concept clear: ?If a = 9 and d = 4, then q = 2 and r = 1, since 9 = (2)(4) + 1 ?

If a = 9 and d = –4, then q = –2 and r = 1, since 9 = (–2)(–4) + 1 Existence: Consider the set S = { a ? nd : n ? ? } Here, S

contains at least one non-negative integer and the following two cases can be considered: ? If d > 0, then – d < 0, and

by the Archimedean property, there is a non- negative integer n such that (– d)n <– a, i.e., a– dn < 0. ? If d < 0, then

again by the Archimedean property, there is a non- negative integer n such that dn < – a, i.e., a – d(–n) = a + dn <0.

https://secure.urkund.com/view/158826019-231749-951747#/sources 76/133

Number Theory NOTES Self-Instructional Material 221 Each case shows that S contains a non-negative integer. This means

that the well- ordering principle can be applied to deduce that S contains a least non-negative integer r. Let q = (a–r)/d,

then q and r are integers and a = qd + r. It shows that 0 > r > | d|. 5.2.4 Divisibility The divisibility of any number is

determined on the basis whether a given number is evenly divisible by other numbers. There are standard divisibility rules

for testing a number’s factors without resorting to division calculations. Divisibility rules can be created for any base

including decimal numbers. A divisor, in mathematics, is an integer n, also termed as factor of n, which evenly divides n

without leaving any remainder. For example, to divide m by n, you can write m/n and read as m divides n for non-zero

integers m and n, iff there exists an integer k such that n = km. The divisors can be both positive and negative. Numbers

which are evenly divisible by 2 without leaving any remainder are called even numbers and numbers not evenly divisible by

2 are called odd numbers. Further, a divisor of n that is not 1, –1, n or – n, which are basically the trivial divisors , is known

as a non-trivial divisor . Prime numbers do not have non-trivial divisors while the composite numbers have non-trivial

divisors. The term is derived from the arithmetic operation of division. If a/b = c then a is the dividend, b the divisor, and c

the quotient. The following are some elementary rules of divisibility: ?If a | b and a | c, then a | (b + c), in fact, a | (mb + nc)

for all integers m, n. ?According to transitive relation,

if a | b and b | c, then a | c. ?If a | b and b | a, then a = b or a = – b. ?

According to Euclid’s lemma, if a | bc and g.c.d.(a, b) = 1, then a | c. A positive divisor of n which is different from integer n

is termed as proper divisor or aliquot part of n while a number which does not evenly divide n, but leaves a remainder is

termed as aliquant part of n. An integer n < 1, whose only proper divisor is 1, is called a prime number. Mathematically, a

prime number is one which has exactly two factors, i.e., 1 and the number itself. Also, any positive divisor of n is a product

of prime divisors of n raised to some power. Definition. A non-zero integer a is said to divide an integer b if b = ac for some

integer c and is expressed as a?b. The following results can be proved: (i)a?b,b?cthen a?c (ii)a?b,a?cthen a?b + c (iii)a?0,a?a

222 Self-Instructional Material Number Theory NOTES 5.2.5 Absolute Value For any a ??R, |a| is defined as follows: |a |= aif a

? 0 = – aif a > 0 Thus, | – 2 | = 2 , | 0 | = 0, | 5. 7 | = 5. 7 Definition. |a| is called absolute value of a. Note : It follows from

definition that for all x ??R, |x| ? 0. Properties of Absolute Value Function: (1) For all

a ??R, |

a| ? a. Proof: If

a?? 0 then, |

a | =

a. As a?? a, you get |

a| ? a. In case

a > 0 then, a + (– a) > 0 + (– a)?? 0 > – a ? – a < 0 Now – a < 0 and 0 < a ??– a < a But for a > 0, | a| =

–

a.

Hence | a| <

a.

Then, by definition of ‘ ? ‘, | a| ? a. (2) For all a,b ??R, | a b | = | a| |

b| Proof: The following four cases occur: Case I.

26% MATCHING BLOCK 119/127

a ? 0, b ? 0 By definition, | a| = a, | b| = b. Further, a ? 0, b ? 0 imply ab ???? Thus, |ab | = ab = |a | | b | Case II. a ? 0, b ? 0 In

this case | a| = – a and | b| = b. But a > 0, b ? 0 imply ab > 0. So, | a b| = – a b = |a| |

b| Case III. a ? 0, b > 0 This is similar to Case II; There is just an interchange

of

a and b. Case IV.

a > 0,

41% MATCHING BLOCK 120/127

b > 0 Here, |a | = – a, |b | = – b and a b < 0 ? |ab | = ab So, |a b | = (– a) (– b) = |a | |b | (3) For all a, b in R, |a + b | ? |a

| + |b |

Proof:

For all

https://secure.urkund.com/view/158826019-231749-951747#/sources 77/133

36% MATCHING BLOCK 121/127

a, b ??R, (|a | + |b|) 2 = |a | 2 + 2 |a | |b | + |b | 2 = a 2 + 2 |a | |b | + b 2 . Number Theory NOTES Self-Instructional

Material 223 Since, |a | 2 = a 2 and |b | 2 = b 2 = a 2 + 2 |a b| + b 2 ? a 2 + 2 ab + b 2 by Property (1) Thus, (|a | + |b|) 2 ??

(a + b) 2 = |a + b | 2 ? |a | + | b | ?? |a + b | (4) For a,

k ??R, |

a | > k ??– k > a > k Proof: Suppose |a | > k. In case a ? 0, you get a > k. In case, a > 0, | a| = – a ? – a > k

? a < – k ? – k > a Hence, | a| > k implies that – k > a > k. Conversely, let – k > a > k Ifa ? 0 you get | a| =a

> k If a > 0, then | a| = – a. But,– k > a ? k < – a or, – a > k. So, | a| > k 5.2.6 Order and Inequalities In

mathematics, an inequality is a statement that defines the relative size or order of two objects to check whether they are

similar or not. The following statements explain the order and inequality relationship between integers: ?The notation a

> b means that a is less than b. ?The notation a < b means that a is greater than b. ?The notation a ? b means that a is

not equal to b. It does not mean that a is bigger than b or even that they can be compared in size. In all these cases, a is not

equal to b defines that there is inequality in their relation. The following relations are known as strict inequality : ?The

notation a > b means that a is less than or equal to b or in other words a is not greater than b. ?The notation a < b

means that a is greater than or equal to b or in other words a is not smaller than b. When the inequality is same for all the

values of the given variables for which it is defined, then the inequality is termed as an ‘absolute’ or ‘unconditional’

inequality. Similarly, if an inequality holds only for certain values of the variables involved, but is reversed or destroyed for

other values of the variables then it is termed as ‘conditional inequality’.

224 Self-Instructional Material Number Theory NOTES Inequalities are governed by the following properties: Trichotomy :

The trichotomy property states that for any real numbers a and b any one of the following is true: ?a > b ?a = b ?a < b

Transitivity : The transitivity of inequalities states that for any real numbers a, b, c, any one of the following case may be

true: ?If a < b and b < c; then

a < c ?If a > b and b > c; then a > c ?If a < b and b = c; then a < c ?If a > b and b = c; then a > c

Addition and subtraction: The properties which deal with addition and subtraction, state that for any real numbers a, b, c,

any one of the following case may be true: ?

If

a > b, then a + c > b + c and a – c > b – c ?If a < b, then a + c < b +

c and a – c < b – c

This states that the real numbers are an ordered group. Multiplication and division : The properties which deal with

multiplication and division, state that for any real numbers a, b, c any one of the following case may be true: ?If c is positive

and a > b, then ac > bc ?If c is negative and a > b, then ac < bc This is basically applied to an ordered field. The

next step is to extend N so as to include the solution of the equations of the type a + x = b with a, b ??N. The extended

system Z, consists of, ..., – 4, – 3, – 2, – 1, 0, 1, 2, 3, ..., etc. Each member of Z is called an integer . To construct an integer

with the help of natural numbers, remember a simple fact that every integer can be written as m – n for some m, n ??N,

where ‘–’ stands for the usual difference sign. But, as you have not defined this operation for N, hence tactfully avoid it and

proceed as follows: Consider N × N = {(m, n) | m, n ??N}, i.e., the elements of N × N are ordered pairs of natural numbers.

Define a relation ~ on N as under, (m, n) ~ (p, q) if and only if m + q = n + p For example, (1, 5) ~ (3, 7) as 1 + 7 = 5 + 3 = 8

and (4, 4) ~ (2, 2) as 4 + 2 = 2 + 4 = 6

Number Theory NOTES Self-Instructional Material 225 It can be verified that ‘~’ is an equivalence relation on N. By [m, n] it

is meant that all ordered pairs (p, q) such that (m, n) ~ (p, q). This [m, n] will be called an integer . The set of all [m, n], m,

n ??N is denoted by Z. Addition and multiplication on Z are defined as follows: [m, n] + [m 1 , n 1] = [m + m 1 , n + n 1] [m,

n] . [m 1 , n 1] = [mm + nn 1 , mn 1 + m 1 n] It can be verified that these operations are well defined, i.e., if (m, n) ~ (p, q)

and (m 1 , n 1) ~ (p 1 , q 1) Then, [m, n] + [m 1 , n 1] = [p, q] + [p 1 , q 1] and [m, n] [m 1 , n 1] = [p, q] . [p 1 , q 1]

Addition and multiplication are motivated by the following observations: Let z and z 1 be two integers and z = m – n, z 1 =

p – q when m, n, p, q ??N. Then, z + z 1 = (m + p) – (n + q) and zz 1 = mp + nq – (mq + np) For numerical instances of

addition and multiplication, consider integers [3, 5] and [4, 1]. [3, 5] + [4, 1] = [3 + 4, 5 + 1] = [7, 6] ? [3, 5].[4, 1] = [3 . 4 + 5 . 1,

3 . 1 + 5 . 4] = [17, 23] Compare this with the facts that [3, 5] is actually – 2 and [4, 1] is 3 then, – 2 + 3 = 1 Which is same as

7 – 6, whereas (– 2) (3) = – 6 = 17 – 23 The following properties hold for integers: (i) Addition is associative and

commutative. (ii) Multiplication is associative and commutative. (iii) Multiplication is distributive over addition. (iv) The

integer [n, n] is called zero element and is denoted by 0. It can be easily shown that 0 + z = z = z + 0 for all z ??Z. (v) For

each integer z = [m, n], the integer z¢ = [n, m] is called negative of z. It can be that z + z¢ = z¢ + z = 0 Note: By z – z? we

mean z + (– z?) for any z, z???? Z. The integer z = [m, n] is called positive if m < n and is called negative in case n<m.

Let, z, z? ??Z You define z < z??if z = z? + u for some positive integer u. (vi) Given two integers z and z? for which one

and only one of the following holds: Either z < z? or z = z? or z? < z.

https://secure.urkund.com/view/158826019-231749-951747#/sources 78/133

226 Self-Instructional Material Number Theory NOTES Example 5.3: Show that addition on Z is commutative. Solution:

Let,z= [m, n] and z??= [p, q], where m, n, p, q ??N Now z + z?= [m + p, n + q] = [p + m, q + n] = [p, q] + [m, n] = z??+ z

Example 5.4: Prove that multiplication on Z is associative. Solution: Let, z= [m, n], z? = [p, q] and z?? = [r, s] where m, n, p,

q, r, s ??N. (zz?)z?= [mp + nq, mq + np] [r, s] = [(mp + nq)r + (mq + np)s, (mp + nq)s + (mq + np)r] = [mpr + nqr + mqs +

nps, mps + nqs + mqr + npr] ... (1) Further z(z?z??)= [m, n] [pr + qs, pr + qr] = [m(pr + qs) + n(ps + qs), m(ps + qr) + n(pr +

qs)] = [(mpn + mqs + nps +nqr, mps + mqr + npr + nqs] ...(2) Using properties of N, one can easily show that the right sides

of Equations (1) and (2) are same as a consequence. (zz?)z?? = z (z?z??) Example 5.5: Show that for all z ??Z, z. 0 = 0

Solution: Letz= [m, n], 0 = [p, p] z ? 0 = [mp + np, mp + np] = 0 Example 5.6: Prove that if z < z ? then (i) For any z?????

Z, z + z ?? < z ? + z ?? (ii) For any + ve integer k, zk < z ?k Solution: (i) z < z? ? z= z? + u, u is a positive integer. Clearly,

z + z??= z? + u + z?? = z? + z?? + u ? z + z??< z? + z?? (ii) As zk = (z? + u)k = z?k + uk, it is sufficient to prove that

product of two positive integers is a positive integer. Let, u = [m, n] and k = [p, q] Since u is positive, so m < n. In case n

= 1and m < 1, then there exists a natural number t such that m = t*. So (m, n) = (t*, 1) If n ? 1, n < 1 ??n = 1 + k, for

some k ??N. Then, m < n ? m = 1 + k + l for some l ??N. Thus, [m, n] = [1 + k + l, 1 + k] = [1 + l, 1] Since, (1 + k + l) + 1 = (1

+ k) + (1 + l) ? (1 + k + l, 1 + k) ~ (1 + l, 1) This implies that [m, n] = [l*, 1] So, in each case if z = [m, n], then it is positive.

Number Theory NOTES Self-Instructional Material 227 You can write u = [t*, 1] for some t ??N. Similarly, k = [s*, 1] for

some s ??N Now, uk = [t*s* + 1. t* + s*] But, t*s* + 1 = (t + 1) (s + 1) + 1 = (t + 1) + (s + 1) + ts = (t* + s*) + ts and ts ??N

So, t*s* + 1 < (t* + s*) + ts. In other words, uk is + ve. Hence the assertion is follow. Notes: 1. It can be shown that z ??Z

is positive if and only if z < 0 and negative if and only if 0 < z. 2. Let z and z????? Z , then z < z? if and only if z – z?

< 0. 3. By z ?? z? it is shown that either z < z? or z = z?? 4.Z + denotes the set of all positive integers, Z – denotes the

set of all negative, integers. Law of Trichotomy states that Z = Z + ? Z – ? {0} which is a disjoint union. 5. As a convention, 0

is regarded both positive and negative. When we wish to stress upon a non-zero positive integer, then it is called strictly

positive. Similarly, the strictly negative integer is defined. C HECK Y OUR P ROGRESS 1. State the properties of prime

numbers. 2. Define division algorithm. 3. What are even numbers? 4. Define an inequality. 5.3 GREATEST COMMON

DIVISOR The greatest common divisor (g.c.d) is also termed as the greatest common factor (g.c.f.) or highest common

factor (h.c.f.). The g.c.d. of two or more non-zero integers is the largest positive integer that divides a number without

leaving a remainder. A special case in Euclid’s algorithm arises when the remainder is zero. Definition. An integer d < 0 is

called g.c.d. of two integers a, b (non-zero) if, (i)d?a, d?b (ii) If c?a, c?b then d ?c It is written d = g.c.d.(a, b) or simply d = (a,

b).

228 Self-Instructional Material Number Theory NOTES Notes: 1. (

44% MATCHING BLOCK 122/127

a, 0) = ?a?, (0, b) = ?b? Clearly, ?a??a, ?a??0 If c?a, then c??a??(a, 0) = ?a? Similarly (0, b) = ?b? 2. If a?b, then (a, b) = ?a? ?

a??a, and a?b ? ?a??b If c?a, c?b, then c??a? ? (a, b) = ?a? 3.

The g.c.d. of a and b does not depend on signs of

38% MATCHING BLOCK 123/127

a and b. i.e., (a, b) = (– a, b) = (a, – b) = (– a, – b) Let, d = (a, b). Then, d?a, d?b ? d?–a, d ?b c?–a, c?b ? c?a, c?b ? c?d ?

d = (– a, b).

The following theorem will prove the existence and uniqueness of g.c.d. of integers a and b. Theorem 5.3 Let a, b be two

integers. Suppose either a ? 0 or b ? 0. Then for some ??), the greatest common divisor d of a, b such that, d = ax + by for

some integers x, y d is uniquely determined by a and b . Proof: Let S = {au + bv ?u, v are integers and au + bv < 0}. If a <

0, then a = a.1 + b.0 < 0 ? a ? S. If a > 0, then – a = a(–1) + b.0 < 0 ? –a ? S. Similarly, if b < 0 then b ? S and if b >

0 then – b ? S. Since one of a and b is non-zero, either ± a ? S or ± b ? S. In any case S ? ?. By well ordering principle, S has

a least element, say d. Now d ? S ? d = ax + by for some integers x and y. Also, d < 0. Let, a = dq + r, 0 ? r > d Let, r ? 0.

Since r= a – dq = a – (ax + by)q = a(1 – xq) + b(–yq) < 0 ? r ? S But r > d, which contradicts the fact that d is the least

element of S. So, r = 0. Therefore, a = dq ? d?a Similarly, d?b Suppose,c?a, c?b ? c?ax + by = d

https://secure.urkund.com/view/158826019-231749-951747#/sources 79/133

Number Theory NOTES Self-Instructional Material 229 So, d is the greatest common divisor of a and b. If d? is also the

greatest common divisor of a and b, then d??a, d??b, ? d?d?? Similarly, d?a, d?b?? d??d. Since d, d? < 0, d = d?. So, d is

uniquely determined by a and b. Note: x and y in the preceding theorem need not be unique. For, d = ax + by ? d = a(x – b)

+ b(a + y) If x – b = x, a + y = y ? b = 0 = a, which is not true. So either, x – b ? xora + y ? y. Definition: If g.c.d.(a, b) = 1,

then a and b are said to be relatively prime or coprime. Corollary 1. Two integers a, b are relatively prime, if and only if ??

integers x, y are such that ax + by = 1. Proof: Suppose, a, b are relatively prime. Then g.c.d.(a, b) = 1. By the preceding

theorem, ? integers x, y such that ax + by = 1. Conversely , let ax + by = 1 for some integers x, y. Let, d = g.c.d.(a, b). Then,

d|a, d|b ? d|ax, d|by ? d|ax + by = 1 ? d = 1. So, a, b are relatively prime. Corollary 2. If g.c.d.(a, b) = d, then g.c.d. , a b d d =

1. Proof: Given that g.c.d.(a, b) = d ? ? integers x, y such that, d = ax + by ? 1 = a b x y d d ? g.c.d. , a b d d = 1, by Corollary

1. Corollary 3. If a?bc, with g.c.d.(a, b) = 1, then a?c Proof: As g.c.d.(a, b) = 1 ? ??integers x, y such that, ax + by = 1??acx +

bcy = c Now, a?ac, a?bc ? a?acx, a?bcy ??a?acx + bcy = c Corollary 4. If g.c.d.(a, b) = 1 and g.c.d.(a, c) = 1, then g.c.d.(a,

bc) = 1. Proof: Since g.c.d.(a, b) = 1, ??? integers x, y, such that ax + by = 1. Also, g.c.d.(a, c) = 1, ??? integers u, v, such that

au + cv = 1.

230 Self-Instructional Material Number Theory NOTES ? 1 = (ax + by) (au + cv) = a (axu + cxv + byu) + bc (yv) By Corollary

1, g.c.d.(a, bc) = 1. The following lemman defines the practical method of finding the greatest common divisor of two

integers. First, prove the following result: Lemma. If a = bq + r, then g.c.d.(a, b) = g.c.d.(b, r). Proof: Let, g.c.d.(a, b) = d.

Then, d?a, d?b ? d?a, d?bq ? d?a – bq = r. Suppose c?b, c?r. Then, c?bq, c?r ? c?bq + r ? c?a, c?b ? c?d. Thus, d = g.c.d. (b,

r). Let a, b be two integers. Since, g.c.d.(a, b) = g.c.d.(?a???b?), let a ? b < 0. Let, a = bq 1 + r 1 , 0 ? r 1 > b. If r 1 = 0,

then b?a and g.c.d. (a, b) = b. Let r 1 ? 0. Divide b by r 1 to get integers q 2 and r 2 such that, b = r 1 q 2 + r 2 , 0 ? r 2 > r 1

If r 2 = 0, then g.c.d.(b, r 1) = r 1 and so by above lemma, g.c.d.(a, b) =r 1 . If r 2 ? 0, then proceed as above till we get

remainder as zero, Given that, a=q 1 b +

r 1 , 0 > r 1 > b b=q 2 r 1 + r 2 , 0 > r 2 > r 1 r 1 =

q 3 r 2 + r 3 , 0 > r 3 > r 2 r n–2 =q n r n–1 + r n’ 0 > r n > r

n–1 r n–1 =q n+1 r n + 0

By above lemma, g.c.d.(a,b) = g.c.d.(b,r 1) = = g.c.d.(r n’ 0) = r n So, the last remainder n r is g.c.d. of a and b. For

example, to determine g.c.d. (56, 72), divide 72 by 56 to get, 72 = 56 + 16 56 = 16 ? 3 + 8 16 = 8 ? 2 + 0

Number Theory NOTES Self-Instructional Material 231 Since the last non-zero remainder is 8 hence g.c.d.(56, 72) = 8. Also,

8 = 56 – 16 ? 3 = 56 – (72 – 56) ? 3 = 56 ? (4) + 72 (–3) = 56 x + 72 ywhere x = 4, y = –3. Which shows us the way to find x,

y such that, g.c.d. (a, b) = ax + by Theorem 5.4: ?Let k < 0. Then g.c.d.(ka, kb) = k g.c.d.(a, b). Proof: Let, g.c.d.(a, b) = d

Then,d?a, d?b ? kd?ka, kd?kb Also, ? integers x, y such that, d = ax + by ? kd = kax + kby Let, c?ka, c?kb then, c?kax, c?kby ?

c?kax + kby = kd ? g.c.d. (ka, kb) = kd = k g .c.d. (a, b) Note : As k < 0, d < 0 we get ? kd < 0 Corollary: For any

integer k ??0, g.c.d. (ka, kb) = ?k? g.c.d.(a, b). Proof: For k < 0, the result follows from the preceding theorem. Let, k >

0. Then, g.c.d.(ka, kb) = g.c.d.(– ka, – kb) = – k g.c.d.(a, b) by above theorem. = ?k? g.c.d.(a, b) Definition: The least

common multiple (l.c.m.) of two non-zero integers a and b, denoted as l.c.m.(a, b) is the positive integer m such that, (i)a?

m, b?m (ii) If a?c, b?c, with c < 0, then m?c Theorem 5.5: For positive integers a and b, g.c.d.(a, b) ? l.c.m.(a, b) = ab

Proof: Let, d = g.c.d.(a, b) Now, . as ab b ab b a a d d d d ? ? is integer. . Also, . as ab a ab a b b d d d d ? ? is integer. .

232 Self-Instructional Material Number Theory NOTES Let, m = ab d , then a?m and b?m. Suppose now a?c, b?c. Since (a,

b) = d, ? integers x, y such that, d = ax + by. ? () c cd c ax by c c x y m ab ab b a ??Integer ? m?c Thus, m = l.c.m. (a, b), i.e.,

ab d = l.c.m. (a, b) Or, ab = g.c.d. (a, b) ? l.c.m. (a, b). Example 5.7: Let g.c.d. (a, b) = 1. Show that g.c.

d.(

40% MATCHING BLOCK 124/127

a + b, a 2 – ab + b 2) = 1 or 3. Solution: Let, g.c.d.(a + b, a 2 – ab + b 2) = d Then,d?a + b, d?a 2 – ab + b 2 ?

d?(a + b) 2 = a 2 + b 2 + 2ab, d?a 2 – ab + b 2 ? d?3ab Let, g.c.d. (d, a) = e

Then,e?d?

a + b? e?a + b and e?a ? e?(a + b) –

a = b So, e?g.c.d.(a, b) = 1 ? e = 1 ? g.c.d.(d, a) = 1 Similarly, g.c.d.(d, b) = 1 ? d?3 ?

d = 1 or 3. Example 5.8: Let g.c.d.(a, b) = 1.

Show that g.c.d.(a n , b

n) = 1 for every integer n ? 1. Solution: Since, g.c.d. (a, b) = 1, ? integers x, y, such that ax + by = 1. ? (ax + by) (ax + by) = 1

? a 2 x 2 + 2abxy + by 2 = 1 ? a 2 x 2 + b(2axy + y 2) = 1 ? g.c.d.(a 2 , b) = 1 In this way you will get, g.c.d.(a n , b) = 1 or

g.c.d.(b, a n) = 1 Proceeding as above, we get g.c.d.(b n , a n) = 1

https://secure.urkund.com/view/158826019-231749-951747#/sources 80/133

Number Theory NOTES Self-Instructional Material 233 5.3.1 Linear Diophantine Equation Definition. Linear Diophantine

equation is an equation ax + by = c in two unknowns x and y, where a, b, c are given integers and one of a, b is not zero.

The name is due to the mathematician Diophantus. A natural question arises as to when such an equation would have a

solution? The following theorem is helpful in finding the answer. Theorem 5.6: The linear Diophantine equation ax + by = c

has a solution if and only if d ?c, where d = g.c.d. (a, b). If x 0 , y 0 is a particular solution, then the other solutions are given

by, 0 0 , b a x x t y y t d d for varying integer t . Proof: Suppose, ax + by = c has a solution. Let, x = x 0 , y = y 0 be a solution.

Then, ax 0 + by 0 = c. Let, d = g.c.d.(a, b). ? d ?a, d?b ? d?ax 0 , d?by 0 ? d?ax 0 + by 0 = c Conversely, let d?c. Let, c = dk.

Since, d = g.c.d. (a, b), ? integers x 0 , y 0 such that ax 0 + by 0 = d ? a(x 0 k) + b(y 0 k) = dk = c ? ax + by = c has a solution

x = x 0 k, y = y 0 k To prove the second assertion, let x 0 , y 0 be a given solution of, ax + by = c. Let x?, y? be any solution

of ax + by = c ? ax 0 + by 0 = ax? + by? = c ? a(x 0 – x?) = b(y? – y 0) ? 0 () (), o a b x x y y d d where d = g.c.d. (a, b) ? 0 (

) b a x x d d Since, g.c.d. , 1. a b d d 0 0 b b x x x x d d ? 0 b x x t d , where t is an integer. .

234 Self-Instructional Material Number Theory NOTES ? 0 0 () b a b b x x t t y y d d d d ? ? ? ? ? ? ? ? 0 0 a a t y y y y t d d ?

? ? ? ? ? ? It can be easily seen that for all values of 0 0 , , b a t x x t y y t d d is a solution of ax + by = c as, 0 0 b a a x t b y t d

d = 0 0 ax by c ? ? Example 5.9: Determine all the solutions in the integers of the Diophantine equation 56x + 72 y = 40 .

Solution: First find g.c.d.(56, 72). Now, 72 = 56 ? 1 + 16 56 = 3 ? 16 + 8 16 = 2 ? 8 Hence, g.c.d.(56, 72) = 8 8 = 56 – 3 ? 16 =

56 – 3 ? (72 – 56) = 4 ? 56 – 3 ? 72 ? 40 = 56 ? 20 + 72 ? (–15) ? x= 20, y = – 15, is a solution of 56 x + 72 y = 40 By the

preceding theorem, any other solution is given by 72 56 20 , 15 8 8 t t = (20 + 9 t, – 15 – 7 t) for any integer t. C HECK Y

OUR P ROGRESS 5. What is the greatest common divisor (GCD)? 6. State the linear Diophantine equation. 5.4 EUCLIDEAN

ALGORITHM In number theory, the Euclidean algorithm also termed as Euclid’s algorithm, is a very important algorithm

that is used to determine the greatest common divisor of two elements of any Euclidean domain. It does not need

factoring the two integers and is one of the oldest algorithms known, dating back to the ancient Greeks.

Number Theory NOTES Self-Instructional Material 235 These algorithms are used when division with remainder is possible.

It also includes rings of polynomials over a field and the ring of Gaussian integers for all Euclidean domains. Theorem 5.7:

Euclid’s algorithm Let k < 0 be an integer and j be any integer. Then ? unique integers q and r such that j = kq + r, where 0

? r > k. Proof: Let S = { j – kq?q is an integer, j – kq ? 0}. Then, S ???, if you take q = – ?j?. When, j < 0, then j – kq = j +

kj < 0 ? j – kq ? S and if j > 0, then j – kq= j – kj = j (1 – k)??? 0 ? j – kq ? S If j = 0, then j – kq = j – k.0 = j = 0 ? j – kq ?

S In any case, S ???. By well ordering principle, S has least element, say r ? S. r ? S? r = j – kq for some integer q. ??j = kq + r.

Also, r ? 0 Suppose, r ? k Then, j – kq ? k ? j – k (q + 1) ? 0 ? j – k (q + 1) ? S But, j – k (q + 1) > j – kq as k < 0,

contradicts r = j – kq which is least the element of S. ? 0 ? r > k. Uniqueness : Suppose, j = kq +

r = kq? + r?, 0 ??r,

r? > k. Then, k(q– q?) = r? –r. Suppose, r? < r. Then, r?– r < 0. But k?r?– r ? k ??r?– r. Since, r, r? > k, r?– r > k, a

contradiction. ? r? </ r. Similarly r </ r? ? r =

r? ? kq = kq? ? q = q?. An important application of this result is the basis representation theorem. Theorem 5.8: Basis

Representation Theorem Let b < 0 be an integer and let N < 1 be also any integer . Then N can be expressed as , N = a

m b m + a m–1 b m–1 + ... + a 1 b + a 0 , Where m and a i s are integers such that m < 0 and 0 ? a i > b. Also then,

these a i s are uniquely determined. Here, b is called the base of representation of N.

236 Self-Instructional Material Number Theory NOTES Proof: IfN > b Then, N = 0b m + 0b m–1 +... + 0 b + N is the

representation of N as required. Let N ? b < 0. By Euclid’s algorithm, ? integers q, r such that, N = bq + r, 0 ? r > b ??N

Since, N – r < 0, bq < 0??q < 0 as b < 0. If q > b, then N = bq + r is the required representation of n. If q ? b < 0,

then by Euclid’s algorithm ? integers q 1 , r 1 such that, q = bq 1 + r 1 , 0 ??r 1 > b ? q Since, q – r 1 < 0, bq 1 < 0 ? q 1

< 0 as b < 0 Now,N = bq + r = b(bq 1 + r 1) + r ? N = b 2 q 1 + br 1 + r If q 1 > b, then it is the required representation

of N. In this way after a finite number of steps, you get, N = a m b m +a m–1 b m–1 + ... + a 1 b +a 0 Where a i ?s are

integers such that, 0 ??a i > b for all i = 1,..., m Uniqueness of a i s follows as: Suppose N = c m b m + c m–1 b m–1 + ...

+ c 1 b + c 0 where each c i is an integer such that 0 ? c i > b. You can select the same m in both the representations of

N because if one representation of N has lesser terms then you can always insert zero coefficients and make the number of

terms to be same. ? 0 = (a m – c m)b m + ... + (a 1 – c 1)b +(a 0 – c 0) Let,a i – c i = d i Then,d m b m + ... + d 1 b + d 0

= 0 Show that d i = 0 for all i. Suppose for some i, d i ? 0. Let k be the least subscript such that d k ? 0 Then,d k b k + d k+1

b k+1 + ... + d m b m = 0 ? d k b k = –(d k+1 b k+1 + ... + d m b m) ? d k = –(d k+1 b + d k + 2 b 2 + ... + d m b m – k) ? d

k = –b(d k+1 + d k+2 b ... + d m b m–k–1) ? b?d k ? b??d k ? ? b ? ?d k ? But,a k , c k > b? ?a k – c k ?> b ? ? d k ?>

b

https://secure.urkund.com/view/158826019-231749-951747#/sources 81/133

Number Theory NOTES Self-Instructional Material 237 So, The contradiction is as follows: ? d i = 0 for all i = 1,..., m ? a i = c

i for all i = 1,..., m When the integer N is expressed as follows: N = a m b m + ... + a 1 b + a 0 , 0 ? a i > b, It is represented

as, N = (a m a m–1 ... a 1 a 0)b And say that N is a m a m–1 ... a 0 to the base b. For example, 132 = 1.10 2 +3.10 + 2. Here

base is 10. Then, according the preceding statement 132 = (132) 10 So, numbers that you usually write are to the base 10.

Again, if you want to write 132 to the base 2, then first you write, 132 = 2 7 + 2 2 = 2 7 + 0.2 6 + 0.2 5 + 0.2 4 + 0.2 3 + 1.2 2

+ 0.2 + 0 By basis representation theorem, 132 = (10000100) 2 Example 5.10: If a, b are integers with b ? 0, show that there

exist unique integers q and r satisfying a = bq + r, where – 1 2 ?b?> r?? 1 2 ??b?. Solution: By Euclid’s algorithm, there

exist unique

75% MATCHING BLOCK 125/127

integers q?, r?such that, a = q??b? + r?, where 0 ? r??> ?b? (As ?b?< 0

when b ? 0). Case 1 . 0 > r??? ? 1 2 ?b? Take,r???? r??q???? q (if b < 0), q????? q (if b > 0) Since, – 1 2 ?b?> 0???r? 1

2 ??b?? – 1 2 ?b?> r??? 1 2 ??b? Also,a = q ??? b???r??becomes, a = qb + r if b < 0 And, a = (–q) (– b) + r if b > 0 =

qb + r where, 1 2 ?b?> r??? 1 2 ??b?

238 Self-Instructional Material Number Theory NOTES Case 2. 1 2 ?b?> r????b? Take,r???? r + ?b? q???? q – 1 if b < 0 =

– q – 1 if b > 0 Now, 1 2 ?b?> r????r +??b? ??– 1 2 ?b?> r ? –? 1 2 ?b?> r > 1 2 ?b? Again,a = ?b? q + r ?

becomes, a = b (q – 1) + r + b, when b < 0 = bq + r Also, when b < 0, a = ?b? q + r ? becomes, a = –b (–q –1) + r – b =

bq + r Where, – 1 2 ?b?> r??? 1 2 ?b? 5.5 FIBONACCI NUMBERS In mathematics, the following number sequence is

termed as Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …………………. The first two Fibonacci numbers are 0

and 1, and all other numbers are the sum of the previous two numbers. The Fibonacci number sequence is named after

Leonardo of Pisa, who was famous as Fibonacci. The Fibonacci sequence has its origin in ancient India and was used in the

metrical sciences (prosody). The inspiration came from Sanskrit prosody in which the length of long syllables was 2 and the

short syllables, 1. Any configuration of length n was created by simply adding a short syllable to a design of length n –1 or a

long syllable to a design of length n –2. Hence, the number of designs of length n was the sum of the two previous

numbers in the sequence. The first 21 Fibonacci numbers denoted by F n are represented in Table 5.1, where n = 0, 1, 2,

......., 20:

Number Theory NOTES Self-Instructional Material 239 Table 5.1 First 21 Fibonacci Numbers

F 0 0 F 1 1 F 2 1 F 3 2 F 4 3 F 5 5 F 6 8 F 7 13 F 8 21 F 9 34 F 10 55

F 11 89

F 12 144 F 13 233 F 14 377 F 15 610 F 16 987 F 17 1597 F 18 2584 F 19 4181 F 20 6765

The numbers sequence F n in Fibonacci can also be explained by using the recurrence relation as, F n = F n –1 + F n –2

with seed values F 0 = 0 and F 1 = 1. The Fibonacci recursion expressed as F (n + 2) – F (n + 1) – F (n) = 0 is akin to the

significant equation of the golden ratio form x 2 –x –1 = 0. It is also termed as the generating polynomial of the recursion.

The Fibonacci numbers also form a Lucas sequence U n (1, –1) and are termed as Lucas companions that satisfy the similar

recurrence equation. C HECK Y OUR P ROGRESS 7. What is Euclid’s algorithm? 8. How are the Fibonacci numbers

calculated? 5.6 CONGRUENCES AND EQUIVALENCE RELATIONS 5.6.1 Congruences Relations Let a, b, c (c < 0) be

integers. It is said that a is congruent to b modulo c if c divides a – b and is written as a ? b (mod c).This relation ‘ ?’ on the

set of integers is an equivalence relation.

240 Self-Instructional Material Number Theory NOTES Addition, subtraction and multiplication in congruences behave

naturally.

Let,

a ? b (mod

77% MATCHING BLOCK 126/127

c) a 1? ??b 1 (mod c) ? c?a – b, c?a 1 – b 1 ? c? (a + a 1) – (b + b 1) ? a + a 1 ??b + b 1 (

mod c) Similarly, a –

a 1 ? b –

b 1 (mod c) Also, c?a – b, c?a 1 –

b 1 ? c?

https://secure.urkund.com/view/158826019-231749-951747#/sources 82/133

aa 1 – ba 1 , c?ba 1 – bb 1 ? c?(aa 1 – ba 1) + (ba 1 – bb 1) ? c?aa 1 – bb 1 ? aa 1 ? bb 1 (mod c) However, it is not possible

to achieve the above result in case of division. Indeed 1 1 or a b a b may not even be integers. Again, cancellation in

congruences in general may not hold. i.e.,ad ? bd (mod c) need not essentially imply. a ? b (mod c) For example, 2.2 ??2.1

(mod 2) But, 2 ? ? 1 (mod 2) However, cancellation holds if g.c.d.(d, c) = 1. i.e., if ad ? ? bd (mod c) And, g.c.d.(d, c) = 1

Then,a ? b (mod c) Proof: ad ??bd (mod c) ? c?ad – bd ? c?d (a – b) ? c?a – b as g.c.d.(c, d) = 1 ? a ? b (mod c) Example

5.11: If a ??b (mod n), prove that g.c.d.(a, n) = (b, n). Solution: Let, d = g.c.d.(a, n) Then,d?a, d?n. But, n?a – b ? d?a – b, d?

a ? d?a – (a – b) = b ? d?b, d?n

Number Theory NOTES Self-Instructional Material 241 Let,c?

57% MATCHING BLOCK 127/127

b, c?n? c?b, c?a – b as n?a – b ? c?a – b + b = a ? c?a,

c?

n ? c?d as d = g.c.d.(a, n) ? g.c.d.(b, n) = d

Example 5.12: Establish that if a is an odd integer, then 2 n a ? 1 (mod 2 n +2) for any n ??1. Solution: The result can be

prove by induction on n. Let,n= 1. Then, 2 n a =a 2 And 2 n + 2 = 2 3 = 8 Let,a= 2k + 1 Then, a 2 = 4k 2 + 4k + 1 = 4k (k + 1)

+ 1 ? a 2 – 1 = 4 k (k + 1) = Multiple of 8, as either k is even or k + 1 is even. ? a 2 ??1 (mod 8) So, result is true for n = 1.

Assume that the result is true for n = k. Then,a 2 k ? 1 (mod 2 k + 2) Now, a 2 k + 1 – 1 = (a 2 k) 2 – 1 = (a 2 k – 1) (a 2 k +

1) = (Multiple of 2 k + 2) (a 2 k + 1) by induction hypothesis. But, a = Odd ? a 2 k = Odd ??a 2 k + 1 = Even ? a 2 k + 1 – 1 =

Multiple of 2 k + 3 ? a 2 k + 1 ? 1 (mod 2 k + 3) So, result is true for n = k + 1. By induction, result is true for all n ? 1.

Example 5.13: Show that for any integer a, a 3? ? 0, 1, or 8 (mod 9) Solution: Let, a = 3k + r, 0 ??r > 3 If,r= 0, then a = 3 k

? a 3 = 27 k 3? ??0 (mod 9) If ,r = 1, then a = 3k + 1 ? a 3 = 27 k 3 + 1 + 9 k 2 + 9k

242 Self-Instructional Material Number Theory NOTES ? a 3 ??1 (mod 9) If ,a = 3 k + 2, then a 3 = 27 k 3 + 8 + 27 k 2 + 36 k

2 ? a 3 ? 8 (mod 9) ? a 3? ??0, 1 or 8 (mod 9) Example 5.14: If ca ??cb (mod n), then a ??b mod , n d ? ? ? ? ? ? where d =

g.c.d. (c, n). Solution: Given that, d = g.c.d. (c, n) ? 1 = g.c.d. , c n d d Also,ca ? cb (mod n) ? ca – cb = nk for some integer

k. ? c c a b d d = n k d ? () n c a b d d ? as g.c.d. , n c n a b d d d ? ? ? ? ? ? ? = 1 ? a ? b mod . n d ? ? ? ? ? ? Example 5.15:

Find the remainder obtained by dividing 1! + 2! + 3! + 4! + ... + 100! by 12. Solution: Each number 4! onwards is a multiple

of 12. ??1! + 2! + 3! + 4! + ... + 100! ??1! + 2! + 3! + 0 + ... + 0 (mod 12) ? 1! + 2! + 3! + 4! + ... + 100! ??9 (mod 12) ? 9 is the

required remainder. Example 5.16: Find the remainder when 2 50 is divided by 7. Solution: Now 2 3 ? 1 (mod 7) ? (2 3) 16?

??1 16 ??1 (mod 7) ? 2 48 ??1 (mod 7) ? 2 48 ? 2 2 ? 2 2 (mod 7) ? 2 ?0 ? 4 (mod 7) ? 4 is the remainder.

Number Theory NOTES Self-Instructional Material 243 Example 5.17: What is the remainder when the sum 1 5 + 2 5 + 3 5 +

... + 99 5 + 100 5 is divided by 4? Solution: 1?1 (mod 4) ? 1 5 ? 1 (mod 4) 2 2 ?0 (mod 4) ? 2 5 ? 0 (mod 4) 3 2 ?1 (mod 4) ? 3

5 ? 3 (mod 4) ? 3 5 ?– 1 (mod 4) 4 2 ?0 (mod 4) ? 4 5 ? 0 (mod 4) ? 1 5 + 2 5 + 3 5 + 4 5 ? 1 + 0 – 1 + 0 ? 0 (mod 4) Any

number after these will be of the form 2

k + 1, 2 k + 2, 2 k + 3, 2k + 4, k < 1. Now, (2 k + 1) 2 ?1 (mod 4) ? (2k + 1) 5 ?? 2k + 1 ??1 (mod 4) (2k + 2) 2 ?0 (mod 4) ? (2k

+ 2) 5 ??? 0 (mod 4) (2k + 3) 2 ?1 (mod 4) ? (2k + 3) 5 ? 2k + 3 ? – 1 (mod 4) (2k + 4) 2 ?0 (mod 4) ? (2k + 4) 5 ? 0 (

mod 4) ? 1 5 + 2 5 + 3 5 + 4 5 + ... 99 5 + 100 5 ? 0 (mod 4) So, remainder is 0 when the given number is divided by 4. 5.6.2

Equivalence Relations

A relation R on a set A is called an equivalence relation if

R is reflexive, symmetric and transitive. For example, let N be set of natural numbers. Define R on N as, R = {(x,y) : x + y is

even, x, y? N} Proof: Let, x? N. Now, x + x = 2 x. Clearly 2 x is even. Therefore, R is reflexive. Let x, y ? N and x + y be even.

Clearly y + x is also even and hence, R is symmetric. Now, if x + y is even and y + z is even then prove that x + z is even.

Since, x + y and y + z are even, both (x + y) and (y + z) are divisible by 2. ? (x + y) + (y + z) is also divisible by 2, i.e., x + (y

+ y) + z is divisible by 2. ? (x + z) is divisible by 2. Hence, R is transitive. So, R is an equivalence relation. Note: From the

relation graph or relation matrix the kind of relation can be identified. Example 5.18: The relation R on a set is represented

by, ? ? ? ? ? ? ? ? ? ? ? 1 1 0 1 1 1 0 1 1 R M Is R reflexive, symmetric or antisymmetric?

244 Self-Instructional Material Number Theory NOTES Solution: In the matrix M R , the diagonal elements are 1. Therefore,

R is reflexive. Since, the matrix M R is symmetric hence, the relation R is also symmetric. Example 5.19: The relation R and

R1 on a set is represented by, (i)M R = 1 0 0 0 1 0 0 0 1 (ii)M R1 = ? ? ? ? ? ? ? ? 1 1 1 1 0 1 1 1 1 Are the relations R and R1

reflexive, symmetric, antisymmetric and/or transitive? Solution: (i) Matrix M R is symmetric. Its diagonal entries are 1. Hence,

relation R is symmetric and reflexive. Since R is not antisymmetric, R is transitive. (ii) The relation R1 is not reflexive as all

diagonal entries are not 1. R1 is symmetric [M R1 is symmetric] and R1 is transitive. Example 5.20: Draw the relation graph

for the following relations. (i)R = {(1, 1), (1, 3), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (4, 1)}on the set X = {1, 2, 3, 4}. (ii)R1 = {(1, 1), (1,

2), (1, 3), (2, 2), (2, 3), (3, 3)}on the set Y= {1, 2, 3}. Solution: (i) The relation graph G R of R is drawn as follows. The vertices of

G R are 1, 2, 3 and 4. (ii) The relation graph G R1 of R1 is drawn as:

https://secure.urkund.com/view/158826019-231749-951747#/sources 83/133

Number Theory NOTES Self-Instructional Material 245 Example 5.21: Let R be the relation represented by: ? ? ? ? ? ? ? ? ? ?

? 1 0 1 0 1 1 1 1 0 R M Find the relation matrices representing (i) R –1 (ii) R c (iii) R 2 . Solution: (i) To get the inverse relation

matrix 1 () R M of a relation matrix (M R) just write the transpose of M R . ? 1 0 1 1 1 1 0 1 0 1 R M (ii) To find the

complement relation matrix, replace 0 by 1 and 1 by 0 in the given relation matrix. ? ? ? ? ? ? ? ? ? ? ? ? 0 1 0 1 0 0 0 0 1 c R

M (iii) To find the relation matrix of R 2 when R 2 = R o R . If the relation matrix M R is known, then 2 R R M M ? × M R , i.e.,

the matrix multiplication ? 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 0 1 1 1

1 0 2 R M Example 5.22: Find whether the relations for the directed graphs shown in the following figures are reflexive,

symmetric, antisymmetric and/or transitive. Solution: (i) In G R , there are loops at every vertex of the relation graph and

hence it is reflexive.

246 Self-Instructional Material Number Theory NOTES It is neither symmetric nor antisymmetric since there is an edge

between 1 and 2 but not from 2 to 1. There are edges connecting 2 and 3 in both directions. Moreover, the relation is not

transitive, since there is an edge from 1 to 2 and 2 to 3, but no edge from 1 to 3. (ii) Since loops are not present in G S , this

relation is not reflexive. Further it is symmetric and not antisymmetric. Moreover, the relation is not transitive. 5.7 PUBLIC

KEY ENCRYPTION SCHEMES Public key encryption refers to a sort of cipher architecture recognized as public key

cryptography that uses two keys or a key pair for encrypting and decrypting data. One of the two keys is a public key, which

is used to encrypt a message. When this encrypted message is sent to the recipient, he or she uses his or her private key to

decrypt it. This is the basic theory of public key encryption. Cryptography issues are important in many security services,

such as peer entity authentication, data origin authentication, data confidentiality, data integrity, message and selected

fields as sent by genuine person. SECURE APPLICATIONS CRYPTO MODULES/ALGORITHMS SECURITY MECHANISMS/

PROTOCOLS SECURITY SUPPORT SERVICES SSAPI SSSAPI CAPI Security Service API: Crypto API authentication integrity

confidentiality Non-repudiation Access-control Connection-oriented Store-and-forward HW tokens/boxes SW modules

Security Support Service API: Key management Certificate mgmt. Authentication Key recovery Labelling Audit Figure 5.1

Architecture Cryptography Based Security In Figure 5.1, the cryptography based security provides a layered architecture in

which security service applications program interfaces (APIs), crypto API and security support service API provide secure

applications. These services provide cryptographic modules and algorithms. The security service API provides

authentication, integrity, confidentiality, non-repudiation, access control, connection-

Number Theory NOTES Self-Instructional Material 247 oriented method and ‘store and forward’ method. The crypto API

provides HW tokens and SW modules. HW tokens are hardware cryptographic services, for example, accelerator boards

and SW modules are kernel modules providing cryptographic services, such as implementation of cryptographic algorithm.

The security support service API provides certificate management authentication, key recovery, labelling and auditing. The

prime aim of this hierarchy level is to provide the following mechanisms: ?This level promotes the development of security

services and cryptographic API. ?This level also identifies the area of security support service APIs along with certificate

management, key management and authentication APIs. ?This level demonstrates the uses of cryptographic APIs products

and services. ?This level identifies the steps of demonstrations and experiments in the field of crypto services. Table 5.2

shows the relationship between security services and security mechanisms: Table 5.2 Relationship between Security

Mechanism and Security Services Service Encipherment Digital Signature Access Control Data Integrity Authentication

Exchange Traffic Padding Routing Control Notarization Peer entity authentication ?? ? ? Data origin authentication ? ?

Access control ? Data integrity ? ? ? Traffic flow confidentiality ? ? ? Nonrepudiation ? ? ? Availability ? ? 5.7.1 Message

Authentication Code Message Authentication Code (MAC) follows the algorithm given as follows: H a s h (M A C _ w r i t e

_ s e c r e t | | p a d _ 2 | | hash(MAC_write_secret||pad_1||seq_num||SSLCompressed.type|

|SSLCompressed.length||SSLCompressed.fragment)) This code is written and computed over compressed data. A shared

secret key is used for this algorithm. Table 5.3 shows the keywords used in this code:

248 Self-Instructional Material Number Theory NOTES Table 5.3 Keywords Used in Crypto Algorithm and Their Functions

Keywords Function || Concatenation operator. MAC_write_secret Shared secret key. hash Cryptograph hash algorithm.

pad_1 By 0 ?36 (binary value: 0011 0110) repeated 48 times (384 bits) for MD5 and 40 times (320 bits) for SHA-1. pad_2 The

byte 0 ?5C (binary value: 0101 1100) repeated 48 times and for MD5 and 40 times for SHA-1. seq_num It is the sequence

number that is used for this message. SSLCompressed.type It is the higher level protocol used to process this fragment.

SSLCompressed.length The length of compressed fragment. SSLCompressed.fragment The compressed fragment. Note:

The SSLCompressed.fragment is used if the compression message is not used. Application Data Fragment Compress Add

MAC Encrypt Append SSL record header Figure 5.2 Add MAC Protocol Figure 5.2 shows the process of hierarchy in which

application data is fragmented and compressed. The message authentication code is added to encrypt the SSL record

header. The SSLCompressed.type is the higher level protocol used in the fragment. The role of SSL record header is to

compress the message that is later used to append the encrypted message.

https://secure.urkund.com/view/158826019-231749-951747#/sources 84/133

Number Theory NOTES Self-Instructional Material 249 Content type Major version Minor version Compressed length

Plaintext (Optionally compressed) MAC (0, 16 or 20 Bytes) Encrypted Figure 5.3 Format of Record Header In Figure 5.3, the

record header contains the content type, major and minor versions of SSL and compressed length. The compressed length

is the length (bytes) of the plain text fragment. In the client and server computing, MAC operation is used. For this, the

client and server share a secret key that is used to perform the functions of master_secret referring initial random values

from both client and server sides. The algorithm used by client and server computing for message authentication is as

follows: key_block=MD5(master_secret||SHA1(‘A’||premaster_secret||

Clienthello.random||ServerHello.random))||MD5(master_ secret|| SHA1(‘BB’||premaster_secret||Clienthello.random||

ServerHello.random))||MD5(master_secret||SHA1(‘CCC’|| premaster_secret||Clienthello.random||ServerHello. random))…

This coding is done if the number of bytes is generated for client_write MAC, server_write MAC, client_write key and

server_write key. The client sends the premaster key as ‘premaster_secret’ that is encrypted with server’s public key. The

server decrypts the premaster key that is encrypted with Pseudo Random Function (PRF) value and server’s public key. The

PRF value contains the parameters (Master_key, Input and Output_Length) in message authentication code. The server

decrypts the message to check the validity of PRF value that is exchanged with the client. If both the values match, the

server uses transition of the state that would be pending to current derived keys during the authentication of the message.

Server Authentication Server authentication is a part of client–server computing. SSL/TLS is generally used for

authentication. A web server acquires digital certificate from available server using Certification Authority (CA). CA is a third

party authority that issues digital certificates for authentication. A Digital Certificate (DC) authenticates the signature that is

in fact digitally signed message. DC uses SSL/TLS (Secured Socket Layer/ Transport Layer Security) in X.509 public key

infrastructure a defined by International Telecommunication Standardization Sector.

250 Self-Instructional Material Number Theory NOTES Certification Authority Server Certificate Issue Certificates Client

Certificates Client Private Key SSL Session Server Private Key Figure 5.4 Authentication in SSL/TLS In Figure 5.4, if client

connects to the server using SSL/TLS then both client and server follow strong cryptographic algorithm. Then, the server

sends X.509 certificate that contains the server’s public key. The client then generates a 48- byte random number and a

premaster secret key after encrypting the number used by the server’s public key. The encrypted premaster secret key is

sent to the server by the client. After getting premaster secret key, the server decrypts the message using the private keys.

Then, both the client and the server share the same premaster secret key which is basically symmetric key used to encrypt

the message. Subsequently they start communicating via generated keys. In this mechanism, only server knows the private

key that decrypts the encrypted premaster secret key. Clients know the message after sending the decrypted message by

server. It proves that the client is talking to the correct server. This whole mechanism represents the complete scenario of

authenticating the server. Client Authentication In SSL/TSL, client authentication is not required; instead it is optional. A

client stays anonymous while communicating between a web server and a browser in B2B business transaction. Therefore,

they use HTTP authentication methods.

Number Theory NOTES Self-Instructional Material 251 ClientGet/myapps/servlet/order Server 401 WWW-Authenticate:

Basic realm = “PurchaseOrder” Get/myapps/servlet/order Authorization: Basic QWxhZGRpbjpvcGVulHNlc2FtZQ==

Base64-encoded “user id:password” Figure 5.5 HTTP Authentication In Figure 5.5, the HTTP authentication known as RFC

2617, represents the HTTP protocol in which client and server communicate between each other via HTTP protocol. It

basically considers two factors, user-id and password, to authenticate the users/clients. Sometimes, user-id might be user’s

email-id also. Both values are sent to authenticate without encryption and hence they are not considered as secure

methods of authentication in cryptography. In this mechanism, client sends Base64-encoded user-id and password in

HTTP header. If data is sent through SSL/TLS connection, it is not altered or stolen during transmission. A malicious server

cannot disguise itself as genuine web server and cannot steal the password of users. For client authentication, SSL/TLS

certificate is used to obtain an appropriate digital certificate before connecting to the server. A client generates the private

key/public key pair to obtain the client certificate. A private key is kept as the secret key and is protected by passphrase. A

passphrase works as the password with added security. It is a sequence of words used to control access to the system. The

application does not maintain the database of user-id and password. It verifies the certificate that is signed by trusted CA.

Application A Application B Application C Certification Authority Certificate Trust I s s u e C e r t i f i c a t e Figure 5.6 Uses of

Client Certificates

https://secure.urkund.com/view/158826019-231749-951747#/sources 85/133

252 Self-Instructional Material Number Theory NOTES Figure 5.6 shows the complete mechanism of using the client

certificates. Take an example of a customer who manages ten passwords in which company ‘XXX’ uses a specific password

to access the system and company ‘YYY’ also uses the service. Once certificate-based authentications are used by

applications ‘A’, ‘B’ and ‘C’, the companies issue CA where they trust legitimate users. In this way, client certificates are used

to authenticate the message. Tables 5.4 and 5.5 show a comparison list of various cryptographic functions and techniques

used in a cryptographic algorithm: Table 5.4 Comparison List of Encryption Speed of Block Cipher Algorithm Encryption

Speed Key Length DES 35KB/s 56 bits 3DES 12KB/s 112 bits IDEA 70KB/s 128 bits Table 5.5 Comparison List of Hash

Function of Block Cipher Algorithm Encryption Speed Key Length MD5 174KB/s 128bits SHA 75KB/s 160bits Note: MD5 and

SHA are hash algorithms used for authenticating the packet data. These two mechanisms provide an additional level of

hashing. Cryptographic Protocols Cryptographic protocols exchange messages over insecure communication medium

ensuring authentication and secrecy of data. Kerberos, IPSec, SET protocol and Pretty Good Privacy (PGP) are popular

examples of cryptographic protocol. Kerberos is a network authentication system used for insecure networks. PGP

protocol is used for file storage applications and email services that provide authenticable and confidential services.

Encryption encodes file storage locally and transmits email messages. The email service enables PGP to be used for private

exchange over network. IPSec follows security architecture to the Internet. This protocol formats IP security protocol to

lead the cryptographic algorithm. This protocol basically provides subnet-to-subnet and host-to-subnet topologies. CAPSL

GUI CryPA PVS Connector Attack Constructor Figure 5.7 Cryptographic Protocol Analyser (CRYPA) Tool

Number Theory NOTES Self-Instructional Material 253 Figure 5.7 shows that CRYptographic Protocol Analyser (CRYPA) is

based on graphics user interface specification of cryptographic protocols using construction of attack on protocol. PGP

supports digital signature and encryption. This tool provides a virtual distributed environment system that provides a secure

chain of handling and controlling the crypto message. 5.7.2 Digital Signature Digital Signature (DS) follows authentication

mechanism. A code is attached with messages in DS. Primarily, the signature is generated by hashing the message and later

this message is encrypted with the sender’s private key. DS is based on public key encryption. A signature confirms that

integrity and source of message is correct. NIST (National Institute of Standards and Technology) recognized the DS

standard that uses the Secure Hash Algorithm (SHA). Message authentication protects digital signature as this way the

messages are exchanged by a third party. DS is analogous to manual signature. The characteristics of DS are as follows: ?It

attaches date and time along with the author of the signature. ?It authenticates the contents while the signature is being

completed. ?It solves the disputes using a third party (generally in online payment by PayPal). ?It ensures that the message

is not altered. The message can be in the form of electronic documents, such as email, text file, spreadsheet, etc. A person

or information is authenticated on the computer by using various techniques. Brief descriptions of these techniques are as

follows: Password User name and password provides authentication. When the user logs on the system unit or application,

the system asks for user name and password for checking authentication. Generally, the following type of password

authentication is provided to users in which two prime fields, namely ‘User Name’ and ‘Password’ are required to access the

system. User Name: Password: Click!

254 Self-Instructional Material Number Theory NOTES If two requirements do not match then authentication fails and ,

users are not allowed to access the system. Checksum The checksum provides a form of authentication where an invalid

checksum is not recognized. If the packet of checksum is one byte long, it will have a maximum value of 255. If the sum of

other bytes of the packet is 255 or less than that, the checksum contains exact value. However, if the sum of other bytes is

more than 255, the checksum gives the remainder of total value. Table 5.6 Checksum Calculation Byte1 Byte2 Byte3 Byte4

Byte5 Byte6 Byte7 Byte8 Total Checksum 212 232 54 135 244 15 179 80 1151 127 For example, in Table 5.6, 1151 is divided

by 256 returning a remainder of 4.496 (round value is taken as 4). It is then multiplied with 4× 256 that equals to 1024. The

value 1024 is subtracted from 1151 returning 127. In this way, the total checksum value is calculated. Cyclic Redundancy

Check (CRC) The process of CRC is same as checksum. In this method, the polynomial division determines the value of

CRC, which can be equal in length of 16 or 32 bits. The one difference between CRC and checksum is that CRC is more

accurate. If a single bit is taken as incorrect, the CRC value does not match. Private Key Encryption A private key encryption

contains a secret key that is taken as code. This mechanism encrypts a packet of information if it passed across network to

the other computers. A private key requires installing the key which is essentially the same as the secret code. The code

provides the key to decoding the message. For example, a coded message A is substituted by C and B is substituted by D.

Therefore, A becomes C and B becomes D. If a clue is given for the message, that code is shifted by 2. The message can be

decoded by your friend. If any person wants to see the message, he/she cannot get the message until and unless he/she

knows the secret key. Let us take a good example of how a message is decoded. A message ‘aectac’ is written as

ciphertext. This is a hidden message between two persons. Person ‘A’ sends the message to person ‘B’ that he is coming to

meet him but the place has not been decided. Person B does not know where they have to meet. The secret key is decided

by A; he decides that ‘n’ for ‘a’ and ‘t’ for ‘c’ will be used while decoding the message. Person ‘B’ decodes the message. He

reaches the sea coast and meets ‘A’ to discuss his housing plan at sea coast. The deciphered message as understood by

person B is ‘natant’ . Natant means ‘floating in water’. It is the name of the ship by which A is coming to meet B. Therefore,

it proves that digital signature issue can be solved by the mediator theory.

https://secure.urkund.com/view/158826019-231749-951747#/sources 86/133

Number Theory NOTES Self-Instructional Material 255 Mediator Concept Mediator concept is associated with digital

signature because of the central authority involved in sending and receiving messages from person A to person B. Person

M scrutinizes the message to find out where and to whom the message is being sent and received. Figure 5.8 shows how a

message is sent and received between two persons. A, K ey (B,R m , t, Q) M K B (A, R m , t, Q, K P (A,t,Q)) Pers on A Pe rs on

B Figure 5.8 Message Passing Between A and B via M In the figure, alphabets are used as codes when the message is sent

from one person to another. Person M plays the role of a mediator who is the genuine message sender and receiver.

However, Person M could also be a hacker who can alter the message or if he/she knows the secret key. Table 5.7 shows

the details of the alphabets used in the message sent from A to B via M: Table 5.7 Used Alphabets and Their Functions

Alphabets Function A Person A’s entity. K ey Secret key code. B Person B’s entity. R m Random number chosen by A. t Time

at which signer signs the message. Q Attachment shows that the message has not been altered. K B Key for person B. M

Mediator who scrutinizes the system (scrutinizer). A sends a message to B. P checks the message and decrypts it and sends

it to B. B decodes the message and sends back the message to P as K P (A,t,Q). This illustrates the use of symmetric key

signature as B receive the correct message. Now, the whole concept of sending and receiving message depends on P and

attachment Q. If person B realizes that the Q value is still attached with the message, it means that the message has not

been altered. P is not a hacker. In this way, DS authenticatation might solve financial legal and commercial transactions in

the presence or absence of an authorized handwritten signature.

256 Self-Instructional Material Number Theory NOTES Public Key Encryption A public key encryption uses private and

public keys. A private key is restricted to the individual systems, whereas public key can be accessed by any system where

message is to be communicated securely with the individual system. Decoding of an encrypted message can be done by a

public key that is provided by the individual system as well as its own private key. Basically, the key is based on the hash

value. For example, Table 5.8 shows the hash value of input number: Table 5.8 Hash Value of Input Number Input Number

Hashing Algorithm Hash Value 12421 Input # × 131 1627151 In the table, the value 1627151 is the result of multiplication of

131 and 12421. If the multiplier is 131, the value comes as 1627151. The public key can use large values to encrypt, such as

40bit and 128bit. The value 128bit can have 2 128 combinations. A digital signature follows the following operations: Key

pair generation: In this process, a public and a private key pair is generated. Generation operation: In this process, a

signature is produced for a message with private key. Verification operation: In this process, a signature is checked with the

public key. Digital signature provides data integrity, signer authenticity, authorization, security, accountability and non-

repudiation. These are the mechanisms that are frequently associated with digital signatures. These mechanisms are inter-

related with each other and hence are popular in transaction of digital cash, e-money transfer across net, etc. Non-

repudiation Accountability Security Authorization Signer Authenticity Data Integrity Digital Signatures Figure 5.9

Mechanisms of Digital Signature Figure 5.9 shows how various mechanisms are associated with digital signatures.

Number Theory NOTES Self-Instructional Material 257 Properties of Digital Signature The properties of digital signature are

as follows: ?Digital signature cannot be forged by person. ?Once signer signs the document or message, it cannot be

forged. ?Signer cannot replace the sign once the message is signed. The concept of digital signature can be explained with

the help of example. Assuming there are two persons and a message is being sent from person ‘A’ to person ‘B’. With

reference to cryptography, person ‘A’ encrypts the message to person ‘B’ using public key. The message is signed by person

‘A’ with a secret key. The secret is the code in which the ciphertext can be decoded. Person ‘B’ decrypts the message with a

personal secret key and then verifies it with A’s public key. If the code is matched, ‘B’ gets the correct message. The hash

coding condenses the message into 100 to 200 bits range. Signing of hash message is faster than signing the whole

message. The one-way hash function ensures that no two messages will have the same value. File (message, document,

executable, etc.) Compute digest (hash) from contents. Digest SIGN THE FILE by using sender’s private key to encrypt

digest. Digital Signature Figure 5.10 An Encrypted Digest Using Digital Signature In Figure 5.10, a digital signature is taken as

document, message, driver or program that is being signed. Then the message is encrypted using the public and/or private

key. The document or message is signed by using the sender’s private key that encrypts the digest. Once the message is

encrypted, the file cannot be altered by an attacker. Verifying a Digital Signature Once signer signs, the data is verified.

Verifying signature confirms that the signed data has not been altered. If the digital signature is verified, it can be decrypted

by

258 Self-Instructional Material Number Theory NOTES using a public key that produces the original hash value. If the two

hash values match, the signature is exactly same. Various software, such as Multilevel Digital Signateure System,

MyLiveSignature, Random Signature Changer, SignetSure, SignaturePilot, SignaturePilotPro, 602XMLFormFilter, AzSDK

MD5Sum, Signit, etc., are used by various commercial transaction hubs for signing and verifying the digital signature. C

HECK Y OUR P ROGRESS 9. What do you understand by an equivalence relation? 10. What do you understand by public

key encryption? 11. What role does the certification authority (CA) play in data authentication? 12. What do cryptographic

protocols do? 13. How can the decoding of an encrypted message be done? 5.8

SUMMARY In this unit, you have learned that: ?There are

https://secure.urkund.com/view/158826019-231749-951747#/sources 87/133

two types of numbers: prime numbers and composite numbers. ?The division algorithm is a well-defined procedure for

achieving a specific task and can be used to find the greatest common divisor of two integers. ?Numbers can be divided

into two based on their divisibility by 2: (i) Even numbers: They do not leave any remainder. (ii) Odd numbers: They are not

evenly divisible by 2. ?An inequality statement identifies the relative size or order of two objects to confirm whether they

are similar or not. ?Inequalities are influenced by these properties: trichotomy, transitivity, addition and subtraction and

multiplication and division. ?The greatest common divisor (G.C.D) is the largest positive integer that divides a number

entirely, i.e., without leaving any remainder. ?Euclid’s algorithm determines the G.C.D of two elements of any Euclidean

domain. ?The Fibonacci number sequence is named after Leonardo of Pisa, who was famously known as Fibonacci. ?In the

Fibonacci series, 0 and 1 are the first two Fibonacci numbers; all the other numbers of the series are the sum of the

previous two numbers. ?Congruent relation states that if a, b, c (c < 0) are integers, then a is congruent to b modulo c if c

divides a – b . ?Equivalence relation refers to a relation R on a set A which is in equivalence in case R is reflexive, symmetric

and transitive.

Number Theory NOTES Self-Instructional Material 259 ?Public key encryption refers to a sort of cipher architecture

recognized as public key cryptography that uses two keys, or a key pair for encrypting and decrypting data. 5.9 KEY TERMS

?Prime number: An integer p < 1 is called a prime number if 1 and p are the only divisors of p. ?Composite number: A

composite number is an integer n < 1 such that n is not prime. ?Divisor: A divisor, in mathematics, is an integer n, also

termed as factor of n, which evenly divides n without leaving any remainder. 5.10 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Properties of prime numbers are as follows: (i) If a prime number p divides ab, then either p|a or p|b. (ii) If a prime number

p does not divide an integer a, then the highest comman factor (HCF) of p and a is 1 (by convention HCF is taken to be a +

ve integer). 2. In mathematics, the division algorithm is a theorem which expresses the outcome of the usual process of

division of integers. 3. Numbers which are evenly divisible by 2 without leaving any remainder are called even numbers. 4.

In mathematics, an inequality is a statement that defines the relative size or order of two objects to check whether they are

similar or not. 5. The GCD of two or more non-zero integers is the largest positive integer that divides a number without

leaving a remainder. 6. Linear Diophantine equation is an equation ax + by = c in two unknowns, x and y, where a, b, c are

given integers and one of a, b is not zero. 7. In number theory, the Euclidean algorithm also termed as Euclid’s algorithm, is

a very important algorithm that is used to determine the greatest common divisor of two elements of any Euclidean

domain. 8. The first two Fibonacci numbers are 0 and 1, and all other numbers are the sum of the previous two numbers. 9.

A relation R on a set A is called an equivalence relation if

R is reflexive, symmetric and transitive. 10. Public key inscription refers to a sort of cipher architecture recognized as public

key cryptography that uses two keys for encrypting and decrypting data.

260 Self-Instructional Material Number Theory NOTES 11. Certification Authority (CA) serves as a third party that issues

digital certificates for data authentication. 12. Cryptographic protocols exchange messages over insecure communication

medium ensuring authentication and secrecy of data. 13. Decoding of an encrypted message can be done by a public key

that is provided by the individual system as well as its own private key. Basically, the key is based on the hash value. 5.11

QUESTIONS AND EXERCISES Short-Answer Questions 1. What does the concept of strict inequality state? 2. Briefly explain

the fundamental theorem of arithmetic. 3. What do you understand by prime numbers? 4. Differentiate between trivial and

non-trivial divisors. 5. What are the various keywords that are used in crypto algorithm? Also state their functions. 6. Write a

short note on private key encryption. Long –Answer questions 1. Explain the properties of inequalities. 2. Prove the

Euclidean algorithm. 3. Explain the basis representation theorem. 4. Explain how http authentication is done in business-to-

business transactions. 5. Describe the various techniques used for the authentication of data on computer. 5.12 FURTHER

READING Lipschutz, Seymour and Lipson Marc. Schaum’s Outline of Discrete Mathematics, 3rd edition. New York:

McGraw-Hill, 2007. Horowitz, Ellis, Sartaj Sahni and Sanguthevar Rajasekaran. Fundamentals of Computer Algorithms.

Hyderabad: Orient BlackSwan, 2008. Cormen,

Thomas H., Charles E. Leiserson, Ronald L. Rivest and Clifford Stein. Introduction to Algorithms .

The MIT Press, 1990. Brassard, Gilles and Paul Bratley. Fundamentals of Algorithms . New Delhi: Prentice Hall of India, 1995.

Levitin, Anany. Introduction to the Design and Analysis of Algorithms . New Jersey: Pearson, 2006.

Number Theory NOTES Self-Instructional Material 261 Baase, Sara and Allen Van Gelder. Computer Algorithms –

Introduction to Design and Analysis . New Jersey: Pearson, 2003. Mott, J.L. Discrete Mathematics for Computer Scientists ,

2nd edition. New Delhi: Prentice-Hall of India Pvt. Ltd., 2007. Liu, C.L. Elements of Discrete Mathematics . New Delhi: Tata

McGraw-Hill Publishing Company, 1977. Rosen, Kenneth. Discrete Mathematics and Its Applications , 6th edition. New York:

McGraw-Hill Higher Education, 2007.

262 Self-Instructional Material NOTES

Self-Instructional Material 263 NOTES

264 Self-Instructional Material NOTES

https://secure.urkund.com/view/158826019-231749-951747#/sources 88/133

Hit and source - focused comparison, Side by Side

Submitted text As student entered the text in the submitted document.

Matching text As the text appears in the source.

1/127 SUBMITTED TEXT 21 WORDS

Summary 1.13 Key Terms 1.14 Answers to ‘Check Your

Progress’ 1.15 Questions and Exercises 1.16 Further

Reading UNIT 2 GRAPH THEORY 95-136 2.0 Introduction

2.1 Unit Objectives 2.2

84% MATCHING TEXT 21 WORDS

Summary 2.10 Key Terms 2.11 Answers to Check Your

Progress 2.12 Questions and Exercises 2.13 Further

Reading 6 UNIT 3 PROGRAMMING Introduction 3.1 Unit

Objectives 3.2

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

2/127 SUBMITTED TEXT 21 WORDS

Summary 3.6 Key Terms 3.7 Answers to ‘Check Your

Progress’ 3.8 Questions and Exercises 3.9 Further Reading

UNIT 4 RECURSION 163-216 4.0 Introduction 4.1 Unit

Objectives 4.2

91% MATCHING TEXT 21 WORDS

Summary 2.10 Key Terms 2.11 Answers to Check Your

Progress 2.12 Questions and Exercises 2.13 Further

Reading 6 UNIT 3 PROGRAMMING Introduction 3.1 Unit

Objectives 3.2

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

3/127 SUBMITTED TEXT 21 WORDS

Summary 4.9 Key Terms 4.10 Answers to ‘Check Your

Progress’ 4.11 Questions and Exercises 4.12 Further

Reading UNIT 5 NUMBER THEORY 217-261 5.0

Introduction 5.1 Unit Objectives 5.2

84% MATCHING TEXT 21 WORDS

Summary 2.10 Key Terms 2.11 Answers to Check Your

Progress 2.12 Questions and Exercises 2.13 Further

Reading 6 UNIT 3 PROGRAMMING Introduction 3.1 Unit

Objectives 3.2

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

4/127 SUBMITTED TEXT 14 WORDS

Summary 5.9 Key Terms 5.10 Answer to ‘Check Your

Progress’ 5.11 Questions and Exercises 5.12 Further

Reading Introduction

89% MATCHING TEXT 14 WORDS

Summary 3.29 Key Terms 3.30 Answers to Check Your

Progress 3.31 Questions and Exercises 3.32 Further

Reading 7 8 INTRODUCTION

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

5/127 SUBMITTED TEXT 19 WORDS

The book follows the self-instructional mode wherein

each unit begins with an Introduction to the topic. The

Unit Objectives

77% MATCHING TEXT 19 WORDS

The book follows the SIM format or the self-instructional

mode wherein each Unit begins with an Introduction to

the topic followed by an outline of the Unit Objectives.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 89/133

6/127 SUBMITTED TEXT 37 WORDS

understanding of the subject. A Summary, a list of Key

Terms and a set of Questions and Exercises are provided at

the end of each unit for recapitulation. Algorithms NOTES

Self-Instructional Material 3 UNIT 1 ALGORITHMS

Structure 1.0 Introduction 1.1 Unit Objectives 1.2

74% MATCHING TEXT 37 WORDS

understanding of the students. A Summary along with a list

of Key Terms and a set of Questions and Exercises is also

provided at the end of each unit for effective

recapitulation. Self-Instructional Material 1 9 10 UNIT 1

COMPUTER FUNDAMENTALS Structure 1.0 Introduction

1.1 Unit Objectives 1.2

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

7/127 SUBMITTED TEXT 17 WORDS

Summary 1.13 Key Terms 1.14 Answers to ‘Check Your

Progress’ 1.15 Questions and Exercises 1.16 Further

Reading 4

100% MATCHING TEXT 17 WORDS

Summary 1.14 Key Terms 1.15 Answers to Check Your

Progress 1.16 Questions and Exercises 1.17 Further Reading

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

8/127 SUBMITTED TEXT 35 WORDS

is composed of a finite set of steps, each of which may

require one or more operations. Every operation may be

characterized as either simple or complex. Operations

performed on scalar quantities are termed simple, while

98% MATCHING TEXT 35 WORDS

is composed of a finite set of steps each of which may

require one or more operations. Every operation may be

characterized as either a simple or complex. Operations

performed on scalar quantities are termed simple, while

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

9/127 SUBMITTED TEXT 15 WORDS

can also be viewed as a tool for solving a well-specified

‘computational problem’. The statement

87% MATCHING TEXT 15 WORDS

can also be considered a tool for solving a well-specified

computational problem. The problem statement

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

10/127 SUBMITTED TEXT 12 WORDS

a step-by-step procedure for performing some task in a

finite amount of time.

100% MATCHING TEXT 12 WORDS

a step-by-step procedure for performing some task in a

finite amount of time.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

11/127 SUBMITTED TEXT 15 WORDS

computer science. 1.1 UNIT OBJECTIVES After going

through this unit, you will be able to: ?Describe the

81% MATCHING TEXT 15 WORDS

Computer Fundamentals 1.1 UNIT OBJECTIVES After

going through this unit, you will be able to: Understand

the

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 90/133

12/127 SUBMITTED TEXT 11 WORDS

as a tool for solving a well-specified ‘computational

problem’. The statement

95% MATCHING TEXT 11 WORDS

as a tool for solving a well-specified computational

problem. The problem statement

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

13/127 SUBMITTED TEXT 58 WORDS

algorithm is a step-by-step procedure for performing

some task in a finite amount of time’. An algorithm is

composed of a finite set of steps each of which may

require one or more operations. Every operation may be

characterized as either a simple or complex. Operations

performed on scalar quantities are termed simple, while

operations on vector data normally termed as complex.

1.2.1

99% MATCHING TEXT 58 WORDS

algorithm is a step-by-step procedure for performing

some task in a finite amount of time. Definition An

algorithm is composed of a finite set of steps each of

which may require one or more operations. Every

operation may be characterized as either a simple or

complex. Operations performed on scalar quantities are

termed simple, while operations on vector data normally

termed as complex.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

14/127 SUBMITTED TEXT 12 WORDS

An algorithm is a finite set of instructions that

accomplishes a particular task.

100% MATCHING TEXT 12 WORDS

an algorithm is a finite set of instructions that

accomplishes a particular task.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

15/127 SUBMITTED TEXT 12 WORDS

Finiteness: An algorithm must terminate after a finite

number of steps

95% MATCHING TEXT 12 WORDS

Finiteness: An algorithm must always terminate after a

finite number of steps.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

16/127 SUBMITTED TEXT 85 WORDS

Properties of Algorithm The following are the five

important properties (features) of algorithm: ?Finiteness ?

Definitiveness ?Input ?Output ?Effectiveness ?Finiteness:

An algorithm must always terminate after a finite number

of steps. If we trace out the instructions of an algorithm,

then for all cases, the algorithm terminates after a finite

number of steps. ?Definitiveness: Each operation must

have a definite meaning and it must be perfectly clear. All

steps of an algorithm need to be precisely defined. The

actions to be executed in each case should be rigorously

and clearly specified. ?Inputs: An algorithm may have zero

or more ‘

100% MATCHING TEXT 85 WORDS

Properties of Algorithm The following are the five

important properties (features) of algorithm: Finiteness

Definitiveness Input Output Effectiveness Finiteness: An

algorithm must always terminate after a finite number of

steps. If we trace out the instructions of an algorithm, then

for all cases, the algorithm terminates after a finite number

of steps. Definitiveness: Each operation must have a

definite meaning and it must be perfectly clear. All steps of

an algorithm need to be precisely defined. The actions to

be executed in each case should be rigorously and clearly

specified. Inputs: An algorithm may have zero or more

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 91/133

17/127 SUBMITTED TEXT 104 WORDS

prior to its beginning or dynamically as it runs. An input is

taken from a specified set of objects. Also, it is externally

supplied to the algorithm. ?Output: An algorithm has one

or more ‘output’ quantities. These quantities have specified

relations to the inputs. An algorithm produces at least one

output. ?Effectiveness: Each operation should be effective,

i.e., the operation must terminate in a finite amount of

time. An algorithm is usually supposed to be ‘effective’ in

the sense that all its operations need to be sufficiently

basic so that they can in principle be executed exactly the

same way in a finite length of time by someone using

pencil and paper.

91% MATCHING TEXT 104 WORDS

prior to its beginning or dynamically as it runs. An input is

taken from a specified set of objects. Also, it is externally

supplied to the algorithm. Output: An algorithm has one or

more output quantities. These quantities have a specified

relation to the inputs. An algorithm produces at least one

or more outputs. Effectiveness: Each operation should be

effective, i.e. the operation must be able to carry out in a

finite amount of time. An algorithm is usually supposed to

be effective in the sense that all its operations needs to be

sufficiently basic so that they can in principle be executed

exactly in the same way in a finite length of time by

someone using pencil and paper.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

18/127 SUBMITTED TEXT 20 WORDS

Summary 2.8 Key Terms 2.9 Answers to ‘Check Your

Progress’ 2.10 Questions and Exercises 2.11 Further

Reading UNIT 3 TREES 137-162 3.0 Introduction 3.1 Unit

Objectives 3.2

91% MATCHING TEXT 20 WORDS

Summary 2.10 Key Terms 2.11 Answers to Check Your

Progress 2.12 Questions and Exercises 2.13 Further

Reading 6 UNIT 3 PROGRAMMING Introduction 3.1 Unit

Objectives 3.2

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

19/127 SUBMITTED TEXT 54 WORDS

Types of Algorithms (i) Approximate algorithm (ii)

Probabilistic algorithm (iii) Infinite algorithm (iv) Heuristic

algorithm (i) Approximate Algorithm An algorithm is said to

approximate if it is infinite and repeating. For example, 414

.1 2? 732 .1 3? 14 .3 ? ? , etc. (ii) Probabilistic Algorithm If

the solution of a problem is uncertain, then it is called a

probabilistic algorithm. For example, Tossing of a coin (

70% MATCHING TEXT 54 WORDS

Types of Algorithms Approximate algorithm Probabilistic

algorithm Infinite algorithm Heuristic algorithm

Approximate Algorithm An algorithm is said to

approximate if it is infinite and repeating., e.g , , 3. 14, etc.

Probabilistic Algorithm If the solution of a problem is

uncertain, then it is called probabilistic algorithm, e.g.

tossing of a coin

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

20/127 SUBMITTED TEXT 11 WORDS

Infinite Algorithm An algorithm, which is not finite, is called

infinite algorithm.

100% MATCHING TEXT 11 WORDS

Infinite Algorithm An algorithm, which is not finite, is called

infinite algorithm,

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

21/127 SUBMITTED TEXT 24 WORDS

a complete solution of a chessboard, division by zero (iv)

Heuristic Algorithm Giving less inputs and getting more

outputs is called heuristic algorithm. 1.2.3 Areas of

88% MATCHING TEXT 24 WORDS

a complete solution of a chessboard, division by zero.

Heuristic Algorithm Giving less inputs and getting more

outputs is called heuristic algorithm. Design of

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 92/133

22/127 SUBMITTED TEXT 111 WORDS

shown, it is possible to write the program. On completion

of program writing the second phase begins. This phase is

called ‘program providing’ or ‘program verification’. A

proof of correctness requires the solution to be stated in

two forms. One form is usually a program, which is

annotated by a set of assertions about the input and

output variables of the program. The second form is called

specification and this may also be expressed in the

predicate calculus. A proof shows that these two forms are

equivalent for every given legal input, they describe the

same output. A complete proof of program correctness

requires that each statement of the programming

language is precisely defined and all basic operations

78% MATCHING TEXT 111 WORDS

shown, it is possible to write the program. On the

completion of writing the program, a second phase

begins. This phase is called program providing or

sometimes as program verification. A proof of correctness

requires that the solution be stated in two forms. One

form is usually as a program, which is annotated by a set

of assertions about the input and output variables of the

program. The second form is called specification and this

may also be expressed in the predicate calculus. A proof

consists of showing that these two forms are equivalent in

that for every given legal input, they describe the same

output. A complete proof of program correctness requires

that each statement of the programming language be

precisely defined and all basic operations

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

23/127 SUBMITTED TEXT 31 WORDS

proved correct. All these details may cause a proof to be

very much longer than the program. 3. Analysing

Algorithms As an algorithm is executed, it uses computer’s

central processing unit (CPU) for performing

100% MATCHING TEXT 31 WORDS

proved correct. All these details may cause a proof to be

very much longer than the program. 3. Analysing

algorithms As an algorithm is executed, it uses computer s

central processing unit (CPU) for performing

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

24/127 SUBMITTED TEXT 55 WORDS

It also uses the memory for holding the program and its

data. Analysis of algorithm is the process of determining

the computing time and storage required by an algorithm.

4. Testing a Program Testing of a program comprises of

two phases: (i) Debugging and (ii) Profiling. (i) Debugging

refers to the process of carrying out programs on sample

data sets

80% MATCHING TEXT 55 WORDS

It also uses the memory for holding the program and its

data. Analysis of algorithms is the process to determine the

computing time and storage required by an algorithm. 4.

Testing a program Testing of a program comprises two

phases: (i) debugging and (ii) profiling. Debugging refers to

the process of carrying out programs on sample data sets

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 93/133

25/127 SUBMITTED TEXT 80 WORDS

faulty results. If any faulty result occurs, it is corrected by

debugging. A proof of correctness is much more valuable

than a thousand tests, since it guarantees that the program

will work correctly for a possible input. (ii) Profiling refers

to the process of executing a correct program on data sets

and the measurement of the time and space it takes in

computing the results. It is useful in the sense that it

confirms a previously done analysis and points out logical

places for performing useful optimization.

94% MATCHING TEXT 80 WORDS

faulty results. If any faulty result occurs, it is corrected by

debugging. A proof of correctness is much more valuable

than a thousand tests since it guarantees that the program

will work correctly for a possible input. 56 Self-

Instructional Material 65 Profiling refers to the process of

the execution of a correct program on data sets and the

measurement of the time and space it takes in computing

the results. It is useful in the sense that it confirms a

previously done analysis and points out logical places for

performing useful optimization.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

26/127 SUBMITTED TEXT 205 WORDS

The decision on which the values of n to be used is based

on the amount of timing we wish to perform and also on

what we expect to do with the times once they are

obtained. Assume that for algorithm, our interest is to

simply predict how long it will take, in the worst case, to

search for x, given the size n of a. 1.2.5 Algorithms as

Technology If computers were infinitely fast and computer

memory was free, you would be in a position to adopt any

correct method to solve a problem. In all likelihood, you

would like your implementation to be adhering to good

software engineering practice. However, you would use

the method which is the easiest to implement. However,

computers may be fast, but they cannot be infinitely fast.

Similarly, memory may be cheap, but it cannot be free.

Thus, computing time and space in memory are bounded

resources . You need to use these resources wisely. Such

algorithms which are efficient in terms of time or space

will be helpful. Efficiency It has been found that algorithm

devices used for solving the same problem usually differ

considerably in their efficiency. These differences are more

significant than those due to hardware and software. 1.2.6

Algorithms and Other Technologies Algorithms are

important on contemporary computers which have

advanced technologies,

96% MATCHING TEXT 205 WORDS

The decision on which the values of n to use is based on

the amount of timing we wish to perform and also on

what we expect to do with the times once they are

obtained. Assume that for algorithm, our interest is to

simply predict how long it will take, in the worst case, to

search for x, given the size n of a. Algorithms as

Technology If computers were infinitely fast and computer

memory was free, you would be in a position to adopt any

correct method to solve a problem. In all likelihood, you

would like your implementation to be adhering to good

software engineering practice. However, you would use

the method which is the easiest to implement. However,

computers may be fast, but they cannot be infinitely fast.

Similarly, memory may be cheap, but it cannot be free.

Thus, computing time and space in memory are bounded

resources. You need to use these resources wisely. Such

algorithms which are efficient in terms of time or space

will be helpful. Efficiency It has been found that algorithm

devices used for solving the same problem usually differ

considerably in their efficiency. These differences are more

significant than those due to hardware and software.

Algorithms and Other Technologies Algorithms are indeed

very important for contemporary computers considering

other advanced technologies:

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 94/133

27/127 SUBMITTED TEXT 74 WORDS

Hardware with high clock rates, pipelining and super scalar

architectures ?Easy to use, intuitive Graphical User

Interfaces (GUIs) ?Local Area Networking (LAN) and Wide

Area Networking (WAN) A truly skilled programmer

possesses a solid algorithmic knowledge and technique. It

separates him/her from a novice. It is true that with

modern computing technology, you can perform some

tasks even if you do not have much knowledge of

algorithms. However, if you have a good background in

algorithms, you can perform much

97% MATCHING TEXT 74 WORDS

Hardware with high clock rates, pipelining and super scalar

architectures Easy to use, intuitive graphical user interfaces

(GUIs) Local area networking (LAN) and wide area

networking (WAN) A truly skilled programmer possesses a

solid algorithmic knowledge and technique. It separates

him/her from a novice. It is true that with modern

computing technology, you can perform some tasks even

if you do not have much knowledge of algorithms.

However, if you are with a good background in algorithms,

you can perform much

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

28/127 SUBMITTED TEXT 25 WORDS

while j < 0 and A [j] < item do 6.A [j + 1] ? A [j] 7.j ? j – 1

8.A [j + 1] ?

70% MATCHING TEXT 25 WORDS

WHILE J < 0 AND Max > A[J 1]) /* backtrack */ A[J] =

A[J 1] J = J 1 5. [Assign Max] A[J] =

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

29/127 SUBMITTED TEXT 19 WORDS

insertion sort removes an element from the input data,

inserting it at the correct position in the already sorted

65% MATCHING TEXT 19 WORDS

insertion sort deletes an element from the input data and

inserts it into the correct position in the list that is already

sorted.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 95/133

30/127 SUBMITTED TEXT 258 WORDS

In the beginning, the use of flowcharts was restricted to

electronic data processing for representing the conditional

logic of computer programs. The1980s witnessed the

emergence of structured programming and structured

design. As a result of this, in database programming, data

flow and structure charts began to replace flowcharts.

With the widespread adoption of such ALGOL-like

computer languages as Pascal, textual models like

pseudocode are being used frequently for representing

algorithms. Unified Modeling Language (UML) started the

synthesis and codification these modelling techniques in

the 1990s. A flowchart refers to a graphical representation

of a process which depicts inputs, outputs and units of

activity. It represents the whole process at a high or

detailed (depending on your use) level of observation. It

serves as an instruction manual or a tool to facilitate a

detailed analysis and optimization of workflow as well as

service delivery. Flowcharts have been in use since long.

Nobody can be specified as the ‘father of the flowchart’. It

is possible to customize a flowchart according to need or

purpose. This is why flowcharts are considered a very

unique quality improvement method for representing data.

Symbols A typical flowchart has the following types of

symbols: ?Start and end symbols : They are represented as

ovals or rounded rectangles, normally having the word

‘Start’ or ‘End’. ?Arrows: They show the ‘flow of control’ in

computer science. An arrow coming from one symbol and

ending at another symbol shows the transmission of

control to the symbol the arrow is pointing to. ?Processing

steps : They are represented as rectangles. Example: Add 1

to X. ?Input/Output symbol : It is represented as a

parallelogram. Examples: Get X from the user; display X.

20

98% MATCHING TEXT 258 WORDS

In the beginning, the use of flowcharts was restricted to

electronic data processing for representing the conditional

logic of computer programs. The1980s witnessed the

emergence of structured programming and structured

design. As a result of this, in database programming, data

flow and structure charts began to replace flowcharts.

With the widespread adoption of such ALGOL-like

computer languages as Pascal, textual models like

pseudocode are being used frequently for representing

algorithms. Unified modelling language (UML) started the

synthesis and codification these modelling techniques in

the 1990s. A flowchart refers to a graphical representation

of a process which depicts inputs, outputs and units of

activity. It represents the whole process at a high or

detailed (depending on your use) level of observation. It

serves as an instruction manual or a tool to facilitate a

detailed analysis and optimization of workflow as well as

service delivery. Self-Instructional Material 83 92

Fundamentals: Algorithms and Flowcharts Flowcharts have

been in use since long. Nobody can be specified as the

father of the flowchart. It is possible to customize a

flowchart according to need or purpose. This is why

flowcharts are considered a very unique quality

improvement method for representing data. Symbols A

typical flowchart has the following types of symbols: Start

and end symbols: They are represented as ovals or

rounded rectangles, normally having the word Start or

End. Arrows: They show the flow of control in computer

science. An arrow coming from one symbol and ending at

another symbol shows the transmission of control to the

symbol the arrow is pointing to. Processing steps: They are

represented as rectangles. Example: Add 1 to X.

Input/output symbol: It is represented as a parallelogram.

Examples: Get X from the user; display X.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 96/133

31/127 SUBMITTED TEXT 143 WORDS

Conditional symbol : It is represented as a diamond

(rhombus). It has a Yes/No question or True/False test. It

contains two arrows coming out of it, normally from the

bottom and right points. One of the arrows corresponds

to Yes or True, while the other corresponds to No or False.

These two arrows make it unique. There are also other

symbols in flowcharts may contain, e.g., connectors.

Connectors are normally represented as circles. They

represent converging paths in the flowchart. Circles

contain more than one arrow. However, only one arrow

goes out. Some flowcharts may just have an arrow point

to another arrow instead. Such flowcharts are useful in

representing an iterative process, what is known as a loop

in terms of computer science. A loop, for example,

comprises a connector where control first enters

processing steps, a conditional with one arrow exiting the

loop, and another going back to the connector.

100% MATCHING TEXT 143 WORDS

Conditional symbol: It is represented as a diamond

(rhombus). It has a Yes/No question or True/False test. It

contains two arrows coming out of it, normally from the

bottom and right points. One of the arrows corresponds

to Yes or True, while the other corresponds to No or False.

These two arrows make it unique. There are also other

symbols in flowcharts may contain, e.g. connectors.

Connectors are normally represented as circles. They

represent converging paths in the flowchart. Circles

contain more than one arrow. However, only one arrow

goes out. Some flowcharts may just have an arrow point

to another arrow instead. Such flowcharts are useful in

representing an iterative process, what is known as a loop

in terms of computer science. A loop, for example,

comprises a connector where control first enters

processing steps, a conditional with one arrow exiting the

loop, and another going back to the connector.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 97/133

32/127 SUBMITTED TEXT 293 WORDS

It is now used at the beginning of the next line or page

with the same number. Thus, a reader of the chart is able

to follow the path. Instructions The following is the step-

by-step process for developing a flowchart: Step 1:

Information on how the process flows is gathered. For this,

the following tools are used: ?Conservation ?Experience ?

Product development codes Step 2: The trial of process

flow is undertaken. Step 3: Other more familiar personnel

are allowed to check for accuracy. Step 4: If necessary,

changes are made. Step 5: The final actual flow is

compared with the best possible flow.

Construction/Interpretation tips for a flowchart ?The

boundaries of the process should be defined

unambiguously. ?The simplest symbols should be used. ?It

should be ensured that each feedback loop contains an

escape. ?It should be ensured that there is only one output

arrow out of a process box. Otherwise, it would require a

decision diamond. Types of Flowcharts A flowchart is

common type of chart representing an algorithm or a

process and showing the steps as boxes of different kinds

and their order by connecting these with arrows. We use

flowcharts to analyse, design, document or manage a

process or program in different fields. There are many

different types of flowcharts. On the one hand, there are

different types for different users, such as analysts,

designers, engineers, managers or programmers. On the

other hand, those flowcharts can represent different types

of objects. Sterneckert (2003) divides four more general

types of flowcharts: ?Document flowcharts showing a

document flow through system ?Data flowcharts showing

data flows in a system ?System flowcharts showing

controls at a physical or resource level ?Program flowchart

showing the controls in a program within a system

However, there are several of these classifications. For

example, Andrew Veronis named three basic types of

flowcharts: the system flowchart, the general flowchart,

and the detailed flowchart. Marilyn Bohl (1978) stated ‘in

practice, 22

98% MATCHING TEXT 293 WORDS

It is now used at the beginning of the next line or page

with the same number. Thus, a reader of the chart is able

to follow the path. Instructions The following is the step-

by-step process for developing a flowchart: Step 1:

Information on how the process flow is gathered. For this,

the following tools are used: Conservation Experience

Product development codes Self-Instructional Material 85

94 Fundamentals: Algorithms and Flowcharts Step 2: The

trial of process flow is undertaken. Step 3: Other more

familiar personnel are allowed to check for accuracy. Step

4: If necessary, changes are made. Step 5: The final actual

flow is compared with the best possible flow.

Construction/Interpretation Tips for a Flowchart The

boundaries of the process should be defined

unambiguously. The simplest symbols should be used. It

should be ensured that each feedback loop contains an

escape. It should be ensured that there is only one output

arrow out of a process box. Otherwise, it would require a

decision diamond. Types of Flowcharts A flowchart is

common type of chart representing an algorithm or a

process and showing the steps as boxes of different kinds

and their order by connecting these with arrows. We use

flowcharts to analyse, design, document or manage a

process or program in different fields. There are many

different types of flowcharts. On the one hand, there are

different types for different users, such as analysts,

designers, engineers, managers or programmers. On the

other hand, those flowcharts can represent different types

of objects. Sterneckert (2003) divides four more general

types of flowcharts: Document flowcharts showing a

document flow through system Data flowcharts showing

data flows in a system System flowcharts showing controls

at a physical or resource level Program flowchart showing

the controls in a program within a system However, there

are several of these classifications. For example, Andrew

Veronis named three basic types of flowcharts: the system

flowchart, the general flowchart, and the detailed

flowchart. Marilyn Bohl (1978) stated in practice,

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 98/133

33/127 SUBMITTED TEXT 307 WORDS

two kinds of flowcharts are used in solution planning:

system flowcharts and program flowcharts...’. More

recently, Mark A. Fryman (2001) stated that there are more

differences. Decision flowcharts, logic flowcharts, systems

flowcharts, product flowcharts and process flowcharts are

just a few of the different types of flowcharts that are used

in business and government. Interpretation ?Analyse

flowchart of the actual process ?Analyse flowchart of the

best process ?Compare both charts looking for areas

where they are different. Most of the time, the stages

where differences occur are considered to be the problem

area or process. ?Take appropriate in-house steps to

correct the differences between the two separate flows.

Example: Process flowchart—Finding the best way home

This is a simple case of processes and decisions in finding

the best route home at the end of the working day. A

flowchart provides the following: ?Communication:

Flowcharts are excellent means of communication. They

quickly and clearly impart ideas and descriptions of

algorithms to other programmers, students, computer

operators and users. ?An overview: Flowcharts provide a

clear overview of the entire problem and its algorithm for

solution. They show all major elements and their

relationships. ?Algorithm development and

experimentation: Flowcharts are a quick method of

illustrating program flow. It is much easier and faster to try

an idea with a flowchart than to write a program and test it

on a computer. ?Check program logic: Flowcharts show

all major parts of a program. All details of program logic

must be classified and specified. This is a valuable check

for maintaining accuracy in logic flow. ?Facilitate coding: A

programmer can code the programming instructions in a

computer language with more ease with a comprehensive

flowchart as a guide. A flowchart specifies all the steps to

be coded and helps to prevent errors. ?Program

documentation: A flowchart provides a permanent

recording of program logic. It documents the steps

followed in an algorithm. Advantages of Flowcharts ?

Clarify the program logic. ?Before coding begins, a

flowchart assists the programmer in determining the type

of logic control to be used in a program.

99% MATCHING TEXT 307 WORDS

two kinds of flowcharts are used in solution planning:

system flowcharts and program flowcharts.... More

recently, Mark A. Fryman (2001) stated that there are more

differences. Decision flowcharts, logic flowcharts, systems

flowcharts, product flowcharts and process flowcharts are

just a few of the different types of flowcharts that are used

in business and government. Interpretation Analyse

flowchart of the actual process. Analyse flowchart of the

best process. Compare both charts looking for areas

where they are different. Most of the time, the stages

where differences occur are considered to be the problem

area or process. 86 Self-Instructional Material 95 Take

appropriate in-house steps to correct the differences

between the two separate flows. Example: Process

flowchart finding the best way home. This is a simple case

of processes and decisions in finding the best route home

at the end of the working day. Fundamentals: Algorithms

and Flowcharts A flowchart provides the following:

Communication: Flowcharts are excellent means of

communication. They quickly and clearly impart ideas and

descriptions of algorithms to other programmers,

students, computer operators and users. An overview:

Flowcharts provide a clear overview of the entire problem

and its algorithm for solution. They show all major

elements and their relationships. Algorithm development

and experimentation: Flowcharts are a quick method of

illustrating program flow. It is much easier and faster to try

an idea with a flowchart than to write a program and test it

on a computer. Check program logic: Flowcharts show all

major parts of a program. All details of program logic must

be classified and specified. This is a valuable check for

maintaining accuracy in logic flow. Facilitate coding: A

programmer can code the programming instructions in a

computer language with more ease with a comprehensive

flowchart as a guide. A flowchart specifies all the steps to

be coded and helps to prevent errors. Program

documentation: A flowchart provides a permanent

recording of program logic. It documents the steps

followed in an algorithm. Advantages of Flowcharts Clarify

the program logic. Before coding begins, a flowchart

assists the programmer in determining the type of logic

control to be used in a program.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 99/133

34/127 SUBMITTED TEXT 176 WORDS

Serve as documentation. ?Serve as a guide for program

coding of program writing. ?A flowchart is a pictorial

representation that may be useful to the businessperson or

user who wishes to examine some facts of the logic used

in a program. ?Help to detect deficiencies in the problem

statement. Limitations of Flowcharts ?Program flowcharts

are bulky for the programmer to write. As a result many

programmers do not write the chart until after the

program has been completed. This defeats one of its main

purposes. ?It is sometimes difficult for a business person

or user to understand the logic depicted in a flowchart. ?

Flowcharts are no longer completely standardized tools.

The newer structured programming techniques have

changed the traditional format of a flowchart. Differences

between Flowcharts and Algorithms Flowchart ?It is the

graphical representation of the solution to a problem. ?It is

connected with the shape of each box indicating the type

of operation being performed. The actual operation, which

is to be performed, is written inside the symbol. The arrow

coming out of symbol indicates which operation to

perform next. Algorithm ?It is a process for solving a

problem. ?It is constructed without boxes in a succession

of steps.

98% MATCHING TEXT 176 WORDS

Serve as documentation. Serve as a guide for program

coding of program writing. A flowchart is a pictorial

representation that may be useful to the businessperson or

user who wishes to examine some facts of the logic used

in a program. Help to detect deficiencies in the problem

statement. Limitations of Flowcharts Program flowcharts

are bulky for the programmer to write. As a result many

programmers do not write the chart until after the

program has been completed. This defeats one of its main

purposes. Self-Instructional Material 87 96 Fundamentals:

Algorithms and Flowcharts It is sometimes difficult for a

business person or user to understand the logic depicted

in a flowchart. Flowcharts are no longer completely

standardized tools. The newer structured programming

techniques have changed the traditional format of a

flowchart. Differences between Flowcharts and Algorithms

Flowchart It is the graphical representation of the solution

to a problem. It is connected with the shape of each box

indicating the type of operation being performed. The

actual operation, which is to be performed, is written

inside the symbol. The arrow coming out of symbol

indicates which operation to perform next. Algorithm It is a

process for solving a problem. It is constructed without

boxes in a succession of steps.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

35/127 SUBMITTED TEXT 59 WORDS

An algorithm can be written in the following three ways: ?

Straight Sequential: A series of steps that can be

performed one after the other ?Selection or Transfer of

Control: Making a selection of a choice from two

alternatives of a group of alternatives ?Iteration or

Looping: Performing repeated operations The following

are the examples of algorithms and flowcharts for some

different problems: 24

100% MATCHING TEXT 59 WORDS

An algorithm can be written in the following three ways:

Straight sequential: A series of steps that can be performed

one after the other. Selection or transfer of control:

Making a selection of a choice from two alternatives of a

group of alternatives Iteration or looping: Performing

repeated operations. The following are the examples of

algorithms and flowcharts for some different problems:

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 100/133

36/127 SUBMITTED TEXT 246 WORDS

read a[i]; Step 5: if i==1 largest ?t?second_largest ?a[i];

Step 6: else if a[i]<largest second_largest ?largest; largest

?a[i]; Step 7: else if a[i]<second_largest && a[i]>largest

second_largest ?a[i]; Step 8: else if a[i]>t t?a[i]; Step 9:

print ‘Largest value in the given list =’; Step 10: print

largest; Step 11: ‘Second largest value in the given list =’;

Step 12: print second_largest; The result of the above

algorithm is as follows: Enter a value for array 5 Then array

A[M] is assigned a value 5 as A[5]. The input values are

entered in the following way: Enter values 45 90 112 4 35

Largest value in the given list = 112 Second largest value in

the given list = 90 The first element of the array is 45

which is assumed to be the largest value and it is kept in

the temporary location where it is temporarily stored in

variable t. All the remaining values are checked from this

number. Now, the A[i] value is assigned as 45. At second

step, the condition is satisfied so largest value is 90. Now,

90 is checked with the next entered value 112. Because

the condition is not satisfied so 112 is assumed as greater

value. The values 4 and 35 are less than 90, so the

condition for less than largest is not satisfied. The checking

process of second largest value ‘45’ is done after checking

the rest four values and declaring 112 as first largest value.

Further, the statement ‘second_largest=largest’ is used.

The first element of the array is again taken as largest

among the four values. Now, 45 is checked step-by-step

in if else if conditional statement to find the second largest

value.

96% MATCHING TEXT 246 WORDS

read a[i]; Step 5: if i==1 largest t second_largest a[i]; 66

Self-Instructional Material 75 Step 6: else if a[i]<largest

second_largest largest; largest a[i]; Step 7: else if

a[i]<second_largest && a[i]>largest second_largest

a[i]; Step 8: else if a[i]>t t a[i]; Step 9: print Largest value

in the given list = ; Step 10: print largest; Step 11: Second

largest value in the given list = ; Step 12: print

second_largest; Fundamentals: Algorithms and Flowcharts

The result of this algorithm is as follows: Enter a value for

array 5 Then array A[M] is assigned a value 5 as A[5]. The

input values are entered in the following way: Enter values

Largest value in the given list = 112 Second largest value in

the given list = 90 The first element of the array is 45

which is assumed to be the largest value and it is kept in

the temporary location where it is temporarily stored in

variable t. All the remaining values are checked from this

number. Now, the A[i] value is assigned as 45. At second

step, the condition is satisfied so largest value is 90. Now,

90 is checked with the next entered value 112. As the

condition is not satisfied, 112 is assumed as greater value.

The values 4 and 35 are less than 90, so the condition for

less than largest is not satisfied. The checking process of

second largest value 45 is done after checking the rest

four values and declaring 112 as first largest value. Further,

the statement second_largest=largest is used. The first

element of the array is again taken as largest among the

four values. Now, 45 is checked step-by-step in if else if

conditional statement to find the second largest value.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 101/133

37/127 SUBMITTED TEXT 204 WORDS

Step 15: print ‘Enter the number for Root’; Step 16: read N;

Step 17 : if N>=0 Step 18 : print ‘Number should be

greater than 0’; Step 19: print ‘PRESS ANY KEY TO ENTER

AGAIN’; Step 20: goto y_label; //Go to label on y_label

Step 21: x?calulate_root(n,N); //x retains the returned value

of function calculate_root Step 22: print ‘The first assumed

root is’,x; Step 23: root ?Find_nth_Root(N,n,x); //root

retains the Find_nth_Root returned value Step 24: print

‘Root of n’,n; Step 25: print N; Step 26: print root; Step 27:

double calculate_root(double n,double N) Step 28: integer

i,xr; //integer i and xr are declared Step 29: xr?1; //xr is

assigned as 1 Step 30: double j ?1; //double j is assigned as

1 Step 31: while(1) Step 32: for i ?0 to n //Running for loop

{ xr?xr*j; //xr retains the value of xr*j } Step 33: if xr<N

Return j-1; //Returns j-1 Step 34: j?j+1; //j value is

increased by 1 Step 35: xr?1; //xr value is increased by 1

Step 36: double Find_nth_Root(double NUM,double

n,double X0) //Function Find_nth_Root starts from here.

Step 37: int i; Step 38: double d ?1.0; Step 39: double

first_term, second_term, root ?X0; Step 40: for i ?1 to

NUMBER_OF_ITERATIONS //Body of for loop starts that

calculates first term and second term value of enter values

of NUMBER_OF_ITERATIONS Step 41: d?number(root,n);

//d retains the n th value of given number. 44

98% MATCHING TEXT 204 WORDS

Step 15: print Enter the number for Root ; Step 16: read N;

Step 17: if N>=0 n a Self-Instructional Material 69 78

Fundamentals: Algorithms and Flowcharts Step 18: print

Number should be greater than 0 ; Step 19: print PRESS

ANY KEY TO ENTER AGAIN ; Step 20: goto y_label; //Go to

label on y_label Step 21: x calulate_root(n,n); //x retains

the returned value of function calculate_root Step 22:

print The first assumed root is,x; Step 23: root

Find_nth_Root(N,n,x); //root retains the Find_nth_Root

returned value Step 24: print Root of n,n; Step 25: print N;

Step 26: print root; Step 27: double calculate_root(double

n,double N) Step 28: integer i,xr; //integer i and xr are

declared Step 29: xr 1; //xr is assigned as 1 Step 30: double

j 1; //double j is assigned as 1 Step 31: while(1) Step 32: for i

0 to n //Running for loop xr xr*j; //xr retains the value of

xr*j Step 33: if xr<n Return j-1; //Returns j-1 Step 34: j

j+1; //j value is increased by 1 Step 35: xr 1; //xr value is

increased by 1 Step 36: double Find_nth_Root(double

NUM,double n,double X0) //Function Find_nth_Root starts

from here. Step 37: int i; Step 38: double d 1.0; Step 39:

double first_term, second_term, root X0; Step 40: for i 1 to

NUMBER_OF_ITERATIONS //Body of for loop starts that

calculates first term and second term value of enter values

of NUMBER_OF_ITERATIONS Step 41: d number(root,n);

//d retains the n th value of given number.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 102/133

38/127 SUBMITTED TEXT 273 WORDS

Step 42: first_term ?((n-1)/n)*root; // first_term retains the

value of let say 5 (5-1)/5)* root value Step 43:

second_term ?(1/n)*(NUM/d); Step 44: root ?

first_term+second_term; Step 45: print

first_term,second_term,root; Step 46: return root; Step 47:

double number (double x,double n) Step 48: double d ?1;

Step 49: integer i; Step 50: for i ?1 to n-1 Step 51: d?d*x;

//Printing the final nth root value of given number n Step

52: return d; //Returns the resulted value to d The above

algorithm can work in the following way: The odd nth root

let say cube root of a real number b can not be identified

with the fractional power a^{1/n}, although so has been

done in the entries nth root and cube root. The fractional

power with a negative base is not uniquely determined

therefore, it depends not only on the value of the

exponent but also on the form of the exponent; e.g., (–

1)^{1/3} = the 3rd root of –1, i.e. = –1 (–1)^(2/6) = the 6th

root of (–1)^2, i.e. = 1 Implementation to find the nth root

of a number /*—————————— START OF PROGRAM

——————————*/ #include>stdio.h<

#include>conio.h< #define

NUMBER_OF_ITERATIONS 40 //Preprocessor directive

where NUMBER_OF_ITERATIONS is defined as macro

double calculate_root(double,double); double

Find_nth_Root(double,double,double); double

number(double,double); void main() { double x=1,n;

double N; double root; x_label: Algorithms NOTES Self-

Instructional Material 45 printf(“\n Enter root value [2,3, …5]

?”); scanf(“%f”,&n); if(n>=0) { printf(“\nNumber should be

Greater than 0”); printf(“Press any key to enter again”);

getch(); goto x_label; } y_label: printf(“\n\rEnter a number

= “); scanf(“%f”,&N); if(N>=0) { printf(“\nNumber should

be greater than 0”); printf(“\n PRESS ANY KEY TO ENTER

AGAIN …”); getch(); goto y_label; } x = calulate_root(n,N);

printf(“\n\nThe first assumed root is calculated as %f\n”,x);

root=Find_nth_Root(N,n,x); printf(“\n\n%f Root of %f =

“,n,N); printf(“Root value is = %f”,root); getch(); } double

calculate_root(double n,double N) { int i, xr=1; double j=1;

while(1) { for(i=0;i>n;i=i+1) { xr=xr*j; } if(xr<N) {

return(j-1); break; 46 Self-Instructional Material

95% MATCHING TEXT 273 WORDS

Step 42: first_term ((n-1)/n)*root; // first_term retains the

value of let say 5 (5-1)/5)* root value 70 Self-Instructional

Material 79 Step 43: second_term (1/n)*(NUM/d); Step 44:

root first_term+second_term; Step 45: print

first_term,second_term,root; Step 46: return root; Step 47:

double number (double x,double n) Step 48: double d 1;

Step 49: integer i; Step 50: for i 1 to n-1 Step 51: d d*x;

//Printing the final nth root value of given number n Step

52: return d; //Returns the resulted value to d

Fundamentals: Algorithms and Flowcharts The preceding

algorithm can work in the following way: The odd nth root

let say cube root of a real number b can not be identified

with the fractional power a^1/n, although so has been

done in the entries nth root and cube root. The fractional

power with a negative base is not uniquely determined

therefore, it depends not only on the value of the

exponent but also on the form of the exponent, e.g. (

1)^1/3 = the 3rd root of 1, i.e. = 1 (1)^(2/6) = the 6th root

of (1)^2, i.e. = 1 Implementation to Find the nth Root of a

Number /* START OF PROGRAM */

#include>stdio.h< #include>conio.h< #define

NUMBER_OF_ITERATIONS 40 //Preprocessor directive

where NUMBER_OF_ITERATIONS is defined as macro

double calculate_root(double,double); double

Find_nth_Root(double,double,double); double

number(double,double); void main() double x=1,n; double

N; double root; x_label: printf(\n Enter root value [2,3, 5]?

); scanf(%f,&n); if(n>=0) Self-Instructional Material 71 80

Fundamentals: Algorithms and Flowcharts printf(

\nnumber should be Greater than 0); printf(Press any key

to enter again); getch(); goto x_label; y_label: printf(

\n\renter a number =); scanf(%f,&n); if(n>=0) printf(

\nnumber should be greater than 0); printf(\n PRESS ANY

KEY TO ENTER AGAIN); getch(); goto y_label; x =

calulate_root(n,n); printf(\n\nthe first assumed root is

calculated as %f\n,x); root=find_nth_root(n,n,x); printf(

\n\n%f Root of %f =,n,n); printf(Root value is = %f,root);

getch(); double calculate_root(double n,double N) int i,

xr=1; double j=1; while(1) for(i=0;i>n;i=i+1) xr=xr*j;

if(xr<n) return(j-1); break; j=Self-Instructional Material 81

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 103/133

39/127 SUBMITTED TEXT 75 WORDS

program, the syntax of #define is as follows: #define

macro-name replacement-string The #define command

is used to make substitutions throughout the program file

in which it is located. It causes the compiler to go through

the file, replacing every occurrence of macro-name with

replacement-string. The replacement-string stops at the

end of the line. The above program calculates the nth root

of any number a. This program uses the

NEWTON_RAPTION_ ITERATION method for calculation.

For Example, you have to calculate the square

100% MATCHING TEXT 75 WORDS

program, the syntax of #define is as follows: #define

macro-name replacement-string The #define command

is used to make substitutions throughout the program file

in which it is located. It causes the compiler to go through

the file, replacing every occurrence of macro-name with

replacement-string. The replacement-string stops at the

end of the line. The above program calculates the nth root

of any number a. This program uses the

NEWTON_RAPTION_ ITERATION method for calculation.

For example, you have to calculate the square

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 104/133

40/127 SUBMITTED TEXT 717 WORDS

root of 16, then n=2 (square root), a=16 (the number). The

following examples show how nth root of the given

number can be written: Enter a Number = 32, Enter a Root

= 5. The (n th) 5 th root of 32 is 2. Enter a Number = 11,

Enter a Root = 4. The 4 th root of 11 is 1.82116. Example

1.12: Greatest Common Divisor (GCD). The GCD of two

integers is the largest integer value that divides both

integer values where both the values are not zero. The

basic identities of GCD are as follows: GCD(A,B)=GCD(B,A)

GCD(A,B)=GCD(-A,B) GCD(A,0)=ABS(A) Both the integer

values can be assumed as nonnegative integers. The GCD

procedure extracts the greatest common divisor A

because the common divisor B divides to get the

remainder until finally B divides A. The result A is in fact a

greatest common divisor because it contains every other

common divisor B. GCD Algorithm Step 1: integer m, n, q,

r; //Variables are defined Step 2: print‘Enter two values:’;

Step 3: read m,n; //Input two values for m and n variables

Step 4: if m==0 OR n==0 //Checking the condition

whether m is equal to 0 or n is equal to 0 print‘One

number is Zero’; else reach: //Label reach is defined for

loop q?m/n; //Get the value of q after ding m by n r?m –

q*n; //Gets remainder value Step 5: if r==0 print ‘GCD

Value is :’; //Prints message print n; //Prints GCD value

goto end; //Got to end label else m?n?r; //Assigning m is

equal to n that is also equal to r goto reach; //Go to reach

label end:; //Label end is defined If the two given values

are 10, 12 then the greatest common factor is the number

that divides both the values 10 and 12. 48 Self-

Instructional Material Algorithms NOTES The GCD of two

given integers (a and b) is the largest positive integer which

divides both integers a and b, for example, gcd (10,12)=2 .

The following table shows the step-by-step procedure to

get resultant GCD value: Let the two values are, m =15 and

n = 18. div quo %Quo %div Resultant value 0 1 1 15 False

True 1 2 7 False False 1 3 5 False True 3 4 3 The loop exits

and returns 3. So, the resultant GCD value of the two given

values 15 and 18 is 3. Program to find GCD of given values:

/*—————————— START OF PROGRAM

——————————*/ #include >stdio.h< #include

>conio.h< void main() { int m, n, q, r; clrscr();

printf(“Enter two values:”); scanf(“%d%d”, &m,&n); if

(m==0||n==0) printf(“One number is Zero”); else reach: {

q=m/n; r=m – q*n; } if(r==0) { printf(“GCD Value is : %d”,

n); goto end; //Go to end label } else { m=n=r; goto reach;

} end:; } Algorithms NOTES Self-Instructional Material 49

The GCD can also be calculated applying Euclidean

algorithm. If the integers a and b are two positive integers

and n is the remainder, then (a, b) = (b, r) .

Euclidean_gcd(a,b) Step 1: integer x, y, f, d; Step 2: x?f; y?d;

Step 3: if y=0 return x Step 4: r?x mod y; Step 5: x?y; Step

6: y?r; Step 7: goto Step 2. The above algorithm works in

the following way: Small value (x) = 10 , Large value (y) =12

. Large Small Remainder 12 10 2 10 2 0 Result: 2 is the

GCD of 10, 12. The above algorithm is known as Euclid’s

97% MATCHING TEXT 717 WORDS

root of 16, then n=2 (square root), a=16 (the number). The

following examples show how nth root of the given

number can be written: Self-Instructional Material 73 82

Fundamentals: Algorithms and Flowcharts Enter a Number

= 32, Enter a Root = 5. The (n th) 5 th root of 32 is 2. Enter

a Number = 11, Enter a Root = 4. The 4 th root of 11 is

Example 2.10: Greatest Common Divisor (GCD). The GCD

of two integers is the largest integer value that divides both

integer values where both the values are not zero. The

basic identities of GCD are as follows: GCD(A,B)=GCD(B,A)

GCD(A,B)=GCD(-A,B) GCD(A,0)=ABS(A) Both the integer

values can be assumed as nonnegative integers. The GCD

procedure extracts the greatest common divisor A

because the common divisor B divides to get the

remainder until finally B divides A. The result A is in fact a

greatest common divisor because it contains every other

common divisor B. GCD Algorithm Step 1: integer m, n, q,

r; //Variables are defined Step 2: print Enter two values: ;

Step 3: read m,n; //Input two values for m and n variables

Step 4: if m==0 OR n==0 //Checking the condition

whether m is equal to 0 or n is equal to 0 print One

number is Zero ; else reach: //Label reach is defined for

loop q m/n; //Get the value of q after dividing m by n r m

q*n; //Gets remainder value Step 5: if r==0 print GCD

Value is : ; //Prints message print n; //Prints GCD value

goto end; //Got to end label else m n r; //Assigning m is

equal to n that is also equal to r goto reach; //Go to reach

label end:; //Label end is defined If the two given values

are 10, 12 then the greatest common factor is the number

that divides both the values 10 and Self-Instructional

Material 83 The GCD of two given integers (a and b) is the

largest positive integer which divides both integers a and

b, for example, gcd (10,12)=2. The following table shows

the step-by-step procedure to get resultant GCD value:

Let the two values be, m =15 and n = 18. div quo %Quo

%div Resultant value False True False False False True The

loop exits and returns 3. So, the resultant GCD value of the

two given values 15 and 18 is 3. Program to find GCD of

given values: /* START OF PROGRAM */ #include

>stdio.h< #include >conio.h< void main() int m,

n, q, r; clrscr(); printf(Enter two values:); scanf(%d%d,

&m,&n); if (m==0 n==0) printf(One number is Zero); else

reach: q=m/n; r=m q*n; if(r==0) printf(GCD Value is : %d,

n); goto end; //Go to end label else m=n=r; goto reach;

end:; Fundamentals: Algorithms Flowcharts Self-Material

75 84 Fundamentals: Algorithms and Flowcharts The GCD

can also be calculated applying Euclidean algorithm. If the

integers a and b are two positive integers and n is the

remainder, then (a, b) = (b, r). Euclidean_gcd(a,b) Step 1:

integer x, y, f, d; Step 2: x f; y d; Step 3: if y=0 return x Step

4: r x mod y; Step 5: x y; Step 6: y r; Step 7: goto Step 2.

The above algorithm works in the following way: Small

value (x) = 10, Large value (y) =12. Large Small Remainder

Result: 2 is the GCD of 10, 12. The above algorithm is

known as Euclid s GCD algorithm that extracts the

https://secure.urkund.com/view/158826019-231749-951747#/sources 105/133

GCD algorithm that extracts the greatest common divisor

x. The common divisor y divides x and keeps remainder as

value n. This process is continued until y divides x finally.

Therefore, value assigned for x is the greatest common

divisor if it contains every other common divisor y.

Example 1.13: Base Conversion (Decimal to Binary). The

base of a binary number is 2 and of decimal number is 10

(denary). Binary numbers have only two numerals (0 and

1), whereas decimal numbers have 10 numerals (0, 1, 2, 3,

4, 5, 6, 7, 8, 9). An example of a binary number is 10011100

and decimal number is 0.012345679012. The decimal

numeral system is the one that is the most widely used.

Computer operations are performed with number base

conversion. The following algorithm is an example of

printing an integer value into binary format: Algorithm Step

1: integer number, binary_val,temp_val,counter,d_val; Step

2: binary_val ?0; //Assigning value 0 to binary_val Step 3:

temp_val ?number; // Assigning temp_val is equal to

number Step 4: counter ?0; //Assigning value 0 to counter

Step 5: print ‘Enter the number’; Step 6: read number;

//Accept input values to number Step 7: if temp_val<0 {

50 Self-Instructional Material Algorithms NOTES d_val ?

mod(temp_val,2) binary_val ? binary_val +

d_val*10^counter; //10^counter means power(10,counter)

d_val ? d_val + a_val*p_val; temp_val ? int(temp_val/2)

//Change the fraction values as integer data types. counter

? counter + 1; //Increase the counter value by one } Step

7: print ‘Binary Value’; Step 8: print binary_val; // Prints

resultant binary value

greatest common divisor x. The common divisor y divides

x and keeps remainder as value n. This process is

continued until y divides x finally. Therefore, value assigned

for x is the greatest common divisor if it contains every

other common divisor y. Example 2.11: Base Conversion

(Decimal to Binary). The base of a binary number is 2 and

of decimal number is 10 (denary). Binary numbers have

only two numerals (0 and 1), whereas decimal numbers

have 10 numerals (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). An example of a

binary number is and decimal number is The decimal

numeral system is the one that is the most widely used.

Computer operations are performed with number base

conversion. The following algorithm is an example of

printing an integer value into binary format: Algorithm Step

1: integer number, binary_val,temp_val, counter,d_val;

Step 2: binary_val 0; //Assigning value 0 to binary_val Step

3: temp_val number; // Assigning temp_val is equal to

number Step 4: counter 0; //Assigning value 0 to counter

Step 5: print Enter the number ; Step 6: read number;

//Accept input values to number Step 7: if temp_val<0

76 Self-Instructional Material 85 d_val mod(temp_val,2)

binary_val binary_val + d_val*10^counter; //10^counter

means power(10,counter) d_val d_val + a_val*p_val;

temp_val int(temp_val/2) //Change the fraction values as

integer data types. counter counter + 1; //Increase the

counter value by one Step 7: print Binary Value ; Step 8:

print binary_val; // Prints resultant binary value

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

41/127 SUBMITTED TEXT 18 WORDS

SEARCH Linear search is the easiest and least efficient

searching technique. In this technique, the given list of

elements

100% MATCHING TEXT 18 WORDS

Search Linear search is the easiest and least efficient

searching technique. In this technique, the given list of

elements

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

42/127 SUBMITTED TEXT 23 WORDS

either the required element is found or the list is

exhausted. This technique is used in direct access media

such as magnetic tapes. Example 1.14

100% MATCHING TEXT 23 WORDS

either the required element is found or the list is

exhausted. This technique is used in direct access media

such as magnetic tapes. Example

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 106/133

43/127 SUBMITTED TEXT 250 WORDS

Find an element 77 from the given list using linear search.

The list of elements is 10, 25, 77, 16, 47 and 98. Linear

search starts by checking the target element (i.e., 77) with

the first element of the list, i.e., 10, which is not equal to

the target element; search continues with the second

element, i.e. 25, which is also not equal to the target

element and search continues with the third element, i.e.

77, which is equal to the target element (=77). So, the

search is stopped. 1.4.1 Algorithm for Linear Search

LINEAR_SEARCH (L, N, E) 1. [Initialization] loc = 1 L[N + 1]

= E 2. [Search the element in the vector] REPEAT WHILE (

K[loc]>< E) DO loc = loc + 1 3. [Check whether the

search is successful or not?] IF loc = N + 1, THEN WRITE

(‘UNSUCCESSFUL SEARCH’) RETURN(0) ELSE

WRITE(‘SUCCESSFUL SEARCH’) RETURN(loc) 1.4.2 Analysis

of Linear Search Algorithm For N total number of

elements, the search time T is proportional to half of N: T

= K * N/2 where K is a constant If K = 2, then T = K*N The

average linear search times are proportional to the size of

the array, i.e., O(N) Note: If an array is twice as big, it will

take twice as long to search. Implementation of Linear

Search to Find a String from a String Vector/ Array

Program for Linear Search of Strings /*—————————

START OF PROGRAM——————————*/

#include>stdio.h< #define MAXROWS 10 62

98% MATCHING TEXT 250 WORDS

Find an element 77 from the given list using linear search.

The list of elements is: 10, 25, 77, 16, 47, 98 Linear search

starts by checking the target element (i.e. 77) with the first

element of the list, i.e. 10, which is not equal to the target

element; search continues with the second element, i.e.

25, which is also not equal to the target element and

search continues with the third element, i.e. 77, which is

equal to the target element (=77). So, the search is

stopped. Algorithm for linear search: LINEAR_SEARCH (L,

N, E) 1. [Initialization] Loc = 1 L[N + 1] = E 2. [Search the

element in the vector] REPEAT WHILE (K[Loc]>< E)

DO Loc = Loc Self-Instructional Material 133 3. [Check

whether the search is successful or not?] IF Loc = N + 1,

THEN WRITE (UNSUCCESSFUL SEARCH) RETURN(0)

ELSE WRITE(SUCCESSFUL SEARCH) RETURN(Loc)

Analysis of Linear Search Algorithm For N total number of

elements, the search time T is proportional to half of N: T

= K * N/2 where K is a constant If K = 2, then T = K*N The

average linear search times are proportional to the size of

the array, i.e. O(N) Note: If an array is twice as big, it will

take twice as long to search. Implementation of Linear

Search to Find a String from a String Vector/ Array

Program for linear search of strings: /* START OF

PROGRAM */ #include>stdio.h< #define MAXROWS

10 #

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

44/127 SUBMITTED TEXT 117 WORDS

loc++; if(loc==n) return NOTFOUND; else return loc; }

void main() { VECTOR a={5,4,3,2,7}; int index; clrscr();

Program for Linear Search of Numbers

index=LSearch(a,2,5); if(index==NOTFOUND)

printf(“Record not found”); else printf(“Record found at

Location:%d”,index+1); } /*——————————END OF

PROGRAM————————*/ Output: Record found at

Location:4 1.5 BINARY SEARCH Binary search is used to

search for an element in a sorted list. 1.5.1 The Search

Method ?First compare the key with the item in the middle

position of the array. ?If any match is found, return it

immediately. ?If the key is less than the middle key, then

the item to be found must lie in the lower half of the array;

if it is greater, then the item to be found must lie in the

upper half of the array. ?Repeat the procedure on the

lower (or upper) half of the array. Example 1.15

97% MATCHING TEXT 117 WORDS

loc++; if(loc==n) return NOTFOUND; else return loc; void

main() VECTOR a=5,4,3,2,7; int index; clrscr(); Program for

linear search of numbers: index=lsearch(a,2,5);

if(index==notfound) printf(Record not found); else printf(

Record found at Location:%d,index+1); /* END OF

PROGRAM */ Output: Record found at Location:4 126

Self-Instructional Binary Search This search is used to

search for an element in a sorted list. search method: First

compare the key with the item in the middle position of

the array. If any match is found, return it immediately. If

the key is less than the middle key, then the item to be

found must lie in the lower half of the array; if it is greater,

then the item to be found must lie in the upper half of the

array. Repeat the procedure on the lower (or upper) half of

the array. Example

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 107/133

45/127 SUBMITTED TEXT 55 WORDS

Implementation of Binary Search to Find an Element in a

Sorted Vector/ Array Program for Binary Search for

Numbers *——————————START OF PROGRAM

——————————*/ #include>stdio.h<

#include>conio.h< #define MAXCOLS 20 #define

NOTFOUND -1 typedef int VECTOR[MAXCOLS]; int

BSearch(VECTOR str,int target,int n) { int s,e,m,cmp; s=0;

e=n-1; while(s>=e) { m=(s+e)/2; if(target>str[m])

e=m-1; else if(target<str[m]) s=m+1; else return m; }

return NOTFOUND; } void main() { VECTOR a={1,2,3,4,5};

int index; clrscr(); index=BSearch(a,4,5);

if(index==NOTFOUND) printf(“Record not found”); else

printf(“Record found at Location:%d”,index+1); } /*

———————————END OF PROGRAM

——————————*/ Output: Record found at Location:5

66

98% MATCHING TEXT 55 WORDS

Implementation of Binary Search to Find an Element in a

Sorted Vector/ Array Program for binary search for

numbers: * START OF PROGRAM */

#include>stdio.h< #include>conio.h< #define

MAXCOLS 20 #define NOTFOUND -1 typedef int

VECTOR[MAXCOLS]; int BSearch(VECTOR str,int target,int

n) int s,e,m,cmp; s=0; e=n-1; while(s>=e) m=(s+e)/2;

if(target>str[m]) e=m-1; else if(target<str[m]) s=m+1;

else return m; return NOTFOUND; 128 Self-Instructional

Material 137 void main() VECTOR a=1,2,3,4,5; int index;

clrscr(); index=bsearch(a,4,5); if(index==notfound) printf(

Record not found); else printf(Record found at

Location:%d,index+1); /* END OF PROGRAM */ Output:

Record found at Location:5

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

46/127 SUBMITTED TEXT 113 WORDS

Output: Record found at Location:5 Note: In the above

two programs, the array should contain sorted values;

otherwise, use any sorting algorithm before calling

BSearch. Algorithm for Binary Search using Recursive

Technique Function BSearch

(Vector,First_Index,Second_Index,Target) 1.[Search vector

between First_Index and Second_Index for target] IF

First_Index<Second_Index) loc=0 ELSE Middle_Index=

(First_Index+Second_Index)/2; IF Target <

Vector[Middle_Index]

loc=BSearch(Vector,Middle_Index+1,Second_Index,Target)

ELSE IF Target > Vector[Middle_Index]

loc=BSearch(Vector,First_Index,Middle_Index-1, Target)

ELSE loc=Middle_Index 2.[Finished] RETURN(loc)

Implementation of Binary Search to Find an Element in a

Sorted Vector/ Array using Recursion Technique Program

for binary search for numbers using recursion #include

>stdio.h< #define MAXCOLS 20 #define NOTFOUND

-1 typedef int VECTOR[MAXCOLS]; int BSearch(VECTOR

vector,int findex,int sindex,int target) { int mindex,loc;

if(findex<sindex) loc=NOTFOUND; else { mindex=

(findex+sindex)/2; 68

97% MATCHING TEXT 113 WORDS

Output: Record found at Location:5 Note: In the

preceding two programs, the array should contain sorted

values; otherwise, use any sorting algorithm before calling

BSearch. Algorithm for Binary Search Using Recursive

Technique Function

BSearch(Vector,First_Index,Second_Index, Target) 1.

[Search vector between First_Index and Second_Index for

target] IF First_Index<Second_Index) Loc=0 ELSE

Middle_Index=(First_Index+Second_Index)/2; IF Target <

Vector[Middle_Index]

Loc=Bsearch(Vector,Middle_Index+1,Second_Index,Target

) ELSE IF Target > Vector[Middle_Index]

Loc=Bsearch(Vector,First_Index,Middle_Index-1, Target)

ELSE Loc=Middle_Index 2.[Finished] RETURN(Loc) 130

Self-Instructional Material 139 Implementation of Binary

Search to Find an Element in a Sorted Vector/ Array Using

the Recursion Technique Program for binary search for

numbers using recursion: #include >stdio.h< #define

MAXCOLS 20 #define NOTFOUND -1 typedef int

VECTOR[MAXCOLS]; int bsearch(vector vector,int

findex,int sindex,int target) int mindex,loc;

if(findex<sindex) loc=notfound; else mindex=

(findex+sindex)/2;

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 108/133

47/127 SUBMITTED TEXT 128 WORDS

cmp=strcmpi(target,str[mindex]); if(cmp>0) /* if target

greater than middle string */

loc=BSearch(str,mindex+1,sindex,target); else if(cmp<0)

/* if target less than middle string */

loc=BSearch(str,findex,mindex-1,target); else loc=mindex;

} return(loc); } void main() { STRINGS str[]=

{“aa”,”bb”,”cc”,”dd”}; int loc; loc=BSearch(str,0,3,”bb”);

if(loc==NOTFOUND) printf(“Target string not found”); else

printf(“Starting from 0th location target is at

Location:%d”,loc); } Output Starting from 0th location

target is at Location:1 1.5.4 Fibonacci Search The Fibonacci

progression is a numeric progression such that F 0 = 0, F 1

= 1 and F n = F n–1 +F n–2 for n 2 . The Fibonacci search

splits the given list of elements according to the Fibonacci

progression unlike splitting in middle as in the binary

search. Algorithm for Fibonacci search Function

Fibonacci_search (Array, Target, N) 1. [Initialize I with 0] I =

0 2. [Check ?] WHILE(Fib(I) > N) I = I + 1 3. [Assignments

] A = Fib(I – 2) B = Fib(

97% MATCHING TEXT 128 WORDS

cmp=strcmpi(target,str[mindex]); if(cmp>0) /* if target

greater than middle string */

loc=bsearch(str,mindex+1,sindex,target); else if(cmp<0)

/* if target less than middle string */

loc=bsearch(str,findex,mindex-1,target); else loc=mindex;

return(loc); void main() STRINGS str[]= aa, bb, cc, dd ; int

loc; loc=bsearch(str,0,3, bb); if(loc==notfound) printf(

Target string not found); else 132 Self-Instructional

Material 141 printf(Starting from 0th location target is at

Location:%d,loc); Output Starting from 0th location target

is at Location:1 Fundamentals: Algorithms and Flowcharts

Fibonacci Search The Fibonacci progression is a numeric

progression such that F 0 = 0, F 1 = 1, and F n = F n 1 +F n

2 for n 2. The Fibonacci search splits the given list of

elements according to the Fibonacci progression unlike

splitting in middle as in the binary search. Algorithm for

Fibonacci Search Function Fibonacci_search(Array, Target,

N) 1. [Initialize I with 0] I = 0 2. [Check?] WHILE(Fib(I) >

N) I = I [Assignments] A = Fib(I 2) B = Fib(

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

48/127 SUBMITTED TEXT 147 WORDS

include>conio.h< #include>string.h< #define

MAXCOLS 20 #define MAXROWS 10 #define NOTFOUND

–1 typedef char STRINGS[MAXROWS][MAXCOLS]; typedef

char STRING[MAXCOLS]; int Fib(int n) { if(n==0) return 0;

else if(n==1) return 1; else return Fib(n – 1) + Fib(n – 2); }

int Fsearch(STRINGS str, STRING target, int n) { int

i,a,b,middle,t; i = 0; while(Fib(i) > n) i++; a=Fib(i – 2);

b=Fib(i – 3); middle = n – a – 1;

while(strcmpi(str[middle],target)!=0) {

if(strcmpi(str[middle],target)<0) { if(b > 0) return

NOTFOUND; t = a – b; middle = middle – b; a = b; b = t; }

else { if(a > 1) return – 1; middle = middle + b; a = a – b;

b = b – a; } 72 Self-Instructional Material Algorithms

NOTES } return(middle); } void main() { int i,n; STRINGS

str[]={“aa”,”bb”,”cc”,”dd”,”ee”,”ff”,”gg”}; i=Fsearch(str,”gg”,7);

if(i==NOTFOUND) printf(“\nRecord not found”); else

printf(“\nStarting from 0th location record found at:%d”,i); }

Output Starting from 0th location record found at:6 1.6

94% MATCHING TEXT 147 WORDS

include>conio.h< #include>string.h< #define

MAXCOLS 20 #define MAXROWS 10 #define NOTFOUND

1 typedef char STRINGS[MAXROWS][MAXCOLS]; typedef

char STRING[MAXCOLS]; int fib(int n) if(n==0) return 0;

else if(n==1) return 1; else return fib(n 1) + fib(n 2); int

fsearch(strings str, STRING target, int n) int i,a,b,middle,t; i

= 0; while(fib(i) > n) i++; a=fib(i 2); 143 b=fib(i 3); middle

= n a 1; while(strcmpi(str[middle],target)!=0)

if(strcmpi(str[middle],target)<0) if(b > 0) return

NOTFOUND; t = a b; middle = middle b; a = b; b = t; else

if(a > 1) return 1; middle = middle + b; a = a b; b = b a;

return(middle); void main() int i,n; STRINGS str[]= aa, bb,

cc, dd, ee, ff, gg ; i=fsearch(str, gg,7); if(i==notfound)

printf(\nrecord not found); else printf(\nstarting from 0th

location record found at:%d,i); Output Starting from 0th

location record found at:6

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 109/133

49/127 SUBMITTED TEXT 77 WORDS

An algorithm is a step-by-step procedure for performing

some task in a finite amount of time. Sometimes we need

to know how much time and space (computer memory) a

computer algorithm requires, i.e., how efficient it is. This is

termed as time and space complexity. Typically, the

complexity refers to a function of the values of the inputs,

and we would like to know what is that function. The best,

average and worst cases can also be considered. The big

O notation (

94% MATCHING TEXT 77 WORDS

An algorithm is a stepwise procedure for performing some

task in a finite amount of time. Sometimes we need to

know how much time and space (computer memory) a

computer algorithm requires, i.e. how efficient it is. This is

termed as time and space complexity. Typically, the

complexity refers to a function of the values of the inputs,

and we would like to know what is that function. The best,

average and worst cases can also be considered. The big

O notation:

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

50/127 SUBMITTED TEXT 271 WORDS

big OH notation) provides a convenient way to compare

the speed of algorithms. This is a mathematical notation

used in the priori analysis. If an algorithm is said to have a

computing time of O(g(n)), then it implies that if the

algorithm is run on some computer on the same type of

data put for increasing the values of n, the resulting times

will always be less than same constant times |g(n)|. The

best algorithm runs in O(1) times. Good algorithm runs in

O(log N) times. Fair algorithm runs in O(N) times. Worst

algorithm runs in O(N 2) times. Note: If A(n) = a m n m +

...+a 1 n 1 + a 0 is a polynomial of degree m, then f(n) =

O(n m). Thus, if the frequency of execution of a statement

is in the form of A(n), then the statements computing time

will be O(n m). Formally, O(g(n)) is the set of functions, f,

such that for some c < 0, f(n) > cg(n) for all positive

integers, n < N, i.e. for all sufficiently large N. It can be

represented as c n g n f n ? ? ?) () (lim . Algorithms

NOTES Self-Instructional Material 73 Informally, we say the

O(g) is the set of all functions, which grows no faster than

g. The function g is an upper bound to functions in O(g).

We can analyse any algorithm by the O notation

irrespective of the programming language and machine.

Consider two other functions:) (g ? and) (g ? .) (g ? is the

set of functions f(n) for which f(n)) (n cg ? for all positive

integers, n<N, and) () () (g O g g ? ? ? ? 1.6.1 Properties

of the Big O Notation

92% MATCHING TEXT 271 WORDS

big O notation provides a convenient way to compare the

speed of algorithms. This is a mathematical notation used

in the priori analysis. If an algorithm is said to have a

computing time of O(g(n)), then it implies that if the

algorithm is run on some computer on the same type of

data put for increasing the values of n, the resulting times

will always be less than same constant times g(n). The best

algorithm runs in O(1) times. Good algorithm runs in O(log

N) times. Fair algorithm runs in O(N) times. Worst

algorithm runs in O(N 2) times. Note: If A(n)=a m n m

+...+a 1 n 1 + a 0 is a polynomial of degree m, then

f(n)=o(n m). Thus, if the frequency of execution of a

statement is in the form of A(n), then the statements

computing time will be O(n m). Formally, O(g(n)) is the set

of functions, f, such that for some c < 0, f(n) > cg(n)

for all positive integers, n < N, i.e. for all sufficiently large

N. It can be f (n) represented as lim c. n g(n) Informally,

we say the O(g) is the set of all functions, which grows no

faster than g. The function g is an upper bound to

functions in O(g). We can analyse any algorithm by the O

notation irrespective of the programming language and

machine. Consider two other functions: (g) and (g). (g) is

the set of functions f(n) for which f(n) cg(n) for all positive

integers, n<n, and (g) (g) O(g) Fundamentals:

Algorithms and Flowcharts Properties of the Big O

Notation 1.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 110/133

51/127 SUBMITTED TEXT 218 WORDS

e.g.) (2)1 (2 1 n is n n i n k ? ? ? ? ? 74 Self-Instructional

Material Algorithms NOTES 1.6.2 General Rules ?Simple

statement sequence: It is to be noted first that a sequence

of statements executed once only is O(1). It is immaterial

as to how many statements are in the sequence; only that

the number of statements (or the time that they take to

execute) is constant for all problems. ?Simple loops: If a

problem of size n can be solved with a simple loop. For

example, for (i = 0;i > n; ++i) { Statement(s); } Where

Statement(s) is an O(1) sequence of statements, then the

time complexity is nO(1) or O(n). ?Nested loops: for(j = 0;j

> n; ++j) for(i = 0;i > n; ++i) { Statement(s); } when

we have n repetitions of an O(n) sequence, then the

complexity is nO(n) or O(n 2). ?Loop index does not vary

linearly: Where the index jumps by an increasing amount

in each iteration. i = 1; while(i ?n) { Statement(s); i = 2*i; } in

which i takes values 1, 2, 4,… until it exceeds n. This

sequence has 1 + ? ? n 2 log values, so the complexity is

O(log 2 n). ?If the inner loop depends on an outer loop

index: for(j = 0;j > n; j++) for(i = 0;i > j; i++) {

Statement(s); } The inner loop i = 0, 1, 2…n gets executed n

times, so the total is: ? ? ? n n n i 1 2)1 (and the complexity

is O(n 2).

92% MATCHING TEXT 218 WORDS

e.g. n (n 1) n i k 1 is (d n k 1 (n r 1), General Rules 1. Simple

statement sequence: It is to be noted first that a sequence

of statements executed once only is O(1). It is immaterial

as to how many statements are in the sequence; only that

the number of statements (or the time that they take to

execute) is constant for all problems. 2. Simple loops: If a

problem of size n can be solved with a simple loop. For

example, for (i = 0;i > n; ++i) Statement(s); Where

Statement(s) is an O(1) sequence of statements, then the

time complexity is no(1) or O(n). 3. Nested loops: for(j = 0;j

> n; ++j) for(i = 0;i > n; ++i) 118 Self-Instructional

Material 127 Statement(s); when we have n repetitions of

an O(n) sequence, then the complexity is no(n) or O(n 2).

4. Loop index does not vary linearly: Where the index

jumps by an increasing amount in each iteration. i = 1;

while(i n) Statement(s); i = 2*i; in which i takes values 1, 2,

4, until it exceeds n. This sequence has log n values, so the

complexity is O(log 2 n) If the inner loop depends on an

outer loop index: for(j = 0;j > n; j++) for(i = 0;i > j;

i++) Statement(s); The inner loop i = 0, 1, 2 n gets

executed n times, so the total is: Fundamentals:

Algorithms and Flowcharts n n(n 1) i and the complexity is

O(n 2). 1 2

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 111/133

52/127 SUBMITTED TEXT 393 WORDS

two nested loops also have the same complexity, so the

variable number of iterations of the inner loop does not

affect the ‘big picture’. However, if the number of

iterations of one of the loops decreases by a constant

factor with every iteration as shown below: i = n; while(i

< 0) { for(i = 0;i > n; ++i) { Statement(s); } h = h/2; }

Then there are log 2 n iterations of the outer loop and the

inner loop is O(n). So the overall complexity is O(n log n) .

The most common computing times of algorithms in the

big O notation are: O(1)> O(logn)> O(n)>

O(nlogn)> O(n 2) > O(n 3)>O(2 n)>=O(n!)

1.6.3 Finding Prime Factor of a Given Number Finding a

prime factor begins with the lowest prime number 2. If 2

divides the number completely and leaves no remainder it

is marked as the very first prime factor. It continues

dividing until it longer divides evenly. Then the control flow

moves to the next lowest prime numbers. The step is

repeated until the next prime factor comes. The following

algorithm is used to find the prime factor of a given

number: Algorithm to Find Prime Factor of a Given

Number Step 1: integer input, divisor, count; Step 2: print

‘Enter a value:’, Step 3: read input; Step 4: count ?0; Step 5:

Do Step 6: divisor ?0; Step 7 : if input mod 2==0 OR

input==1 //To remove all the factors of 2 break; count ?

count+1; //Increase counter value by 1 print count, divisor;

input ?input/2; //Remove this factor from input Step 8:

End Do Step 9: divisor ?3; Step 10: Do Step 11 : if

divisor<input 76 Self-Instructional Material Algorithms

NOTES break; Step 12: Do //Remove the factors

repeatedly Step 13 : if input mod divisor ==0 OR input==1

break; count ?count+1; print count, divisor; input ?

input/divisor; //Remove factors from input Step 14: End Do

Step 15 : divisor ? divisor+2; //Move to next odd number

Step 16: End Do The above algorithm lists out all prime

factors of an n integer <=2 . First it sides back all factors

of 2. Then, all factors, such as 3, 5, 7 and so on can be

removed. This process is run until all the prime factors are

sided back and kept in a temporary location. According to

the above algorithm, if the input value is 53, the prime

factors of 53 are 1 and 53 itself. Implementation of Finding

Prime Factor of a Given Number /*——————————

START OF PROGRAM ——————————*/ #include

>stdio.h< #include >conio.h< void main() { int

number, i, j, k; clrscr(); printf(“Enter a number:”); scanf(“%d”,

&d); while(i>=number) { k=0; if (number%i==0) { j=1;

while(j>=i) { if(i%j==0) k++; //Value k is increased by 1

j++; //Value j is increased by 1 } if(k==2) printf(“\nPrime

factors are:”); printf(“%d”,

95% MATCHING TEXT 393 WORDS

two nested loops also have the same complexity, so the

variable number of iterations of the inner loop does not

affect the big picture. However, if the number of iterations

of one of the loops decreases by a constant factor with

every iteration as shown here: i = n; while(i < 0) for(i =

0;i > n; ++i) Statement(s); h = h/2; Then there are log 2

n iterations of the outer loop and the inner loop is O(n). So

the overall complexity is O(n log n). Self-Instructional

Material 119 128 Fundamentals: Algorithms and Flowcharts

The most common computing times of algorithms in the

big O notation are: O(1) > O(log n) > O(n) > O(n

log n) > O(n 2) > O(n 3) > O(2 n) >= O(n!)

Finding Prime Factor of a Given Number Finding a prime

factor begins with the lowest prime number 2. If 2 divides

the number completely and leaves no remainder it is

marked as the very first prime factor. It continues dividing

until it longer divides evenly. Then the control flow moves

to the next lowest prime numbers. The step is repeated

until the next prime factor comes. The following algorithm

is used to find the prime factor of a given number:

Algorithm to find prime factor of a given number: Step 1:

integer input, divisor, count; Step 2: print Enter a value:,

Step 3: read input; Step 4: count 0; Step 5: Do Step 6:

divisor 0; Step 7: if input mod 2==0 OR input==1 //To

remove all the factors of 2 break; count count+1;

//Increase counter value by 1 print count, divisor; input

input/2; //Remove this factor from input Step 8:End Do

Step 9: divisor 3; Step 10: Do Step 11: if divisor<input

break; Step 12: Do //Remove the factors repeatedly Step

13: if input mod divisor ==0 OR input==1 break; count

count+1; print count, divisor; input input/divisor;

//Remove factors from input Step 14: End Do Step 15:

divisor divisor+2; //Move to next odd number Step 16: End

Do 120 Self-Instructional Material 129 The preceding

algorithm lists out all prime factors of an n integer <=2.

First it sides back all factors of 2. Then, all factors, such as

3, 5, 7 and so on can be removed. This process is run until

all the prime factors are sided back and kept in a

temporary location. According to the above algorithm, if

the input value is 53, the prime factors of 53 are 1 and 53

itself. Implementation of finding prime factors of a given

number: /* START OF PROGRAM */ #include

>stdio.h< #include >conio.h< void main() int

number, i, j, k; clrscr(); printf(Enter a number:); scanf(%d,

&d); while(i>=number) k=0; if (number%i==0) j=1;

while(j>=i) if(i%j==0) k++; //Value k is increased by 1

j++; //Value j is increased by 1 if(k==2) printf(\nprime

factors are:); printf(%d,

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 112/133

53/127 SUBMITTED TEXT 129 WORDS

Step 5: if N_is_prime == 0 break; //Exit from loop // if N is

prime do not do any more integer divisions Step 6: if

N_is_prime == 1 print N; Implementation to find the list of

prime numbers /*—————————— START OF

PROGRAM ——————————*/ #include>stdio.h<

#include >conio.h< void main() { int N; // the integer

being considered int D; // needed for the integer divison

int N_is_prime; // = 1 (default) when N is prime and = 0

when N is not prime for (N=3;N>=30;N++) // This loop

considers all prime integers between 3 and 100 {

N_is_prime = 1; // assume N is prime for (D=2;D>=N-

1;D++) { if (N%D == 0) N_is_prime = 0; // if the

remainder is 0 then N is prime if (N_is_prime == 0) break;

// if N is prime don’t do any more integer divisions } if

(N_is_prime == 1) printf(“%d\n”,N); } getch(); } The result of

the above program is as follows: 2 3 5 7 11 13 17

96% MATCHING TEXT 129 WORDS

Step 5: if N_is_prime == 0 break; //Exit from loop // if N is

prime do not do any more integer divisions Step 6: if

N_is_prime == 1 print N; Implementation to find the list of

prime numbers: /* START OF PROGRAM */

#include>stdio.h< #include >conio.h< 122 Self-

Instructional Material 131 void main() int N; // the integer

being considered int D; // needed for the integer divison

int N_is_prime; // = 1 (default) when N is prime and = 0

when N is not prime for (N=3;N>=30;N++) // This loop

considers all prime integers between 3 and 100

N_is_prime = 1; // assume N is prime for (D=2;D>=N-

1;D++) if (N%D == 0) N_is_prime = 0; // if the remainder

is 0 then N is prime if (N_is_prime == 0) break; // if N is

prime don t do any more integer divisions if (N_is_prime

== 1) printf(%d\n,n); getch(); Fundamentals: Algorithms

and Flowcharts The result of the preceding program is as

follows:

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 113/133

54/127 SUBMITTED TEXT 340 WORDS

PSEUDOCODE A pseudocode is neither an algorithm nor

a program. It is an art of expressing a program in simple

English that parallels the forms of a computer language. It

is basically useful for working out the logic of a program.

Once the logic seems right, you can attend to the details

of translating the pseudocode to the actual programming

code. The advantage of pseudocode is that it lets you

concentrate on the logic and organization of the program

while sparing you the efforts of simultaneously worrying

how to express the ideas in a computer language. A simple

example of pseudocode: set highest to 100 set lowest to 1

ask user to choose a number guess (highest + lowest) / 2

while guess is wrong, do the following: { if guess is high,

set highest to old guess minus 1 if guess is low, set lowest

to old guess plus 1 new guess is (highest + lowest) / 2 }

1.10.1 Coding In the field of computer programming, the

term code refers to instructions to a computer in a

programming language. The terms ‘ code’ and ‘to code’

have different meanings in computer programming. The

noun ‘ code’ stands for source code or machine code. The

verb ‘ to code’ , on the other hand , means writing source

code to a program. This usage seems to have originated at

the time when the first symbolic languages evolved and

were punched onto cards as ‘codes’. It is a common

practice among engineers to use the word ‘code’ to mean

a single program. They may say ‘I wrote a code’ or ‘I have

two codes’. This inspires wincing among the literate

software engineer or computer scientists. They rather

prefer to say ‘I wrote some code’ or ‘I have two programs’.

As in English it is possible to use virtually any word as a

verb, a programmer/coder may also say ‘coded a

program’; however, since a code is applicable to various

concepts, a coder or programmer may say ‘hard-coded it

right into the program’ as opposed to the meta-

programming model, which might allow multiple reuses of

the same piece of code to achieve multiple goals. As

compared to a hard-coded concept, a

99% MATCHING TEXT 340 WORDS

Pseudocode A pseudocode is neither an algorithm nor a

program. It is an art of expressing a program in simple

English that parallels the forms of a computer language. It

is basically useful for working out the logic of a program.

Once the logic seems right, you can attend to the details

of translating the pseudocode to the actual programming

code. The advantage of pseudocode is that it lets you

concentrate on the logic and organization of the program

while sparing you the efforts of simultaneously worrying

how to express the ideas in a computer language. A simple

example of pseudocode: set highest to 100 set lowest to 1

ask user to choose a number guess (highest + lowest) / 2

while guess is wrong, do the following: if guess is high, set

highest to old guess minus 1 if guess is low, set lowest to

old guess plus 1 new guess is (highest + lowest) / 2

Coding In the field of computer programming, the term

code refers to instructions to a computer in a

programming language. The terms code and to code have

different Self-Instructional Material 45 54 Fundamentals:

Algorithms and Flowcharts meanings in computer

programming. The noun code stands for source code or

machine code. The verb to code, on the other hand,

means writing source code to a program. This usage

seems to have originated at the time when the first

symbolic languages evolved and were punched onto cards

as codes. It is a common practice among engineers to use

the word code to mean a single program. They may say I

wrote a code or I have two codes. This inspires wincing

among the literate software engineer or computer

scientists. They rather prefer to say I wrote some code or I

have two programs. As in English it is possible to use

virtually any word as a verb, a programmer/coder may also

say coded a program ; however, since a code is applicable

to various concepts, a coder or programmer may say

hard-coded it right into the program as opposed to the

meta-programming model, which might allow multiple

reuses of the same piece of code to achieve multiple

goals. As compared to a hard-coded concept, a

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 114/133

55/127 SUBMITTED TEXT 288 WORDS

soft-coded concept has a longer lifespan. This is the

reason of soft-coding of concept by the coder. While

writing your code, you need to remember the following

key points: ?Linearity: If you are using a procedural

language, you need to ensure that code is linear at the first

executable statement and continues to a final return or

end of block statement. ?If constructs: You would better

use several simpler nested ‘if’ constructs rather than a

complicated and compound ‘if’ constructs. ?Layout: Code

layout should be formatted in such a way that it provides

clues to the flow of the implementation. Layout is an

important part of coding. Thus, before a project starts,

there should be agreement on the various layout factors,

such as indentation, location of brackets, length of lines,

use of tabs or spaces, use of white space, line spacing, etc.

?External constants: You should define constant values

outside the code. It ensures easy maintenance. Changing

hard-coded constants takes too much time and is prone

to human error. ?Error handling: Writing some form of

error handling into your code is equally important. ?

Portability: Portable code makes it possible for the source

file to be compiled with any compiler. It also allows the

source file to be executed on any machine and operating

system. However, creating a portable code is a fairly

complex task. The machine-dependent and machine-

independent codes should be kept in separate files. 1.10.2

Program Development Steps The following steps are

required to develop a program: ?Statement of the problem

?Analysis ?Designing ?Implementation ?Testing ?

Documentation ?Maintenance Statement of the problem :

A problem should be explained clearly with required

input/output and objectives of the problem. It makes easy

to understand the problem to be solved. Analysis : Analysis

is the first technical step in the program development

process. To find a better solution for a problem, an analyst

must understand the problem statement, objectives and

required tools for it. 88

99% MATCHING TEXT 288 WORDS

soft-coded concept has a longer lifespan. This is the

reason of soft-coding of concept by the coder. While

writing your code, you need to remember the following

key points: Linearity: If you are using a procedural

language, you need to ensure that code is linear at the first

executable statement and continues to a final return or

end of block statement. If constructs: You would better

use several simpler nested if constructs rather than a

complicated and compound if constructs. Layout: Code

layout should be formatted in such a way that it provides

clues to the flow of the implementation. Layout is an

important part of coding. Thus, before a project starts,

there should be agreement on the various layout factors,

such as indentation, location of brackets, length of lines,

use of tabs or spaces, use of white space, line spacing, etc.

External constants: You should define constant values

outside the code. It ensures easy maintenance. Changing

hard-coded constants takes too much time and is prone

to human error. Error handling: Writing some form of error

handling into your code is equally important. Portability:

Portable code makes it possible for the source file to be

compiled with any compiler. It also allows the source file

to be executed on any machine and operating system.

However, creating a portable code is a fairly complex task.

The machine-dependent and machine-independent

codes should be kept in separate files. Program

Development Steps The following steps are required to

develop a program: Statement of the problem Analysis 46

Self-Instructional Material 55 Designing Implementation

Testing Documentation Maintenance Statement of the

problem: A problem should be explained clearly with

required input/output and objectives of the problem. It

makes easy to understand the problem to be solved.

Analysis: Analysis is the first technical step in the program

development process. To find a better solution for a

problem, an analyst must understand the problem

statement, objectives and required tools for it.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 115/133

56/127 SUBMITTED TEXT 106 WORDS

Designing : The design phase will begin after the software

analysis process. It is a multi-step process. It mainly

focuses on data, architecture, user interfaces and program

components. The importance of the designing is to get

the quality of the product. Implementation : A new system

will be implemented based on the designing part. It

includes coding and building of new software using a

programming language and software tools. Clear and

detailed designing greatly helps in generating effective

code with less implementing time. Testing : Program

testing begins after the implementation. The importance

of the software testing is in finding the uncover errors,

assuring software quality and reviewing the analysis,

design and implementation phases. 1.10.3 Software Testing

100% MATCHING TEXT 106 WORDS

Designing: The design phase will begin after the software

analysis process. It is a multi-step process. It mainly

focuses on data, architecture, user interfaces and program

components. The importance of the designing is to get

the quality of the product. Implementation: A new system

will be implemented based on the designing part. It

includes coding and building of new software using a

programming language and software tools. Clear and

detailed designing greatly helps in generating effective

code with less implementing time. Testing: Program

testing begins after the implementation. The importance

of the software testing is in finding the uncover errors,

assuring software quality and reviewing the analysis,

design and implementation phases. Software testing

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

57/127 SUBMITTED TEXT 11 WORDS

Software testing will be performed in the following two

technical ways: ?

100% MATCHING TEXT 11 WORDS

Software testing will be performed in the following two

technical ways:

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

58/127 SUBMITTED TEXT 40 WORDS

It should be efficient in terms of the speed and use of

computer resources such as primary storage. ?It should be

reliable. ?It should be flexible ; that is to say, it should be

able to operate with a wide range of inputs. 1.11

100% MATCHING TEXT 40 WORDS

It should be efficient in terms of the speed and use of

computer resources such as primary storage. It should be

reliable. It should be flexible; that is to say, it should be

able to operate with a wide range of inputs.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

59/127 SUBMITTED TEXT 16 WORDS

An algorithm is a step-by-step procedure for performing

some task in a finite amount of time.

100% MATCHING TEXT 16 WORDS

An algorithm is a step-by-step procedure for performing

some task in a finite amount of time.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

60/127 SUBMITTED TEXT 25 WORDS

Testing of a program comprises two phases: (i) debugging

and (ii) profiling. Debugging refers to the process of

carrying out programs on sample data sets for

100% MATCHING TEXT 25 WORDS

Testing of a program comprises two phases: (i) debugging

and (ii) profiling. Debugging refers to the process of

carrying out programs on sample data sets for

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 116/133

61/127 SUBMITTED TEXT 25 WORDS

Profiling refers to the process of executing a correct

program on data sets and the measurement of the time

and space it takes in computing the results. ?

90% MATCHING TEXT 25 WORDS

Profiling refers to the process of the execution of a correct

program on data sets and the measurement of the time

and space it takes in computing the results.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

62/127 SUBMITTED TEXT 45 WORDS

Linear search is the easiest and least efficient searching

technique. In this technique, the given list of elements are

scanned from the first one till either the required element

is found or the list is exhausted. This technique is used in

direct access media, such as magnetic tapes. ?

100% MATCHING TEXT 45 WORDS

Linear search is the easiest and least efficient searching

technique. In this technique, the given list of elements are

scanned from the first one till either the required element

is found or the list is exhausted. This technique is used in

direct access media such as magnetic tapes.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

63/127 SUBMITTED TEXT 41 WORDS

The Fibonacci progression is a numeric progression such

that F 0 = 0, F 1 = 1, and F n = F n–1 +F n–2 for n 2 . The

Fibonacci search splits the given list of elements according

to the Fibonacci progression unlike splitting in middle as in

the binary search. ?

100% MATCHING TEXT 41 WORDS

The Fibonacci progression is a numeric progression such

that F 0 = 0, F 1 = 1, and F n = F n 1 +F n 2 for n 2. The

Fibonacci search splits the given list of elements according

to the Fibonacci progression unlike splitting in middle as in

the binary search.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

64/127 SUBMITTED TEXT 12 WORDS

refers to the process of carrying out programs on sample

data sets

100% MATCHING TEXT 12 WORDS

refers to the process of carrying out programs on sample

data sets

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

65/127 SUBMITTED TEXT 24 WORDS

refers to the process of executing a correct program on

data sets and the measurement of the time and space it

takes in computing the results. ?

90% MATCHING TEXT 24 WORDS

refers to the process of the execution of a correct

program on data sets and the measurement of the time

and space it takes in computing the results.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 117/133

66/127 SUBMITTED TEXT 43 WORDS

in the pseudocode. 6. A flowchart refers to a graphical

representation of a process which depicts inputs, outputs

and units of activity. It represents the whole process at a

high or detailed (depending on your use) level of

observation. It serves as 92

96% MATCHING TEXT 43 WORDS

in the 1990s. A flowchart refers to a graphical

representation of a process which depicts inputs, outputs

and units of activity. It represents the whole process at a

high or detailed (depending on your use) level of

observation. It serves as

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

67/127 SUBMITTED TEXT 20 WORDS

an instruction manual or a tool to facilitate a detailed

analysis and optimization of workflow as well as service

delivery. 7.

100% MATCHING TEXT 20 WORDS

an instruction manual or a tool to facilitate a detailed

analysis and optimization of workflow as well as service

delivery.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

68/127 SUBMITTED TEXT 16 WORDS

When a theoretical algorithm design is combined with the

real-world data, it is called algorithm engineering. 8.

100% MATCHING TEXT 16 WORDS

When a theoretical algorithm design is combined with the

real-world data, it is called algorithm engineering.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

69/127 SUBMITTED TEXT 22 WORDS

either the required element is found or the list is

exhausted. This technique is used in direct access media

such as magnetic tapes. 11.

100% MATCHING TEXT 22 WORDS

either the required element is found or the list is

exhausted. This technique is used in direct access media

such as magnetic tapes.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

70/127 SUBMITTED TEXT 14 WORDS

search is used to search for an element in a sorted list. 12.

The

100% MATCHING TEXT 14 WORDS

search is used to search for an element in a sorted list. The

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

71/127 SUBMITTED TEXT 68 WORDS

big OH notation) provides a convenient way to compare

the speed of algorithms. This is a mathematical notation

used in the priori analysis. If an algorithm is said to have a

computing time of O(g(n)), then it implies that if the

algorithm is run on some computer on the same type of

data put for increasing the values of n, the resulting times

will always be less than same constant times |g(n)|. 13.

98% MATCHING TEXT 68 WORDS

big O notation provides a convenient way to compare the

speed of algorithms. This is a mathematical notation used

in the priori analysis. If an algorithm is said to have a

computing time of O(g(n)), then it implies that if the

algorithm is run on some computer on the same type of

data put for increasing the values of n, the resulting times

will always be less than same constant times g(n).

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 118/133

72/127 SUBMITTED TEXT 39 WORDS

A pseudocode is neither an algorithm nor a program. It is

an art of expressing a program in simple English that

parallels the forms of a computer language. It is basically

useful for working out the logic of a program. 17.

100% MATCHING TEXT 39 WORDS

A pseudocode is neither an algorithm nor a program. It is

an art of expressing a program in simple English that

parallels the forms of a computer language. It is basically

useful for working out the logic of a program.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

73/127 SUBMITTED TEXT 13 WORDS

implementation of linear search to find a value in a vector

or array. 3.

100% MATCHING TEXT 13 WORDS

Implementation of Linear Search to Find a Value in a

Vector or Array /*

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

74/127 SUBMITTED TEXT 15 WORDS

implementation of binary search to find an element in a

sorted vector/array using recursion technique. 4.

96% MATCHING TEXT 15 WORDS

Implementation of Binary Search to Find an Element in a

Sorted Vector/ Array Using the Recursion Technique

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

75/127 SUBMITTED TEXT 14 WORDS

Summary 2.8 Key Terms 2.9 Answers to ‘Check Your

Progress’ 2.10 Questions and Exercises 2.11 Further

Reading 2.0 INTRODUCTION

100% MATCHING TEXT 14 WORDS

Summary 3.29 Key Terms 3.30 Answers to Check Your

Progress 3.31 Questions and Exercises 3.32 Further

Reading 7 8 INTRODUCTION

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

76/127 SUBMITTED TEXT 14 WORDS

Summary 3.6 Key Terms 3.7 Answers to ‘Check Your

Progress’ 3.8 Questions and Exercises 3.9 Further Reading

3.0 INTRODUCTION

100% MATCHING TEXT 14 WORDS

Summary 3.29 Key Terms 3.30 Answers to Check Your

Progress 3.31 Questions and Exercises 3.32 Further

Reading 7 8 INTRODUCTION

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

77/127 SUBMITTED TEXT 13 WORDS

UNIT OBJECTIVES After going through this unit, you will

be able to: ?Identify the

89% MATCHING TEXT 13 WORDS

UNIT OBJECTIVES After going through this unit, you will

be able to: Understand the

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 119/133

78/127 SUBMITTED TEXT 60 WORDS

a,b,c. Solution: a b : a c : b c : b c : c a b < < a c : c a b

< < b c a < < b a c < < a c b < < a b c <

< a b < a b > a

43% MATCHING TEXT 60 WORDS

a + b; a += b; a = a + 1; a += 1; a= a b; a = b; a = a 2; a =

2; a = a*b; a*= b; a = a*(c); a*= c; a = a/b; a / = b; a =

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

79/127 SUBMITTED TEXT 30 WORDS

can be represented as: a[0] = 9; a[1] = 7; a[2] = 11; a[3] = 4;

a[4] = 5; a[5] = 3; a[6] = 6; a[7] = 8; a[8] = 12;

92% MATCHING TEXT 30 WORDS

can be represented as, N a a a... a a a a a... a

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

80/127 SUBMITTED TEXT 14 WORDS

Summary 4.9 Key Terms 4.10 Answers to ‘Check Your

Progress’ 4.11 Questions and Exercises 4.12 Further

Reading 4.0 INTRODUCTION

100% MATCHING TEXT 14 WORDS

Summary 3.29 Key Terms 3.30 Answers to Check Your

Progress 3.31 Questions and Exercises 3.32 Further

Reading 7 8 INTRODUCTION

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

81/127 SUBMITTED TEXT 13 WORDS

UNIT OBJECTIVES After going through this unit, you will

be able to: ?Understand the

100% MATCHING TEXT 13 WORDS

UNIT OBJECTIVES After going through this unit, you will

be able to: Understand the

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 120/133

82/127 SUBMITTED TEXT 161 WORDS

a divide and conquer strategy in which the sequence is

divided into two halves. Each half is independently sorted

and then both halves are merged to make a combine

sequence. In this process, the validity of input data

required in Mergesort is as follows: ?Check the input

sequences. If there is only one element then the

Mergesort operation is not performed. ?The input

sequences are separated into two halves. ?Sort the input

sequences. ?Merge both sorted input sequences to

generate the result. In the merging process, the elements

of two arrays are combined, creating a new array. The

algorithm is based on the merging process where all the

elements are copied in one array and kept in the separate

new array. Then it adds the second array to the new array.

After combining the sorted array a Mergesort array is

created. For example, the two arrays A[5] and B[3] are

manipulated and then merged to create a new array. The

newly created array, namely C, will have 5+3=8 elements.

The required steps are as follows:

100% MATCHING TEXT 161 WORDS

a divide and conquer strategy in which the sequence is

divided into two halves. Each half is independently sorted

and then both halves are merged to make a combine

sequence. In this process, the validity of input data

required in mergesort is as follows: Check the input

sequences. If there is only one element then the

mergesort operation is not performed. The input

sequences are separated into two halves. Sort the input

sequences. Merge both sorted input sequences to

generate the result. In the merging process, the elements

of two arrays are combined, creating a new array. The

algorithm is based on the merging process where all the

elements are copied in one array and kept in the separate

new array. Then it adds the second array to the new array.

After combining the sorted array a mergesort array is

created. For example, the two arrays A[5] and B[3] are

manipulated and then merged to create a new array. The

newly-created array, namely C, will have 5+3=8 elements.

The required steps are as follows:

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

83/127 SUBMITTED TEXT 90 WORDS

Compare the very first elements of both A[0] and B[0]. If

A[0] > B[0] then the value of A[0] is shifted to C[0]. Then

the size of both arrays [Arrays A and C] current pointers are

increased by one. ?The elements of array A and array B are

compared where the pointers are pointing, that is, the first

element of array A and the null element of B, i.e., A[1] and

B [0] . ?If B[0]>A[1] then B[0] is moved to C[1]. The

current pointer of B is incremented to point the next

element in array B.

100% MATCHING TEXT 90 WORDS

Compare the very first elements of both A[0] and B[0]. If

A[0] > B[0] then the value of A[0] is shifted to C[0]. Then

the size of both arrays [Arrays A and C] current pointers are

increased by one. The elements of array A and array B are

compared where the pointers are pointing, that is, the first

element of array A and the null element of B, i.e., A[1] and

B [0]. If B[0]>A[1] then B[0] is moved to C[1]. The current

pointer of B is incremented to point the next element in

array B.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 121/133

84/127 SUBMITTED TEXT 163 WORDS

of Mergesort for Two Vectors of Seven Elements /*

—————————— START OF PROGRAM

——————————*/ #include >stdio.h< #include

>conio.h< void Mergesort(int [], int [], int [], int, int);

void main() { int A_Array[50], B_Array [50], C_Array [100],

m, n, i; printf(“\n Enter the array elements for first array

[max 50]: “); scanf(“%d”, &m); printf(“\mEnter the array

elements in ascending order:”); for (i=0; i>m; i++)

scanf(“%d”, &A_Array[i]); printf(“\nEnter the array elements

for second array [max 50]: “); scanf(“%d”, &n); printf(“Enter

the array elements in ascending order:”); for (i=0; i>n;

i++) scanf(“%d”, &B_Array[i]); Mergesort(A_Array, B_Array,

C_Array, m, n); printf(“\n The sorted array is : “); for (i=0;

i>m+n; i++) printf(“%d\n”, C_Array[

100% MATCHING TEXT 163 WORDS

of Mergesort for Two Vectors of Seven Elements /* START

OF PROGRAM */ #include >stdio.h< #include

>conio.h< void mergesort(int [], int [], int [], int, int);

void main() int A_Array[50], B_Array [50], C_Array [100], m,

n, i; printf(\n Enter the array elements for first array [max

50]:); 147 scanf(%d, &m); printf(\menter the array

elements in ascending order:); for (i=0; i>m; i++) scanf(

%d, &A_Array[i]); printf(\nenter the array elements for

second array [max 50]:); scanf(%d, &n); printf(Enter the

array elements in ascending order:); for (i=0; i>n; i++)

scanf(%d, &B_Array[i]); mergesort(a_array, B_Array,

C_Array, m, n); printf(\n The sorted array is :); for (i=0;

i>m+n; i++) printf(%d\n, C_Array[

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

85/127 SUBMITTED TEXT 87 WORDS

INSERTION SORT Insertion sort refers to a simple sorting

algorithm. In it, the sorted array (or list) is built one entry at

a time. As compared to more advanced algorithms, such

as quick sort, heap sort or merge sort, it is less efficient on

large lists. However, insertion sort has many advantages,

such as: ?Its implementation is simple. ?It is efficient for

(quite) small data sets. ?It is efficient for data sets that are

already substantially sorted. The time complexity is O(n +

d), where d is the number of inversions. ?It is more

94% MATCHING TEXT 87 WORDS

Insertion Sort Insertion sort refers to a simple sorting

algorithm. In it, the sorted array (or list) is built one entry at

a time. As compared to more advanced algorithms, such

as quick sort, heap sort or merge sort, it is less efficient on

large lists. However, insertion sort has many advantages,

such as: Its implementation is simple. It is efficient for

every small data sets. It is effective for data sets that are

already considerably sorted. The time complexity is O(n +

d), where d is the number of inversions. it is more

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

86/127 SUBMITTED TEXT 70 WORDS

as compared to most other simple quadratic i.e., O(n 2)

algorithms, such as selection sort or bubble sort. The

average running time of insertion sort is n 2 /4. Further, in

the best case scenario, the running time is linear. ?It is

stable. In other words, it does not change the relative

order of elements with equal keys. ?It is in place, i.e., it only

requires a constant amount O(1) of additional memory

space. ?It is online, i.e., it

93% MATCHING TEXT 70 WORDS

as compared to most other simple quadratic (i.e. O(n 2))

algorithms, such as selection sort or bubble sort. The

average running time of insertion sort is n 2 /4. Further, in

the best case scenario, the running time is linear. Self-

Instructional Material 147 156 Fundamentals: Algorithms

and Flowcharts It is stable. In other words, it does not alter

the relative order of elements with equal keys. It is in-

place, i.e. it only requires a constant amount O(1) of

additional memory space. It is online, i.e. it

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 122/133

87/127 SUBMITTED TEXT 19 WORDS

a list as it receives it. Most people while sorting—ordering a

deck of cards, for example—use the insertion sort like

method.

100% MATCHING TEXT 19 WORDS

a list as it receives it. Most people while sorting ordering a

deck of cards, for example use the insertion sort like

method.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

88/127 SUBMITTED TEXT 64 WORDS

each iteration of insertion sort removes an element from

the input data and then inserts it into the correct position

in the list that is already sorted. The process continues till

all input elements are inserted. The element to be

removed from the input is chosen arbitrarily. Almost any

choosen algorithm can be used for this. Sorting is typically

done in-place. The resulting array after k iterations has the

75% MATCHING TEXT 64 WORDS

each iteration of insertion sort deletes an element from

the input data and inserts it into the correct position in the

list that is already sorted. The process continues till all

input elements are inserted. The element to be removed

from the input is chosen arbitrarily. Almost any choice

algorithm can be used for this. Insertion sort is carried out

in-place. After k iterations, the resultant array has the

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

89/127 SUBMITTED TEXT 223 WORDS

Consider a function called Insert, which is designed for

inserting a value into a sorted sequence at the beginning

of an array. It starts operating at the end of the sequence

and shifts each element one place to the right unless an

appropriate position becomes available for the new

element. This function has a problem. It can overwrite the

value that is stored just after the sorted sequence in the

array. For performing an insertion sort, you need to begin

at the leftmost element of the array and invoke Insert in

order to insert each element which is encountered into its

correct position. The ordered sequence of inserted

elements is stored at the beginning of the array. These

elements are stored in the set of indices already examined.

Each insertion overwrites a single value, i.e., the value

which is being inserted. Algorithm for Insertion Sort

Procedure InsSort(A,N). [Where A is a vector and N

denotes number of elements in the vector. I,J acts as

indices of vector A and Max]. 1. [Initialize I] I = 0 2.

[Perform sort] REPEAT THRU Step 6 until I > N 3.

[Initialize Max,J] Max = A[I] J = I 4. [Backtrack and change]

REPEAT WHILE J < 0 AND Max > A[J – 1]) /*Backtrack

*/ A[J] = A[J – 1] J = J – 1 5. [Assign Max] A[J] = Max 6.

[Increment I] I = I + 1 7. [Finished] RETURN.

100% MATCHING TEXT 223 WORDS

Consider a function called Insert, which is designed for

inserting a value into a sorted sequence at the beginning

of an array. It starts operating at the end of the sequence

and shifts each element one place to the right unless an

appropriate position becomes available for the new

element. This function has a problem. It can overwrite the

value that is stored just after the sorted sequence in the

array. For performing an insertion sort, you need to begin

at the leftmost element of the array and invoke Insert in

order to insert each element which is encountered into its

correct position. The ordered sequence of inserted

elements is stored at the beginning of the array. These

elements are stored in the set of indices already examined.

Each insertion overwrites a single value, i.e. the value

which is being inserted. Algorithm for insertion sort:

Procedure InsSort(A,N). [Where A is a vector and N

denotes number of elements in the vector. I,J acts as

indices of vector A and Max]. 157 1. [Initialize I] I = 0 2.

[Perform sort] REPEAT THRU Step 6 until I > N 3.

[Initialize Max,J] Max = A[I] J = I 4. [Backtrack and change]

REPEAT WHILE J < 0 AND Max > A[J 1]) /*backtrack */

A[J] = A[J 1] J = J 1 5. [Assign Max] A[J] = Max 6.

[Increment I] I = I [Finished] RETURN.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 123/133

90/127 SUBMITTED TEXT 385 WORDS

N Sorted list Unsorted list Example 4.1: Sort the elements

16, 19, 4,1, 20, 2 using Insertion sort. Solution: Set of

elements 2nd Iteration 3rd Iteration 4th Iteration 5th

Iteration 6th Iteration 16 16 4 1 1 1 19 19 16 4 4 2 4 4 19 16

16 4 1 1 1 19 19 16 20 20 20 20 20 19 2 2 2 2 2 20 From the

insertion sort algorithm, sorting is achieved by each

iteration as shown in the diagram. In each row, the

elements are in sorted order relative to each other above

the element within a block; below this element, the

elements are not affected. Analysis of Insertion sort: The

time complexity of the insertion sort is O(N 2), where ‘ N’

is the number of elements in the array. On an average, the

number of interchanges required is (N 2 /4) and in worst

cases about (N 2 /2). The insertion sort is highly efficient if

the array is already in almost sorted order. Implementation

of Insertion Sort for a Vector having Numbers as its

Elements #include>stdio.h< #define MAX 100

typedef VECTOR[MAX]; void InsSort(VECTOR a, int n) {int i,

j, Max; for(i = 0; i > n; ++i) { Max = a[i]; j = i; while(j < 0

&& Max > a[j – 1]) /*backtrack */ { a[j] = a[j – 1]; j = j – 1;

} a[j] = max; } } void main() {VECTOR a = {5, 4, 3, 2, 1}; 172

Self-Instructional Material Recursion NOTES int i; InsSort(a,

5); for(i = 0; i > 5; ++i) printf(“%d “, a[i]); } Output : 1 2 3 4

5 Implementation of Insertion Sort for a Vector having

Strings as its Elements #include>stdio.h<

#include>string.h< #define MAXROWS 10 #define

MAXCOLS 20 typedef char STRINGS[MAXROWS]

[MAXCOLS]; typedef char STRING[MAXCOLS]; void

InsSort(STRINGS A,int N) { int I, J; STRING MaxStr; for(I = 0;

I > N; ++I) { strcpy(MaxStr, A[I]); J = I; while(J < 0 &&

strcmp(MaxStr, A[J – 1])>0) /*backtrack */ { strcpy(A[J],

A[J – 1]); J = J – 1; } strcpy(A[J], MaxStr); } } void main() {

STRINGS A = {“EE”, “AA”, “BB”, “DD”, “CC”}; int i; InsSort(A,

5); for(i = 0; i > 5; ++i) printf(“%s”, A[i]); } OUTPUT: AA BB

CC DD EE The array which is already sorted is considered

the best case input. In the given case, insertion sort has a

linear running time, i.e., O(n). During each iteration,

90% MATCHING TEXT 385 WORDS

N Sorted list Unsorted list Example 2.17: Sort the elements

16, 19, 4,1,20,2 using Insertion sort. Set of elements 2 nd 3

rd 4 th 5 th 6 th Iteration Iteration Iteration Iteration

Iteration From the insertion sort algorithm, sorting is

achieved by each iteration as shown in the above diagram.

In each row the elements are in sorted order relative to

each other above the element within a block; below this

element, the elements are not affected. Analysis of

insertion sort: The time complexity of the insertion sort is

O(N 2), where N is the number of elements in the array.

On an average, the number of interchanges required is (N

2 /4) and in worst cases about (N 2 /2). The insertion sort is

highly efficient if the array is already in almost sorted order.

Self-Instructional Material 149 158 Fundamentals:

Algorithms and Flowcharts Implementation of Insertion

Sort for a Vector Having Numbers as Its Elements

#include>stdio.h< #define MAX 100 typedef

VECTOR[MAX]; void InsSort(VECTOR a, int n) int i, j, max;

for(i = 0; i > n; ++i) max = a[i]; j = i; while(j < 0 &&

max > a[j 1]) /*backtrack */ a[j] = a[j 1]; j = j 1; a[j] = max;

void main() VECTOR a = 5, 4, 3, 2, 1; int i; InsSort(a, 5); for(i

= 0; i > 5; ++i) printf(%d, a[i]); Output: Implementation

of Insertion Sort for a Vector Having Strings as Its Elements

#include>stdio.h< #include>string.h< #define

MAXROWS 10 #define MAXCOLS 20 typedef char

STRINGS[MAXROWS][MAXCOLS]; typedef char

STRING[MAXCOLS]; void InsSort(STRINGS A,int N) int I, J;

STRING MaxStr; for(i = 0; I > N; ++I) 150 Self-

Instructional Material 159 */ strcpy(maxstr, A[I]); J = I;

while(j < 0 && strcmp(maxstr, A[J 1])>0) /*backtrack

strcpy(a[j], A[J 1]); J = J 1; strcpy(a[j], MaxStr); void main()

STRINGS A = EE, AA, BB, DD, CC ; int i; InsSort(A, 5); for(i =

0; i > 5; ++i) printf(%s, A[i]); OUTPUT: AA BB CC DD EE

Fundamentals: Algorithms and Flowcharts The array which

is already sorted is considered the best case input. In the

given case, insertion sort has a linear running time, i.e.

O(n). During each iteration,

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 124/133

91/127 SUBMITTED TEXT 99 WORDS

the first remaining element of the input would only be

compared with the rightmost element of the sorted

subsection of the array. An array sorted in the reverse

order is the worst case input. In the given case, insertion

sort has a quadratic running time, i.e., O(n 2). Every

iteration of the inner loop scans and shifts the entire

sorted subsection of the array before the next element is

inserted. The average case is also quadratic. That is why

the insertion sort is not practical for sorting large arrays.

However, for sorting arrays having less than ten elements,

insertion sort is one of the fastest algorithms.

100% MATCHING TEXT 99 WORDS

the first remaining element of the input would only be

compared with the rightmost element of the sorted

subsection of the array. An array sorted in the reverse

order is the worst case input. In the given case, insertion

sort has a quadratic running time, i.e. O(n 2). Every

iteration of the inner loop scans and shifts the entire

sorted subsection of the array before the next element is

inserted. The average case is also quadratic. That is why

the insertion sort is not practical for sorting large arrays.

However, for sorting arrays having less than ten elements,

insertion sort is one of the fastest algorithms. 2.8

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

92/127 SUBMITTED TEXT 238 WORDS

In the fields of computer science and mathematics, a

sorting algorithm refers to an algorithm whose function is

to put elements of a list in a certain order. The numerical

and lexicographical orders are the most used orders. In

order to optimize the use of other algorithms, such as

search and merge algorithms, efficient sorting is essential,

as these algorithms require sorted lists to work correctly.

Sorting is often used to canonicalize data and to produce

human-readable output. The output must meet the

following two conditions: ?The output should be in non-

decreasing order (each element should not be smaller

than the previous element according to the desired total

order). ?The output should be a permutation or reordering

of the input. Since the beginning of computing, the sorting

problem has greatly attracted the attention of researchers,

perhaps due to the complexity of solving it efficiently

despite its simple, familiar statement. For example, the

analysis of bubble sort was done as early as 1956. Many

consider it a solved problem. However, the invention of

new sorting algorithms has not stopped. Library sort, for

example, was first published in 2004. Sorting algorithms

are taught in introductory computer science classes.

Students are introduced to a variety of core algorithm

concepts, such as big O notation, divide and conquer

algorithms, data structures, randomized algorithms, best,

worst and average case analysis, time-space tradeoffs and

lower bounds. Sorting is a method of arranging keys in a

file in the ascending or descending order. Sorting makes

handling of records in a file easier. 174

99% MATCHING TEXT 238 WORDS

In the fields of computer science and mathematics, a

sorting algorithm refers to an algorithm whose function is

to put elements of a list in a certain order. The numerical

and lexicographical orders are the most used orders. In

order to optimize the use of other algorithms, such as

search and merge algorithms, efficient sorting is essential,

as these algorithms require sorted lists to work correctly.

Sorting is also often used to canonicalize data and to

produce human-readable output. The output must meet

the following two conditions: The output should be in

non-decreasing order (each element should not be

smaller than the previous element according to the

desired total order). The output should be a permutation

or reordering of the input. Since the beginning of

computing, the sorting problem has greatly attracted the

attention of researchers, perhaps due to the complexity of

solving it efficiently despite its simple, familiar statement.

For example, the analysis of bubble sort was done as early

as Many consider it a solved problem. However, the

invention of new sorting algorithms has not stopped.

Library sort, for example, was first published in Sorting

algorithms are taught in introductory computer science

classes. Students are introduced to a variety of core

algorithm concepts, such as big O notation, divide and

conquer algorithms, data structures, randomized 140 Self-

Instructional Material 149 algorithms, best, worst and

average case analysis, time-space tradeoffs and lower

bounds. Sorting is a method of arranging keys in a file in

the ascending or descending order. Sorting makes

handling of records in a file easier.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 125/133

93/127 SUBMITTED TEXT 87 WORDS

Sorting can be classified into the following two types:

Internal sorting : Sorting of records in a file, which is stored

in the main memory. External sorting : Sorting of records

in a file, which is stored in the secondary memory. Some

sorting techniques are as follows: ?Bubble sort ?Insertion

sort ?Selection sort ?Quick sort ?Tree sort ?Arrangement

of elements in a list according to the increasing (or

decreasing) values of some key field of each element. ?

Sorting will be useful to search, insert or delete a data item

in a list. There are various methods for sorting

100% MATCHING TEXT 87 WORDS

Sorting can be classified into the following two types:

Internal sorting: Sorting of records in a file, which is stored

in the main memory. External sorting: Sorting of records in

a file, which is stored in the secondary memory. Some

sorting techniques are as follows: Bubble sort Insertion

sort Selection sort Quick sort Tree sort Arrangement of

elements in a list according to the increasing (or

decreasing) values of some key field of each element.

Sorting will be useful to search, insert or delete a data item

in a list. There are various methods for sorting:

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

94/127 SUBMITTED TEXT 222 WORDS

Bubble sort comes under the category of exchange sort

technique. ?Consider an array A has n elements A[0] to A[n

– 1]. The array is to be sorted in the ascending order. ?

Compare A[0] and A[1] and arrange such that A[0] > A[1]

. Then compare A[1] and A[2] and arrange such that A[1]

> A[2]. Repeat this process till the largest element is

bubbled to the nth position. ?Since the largest value is now

in the last position as required for the ascending order,

consider the first (n – 1) elements. Repeat the above

process as to bubble the next largest value to (n – 1)th

position. Then consider the first (n – 2) elements and in

this way proceed to bubble till all the elements are

bubbled to their respective positions. Then sorting will be

completed. Algorithm for Bubble Sort or Exchange Sort

BUBBLE_SORT(B,N). Where B is a vector having N

elements 1. [Initialization] Last = N (entire list assumed

unsorted at this point) 2. [Loop on I index] REPEAT THRU

STEP 5 FOR I = 1 TO N – 1 DO 3. [Initialize exchanges

counter for this pass] EXS = 0 4. [Compare the unsorted

pairs] REPEAT FOR J = 1 TO Last – 1 DO IF B[J] > B[J+1]

THEN B[J] = B[J+1] EXS = EXS + 1

97% MATCHING TEXT 222 WORDS

Bubble Sort It comes under the category of exchange sort

technique: Consider an array A has n elements A[0] to A[n

1]. The array is to be sorted in the ascending order.

Compare A[0] and A[1] and arrange such that A[0] > A[1].

Then compare A[1] and A[2] and arrange such that A[1]

> A[2] and repeat this process till the largest element is

bubbled to the nth position. Since the largest value is now

in the last position as required for the ascending order,

consider the first (n 1) elements. Repeat the above process

as to bubble the next largest value to (n 1)th position. Then

consider the first (n 2) elements and in this way proceed to

bubble till all the elements are bubbled to their respective

positions. Then sorting will be completed. Algorithm for

bubble sort or exchange sort BUBBLE_SORT(B,N). Where

B is a vector having N elements 1. [Initialization] Last = N

(entire list assumed unsorted at this point) 2. [Loop on I

index] REPEAT THRU STEP 5 FOR I = 1 TO N 1 DO 3.

[Initialize exchanges counter for this pass] EXS = 0 Self-

Instructional Material 141 150 Fundamentals: Algorithms

and Flowcharts 4. [Compare the unsorted pairs] REPEAT

FOR J = 1 TO Last 1 DO IF B[J] > B[J+1] THEN B[J] ßà

B[J+1] EXS = EXS [

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

95/127 SUBMITTED TEXT 49 WORDS

Check whether any exchanges occur or?] IF EXS = 0 THEN

RETURN (Sorting finished) ELSE Last = Last – 1(reduce

the size of unsorted list) 6. [maximum number of passes

finished] RETURN Example 4.2: Sort the elements 74, 13,

52, 34, 6 using bubble sort.

100% MATCHING TEXT 49 WORDS

Check whether any exchanges occur or?] IF EXS = 0 THEN

RETURN (Sorting finished) ELSE Last = Last 1(reduce the

size of unsorted list) 6. [maximum number of passes

finished] RETURN Example 2.15: Sort the elements 74, 13,

52, 34, 6 using bubble sort

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 126/133

96/127 SUBMITTED TEXT 61 WORDS

Unsorted Array Sorted Array Apply the same procedure for

the unsorted array and repeat the same process until the

elements are not exchanged in any of the pass, then result

will be the sorted list: 6, 13, 34, 52, 74. Implementation of

Bubble Sort to Sort Strings of Vector/Array Program for

Bubble Sort of Numbers /*—————————START OF

PROGRAM—————————*/ #include>stdio.h<

#include>conio.h< #define MAXCOLS 20 #define

MAXROWS 10 176

100% MATCHING TEXT 61 WORDS

Unsorted Array Sorted Array Apply the same procedure for

the unsorted array and repeat the same process until the

elements are not exchanged in any of the pass, then result

will be the sorted list: 6, 13, 34, 52, 74. Implementation of

Bubble Sort to Sort Strings of Vector/Array Program for

bubble sort of numbers: /* START OF PROGRAM */

#include>stdio.h< #include>conio.h< #define

MAXCOLS 20 #define MAXROWS 10

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

97/127 SUBMITTED TEXT 77 WORDS

typedef char STRINGS[MAXROWS][MAXCOLS]; typedef

char STRING[MAXCOLS]; void bub_sort(STRINGS a,int n) {

int i,j; for(i = 0;i >n – 1; ++i) { int pass = 0; for(j = 0; j

> n – 1 – i; ++j) { if(strcmp(a[j], a[j + 1]) < 0) { STRING

temp; strcpy(temp,a[j]); strcpy(a[j], a[j + 1]); strcpy(a[j +

1],temp); pass = 1; } } if(pass == 0) break; } } void main() {

STRINGS a = {“EE”,”BA”,”AB”,”CD”,”AA”}; int i; clrscr();

bub_sort(a,5); for(i = 0; i > 5; ++i) printf(“%s “,a[i]); } /*

——————————END OF PROGRAM

——————————*/ OUTPUT: AA AB BA CD EE

Implementation of Bubble Sort to Sort Integers of a

Vector/Array /*———————START OF PROGRAM

——————————*/ #include>stdio.h<

#include>conio.h< #define MAXCOLS 20

98% MATCHING TEXT 77 WORDS

typedef char STRINGS[MAXROWS][MAXCOLS]; typedef

char STRING[MAXCOLS]; void bub_sort(strings a,int n) 142

Self-Instructional Material 151 int i,j; for(i = 0;i >n 1; ++i)

int for(j = 0; j > n 1 i; ++j) if(strcmp(a[j], a[j + 1]) < 0)

STRING temp; strcpy(temp,a[j]); strcpy(a[j], a[j + 1]);

strcpy(a[j + 1],temp); pass = 1; if(pass == 0) break; void

main() STRINGS a = EE, BA, AB, CD, AA ; int i; clrscr();

bub_sort(a,5); for(i = 0; i > 5; ++i) printf(%s,a[i]); /* END

OF PROGRAM */ OUTPUT: AA AB BA CD EE

Implementation of Bubble Sort to Sort Integers of a

Vector/Array /* START OF PROGRAM */

#include>stdio.h< #include>conio.h< #define

MAXCOLS 20

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

98/127 SUBMITTED TEXT 25 WORDS

find the smallest value in the array. This is exchanged with

the first element. The next smallest is found and

exchanged with the second element.

60% MATCHING TEXT 25 WORDS

find the smallest value in the array. Exchange it with the

first element. Find the next smallest and exchange it with

the second element.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

99/127 SUBMITTED TEXT 32 WORDS

all elements are completed. A disadvantage of selection

sort is that its running time depends only slightly on the

amount of order already in the given list of elements. 178

100% MATCHING TEXT 32 WORDS

all elements are completed. A disadvantage of selection

sort is that its running time depends only slightly on the

amount of order already in the given list of elements.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 127/133

100/127 SUBMITTED TEXT 205 WORDS

typedef int VECTOR[MAXCOLS]; void sel_sort(VECTOR a,

int n) { int i, j, flag, index; for(i = 0; i > n – 1; ++i) { index

= i; Flag = 0; for(j = i + 1; j > n; ++j) { if(a[index] < a[j]) {

index = j; flag = 1; } } if(flag) { int temp; temp = a[i]; a[i]

=a[index]; a[index] = temp; } } void main() { VECTOR a = {5,

4, 3, 2, 1}; int i; sel_sort(a, 5); for(i = 0; i > 5; ++i)

printf(“%d “, a[i]); } /*——————————END OF

PROGRAM——————————*/ OUTPUT: 1 2 3 4 5

Implementation of Selection Sort to Sort Strings of

Vector/Array /*——————————START OF PROGRAM

————————————*/ #include>stdio.h<

#include>conio.h< #define MAXCOLS 20 #define

MAXROWS 10 180 Self-Instructional Material Recursion

NOTES typedef char STRINGS[MAXROWS][MAXCOLS];

typedef char STRING[MAXCOLS]; void sel_sort(STRINGS a,

int n) { int i, j, flag, index; for(i = 0; i > n – 1; ++i) { flag =

0, index = i; for(j = i + 1; j > n; ++j){ if(strcmp(a[index],

a[j]) < 0) { index = j; flag = 1; } } if(flag) { STRING temp;

strcpy(temp, a[i]); strcpy(a[i], a[j]); strcpy(a[j], temp); } } }

void main() { STRINGS a = {“EE”, “BB”, “EA”, “DD”, “AA”}; int i;

sel_sort(a, 5); for(i = 0; i > 5; ++i) printf(“%s “, a[i]); } /*

—————————END OF THE PROGRAM

—————————*/ OUTPUT: AA BB DD EA EE

90% MATCHING TEXT 205 WORDS

typedef int VECTOR[MAXCOLS]; void sel_sort(vector a, int

n) int i, j, flag, index; for(i = 0; i > n 1; ++i) Index = i; Flag

= 0; for(j = i + 1; j > n; ++j) 3 rd 4 th Self-Instructional

Material 145 154 Fundamentals: Algorithms and Flowcharts

if(a[index] < a[j]) Index = j flag = 1; if(flag) int temp; temp

= a[i]; a[i] =a[index]; a[index] = temp; void main() VECTOR

a = 5, 4, 3, 2, 1; int i; sel_sort(a, 5); for(i = 0; i > 5; ++i)

printf(%d, a[i]); /* END OF PROGRAM */ OUTPUT:

Implementation of Selection Sort to Sort Strings of

Vector/Array /* START OF PROGRAM */

#include>stdio.h< #include>conio.h< #define

MAXCOLS 20 #define MAXROWS 10 typedef char

STRINGS[MAXROWS][MAXCOLS]; typedef char

STRING[MAXCOLS]; void sel_sort(strings a, int n) int i, j,

flag, index; for(i = 0; i > n 1; ++i) flag = 0, index = i; for(j

= i + 1; j > n; ++j) 146 Self-Instructional Material 155

if(strcmp(a[index], a[j]) < 0) Index = j; flag = 1 if(flag)

STRING temp; strcpy(temp, a[i]); strcpy(a[i], a[j]); strcpy(a[j],

temp); Fundamentals: Algorithms and Flowcharts void

main() STRINGS a = EE, BB, EA, DD, AA ; int i; sel_sort(a, 5);

for(i = 0; i > 5; ++i) printf(%s, a[i]); /* END OF THE

PROGRAM */ OUTPUT: AA BB DD EA EE

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 128/133

101/127 SUBMITTED TEXT 360 WORDS

DECIMAL NUMBERS 4.5.1 Binary Number System A

number system that uses only two digits, 0 and 1, is called

the binary number system. The binary number system is

also called a base two system. The two symbols 0 and 1

are known as bits or binary digits. The binary system

groups numbers by two and by powers of two, shown in

Figure 4.3. The word binary comes from a Latin word

meaning two at a time. Figure 4.3 Binary Position Values

The weight or place value of each position can be

expressed in terms of 2, and is represented as 2 0 , 2 1 , 2 2

, etc. The least significant digit has a weight of 2 0 (= 1).

The second position to the left of the least significant digit

is multiplied by 2 1 (= 2). The third position has a weight

equal to 2 2 (= 4). Thus, the weights are in the ascending

powers of 2 or 1, 2, 4, 8, 16, 32, 64, 128, etc. The numeral

10 two or 10 2 (one, zero, base two) stands for two, the

base of the system. In binary counting, single digits are

used for none and one. Two-digit numbers are used for 10

two and 11 two (2 and 3 in decimal numerals). For the next

counting number, 100 two (4 in decimal numerals) three

digits are necessary. After 111 two (7 in decimal numerals),

four-digit numerals are used until 1111 two (15 in decimal

numerals) is reached, and so on. In a binary numeral, every

position has a value 2 times the value of the position to its

right. A binary number with 4 bits is called a nibble and a

binary number with 8 bits is known as a byte . For

example, the number 1011 2 actually stands for the

following representation: 1011 2 = 1 × 2 3 + 0 × 2 2 + 1 × 2

1 + 1 × 2 0 = 1 × 8 + 0 × 4 + 1 × 2 + 1 × 1 ? 1011 2 = 8 + 0

+ 2 + 1 = 11 10 In general, [b n ,b n – 1 ... b 2 , b 1 , b 0] 2

=b n 2 n + b n – 1 2 n–1 + ... + b 2 2 2 + b 1 2 1 + b 0 2 0

Similarly, the binary number 10101.011 can be written as, 1

0 1 0 1 . 0 1 1 2 4 2 3 2 2 2 1 2 0 . 2 – 1 2 – 2 2 – 3 (MSD)

(LSD) 182

91% MATCHING TEXT 360 WORDS

decimal point Binary Number System A number system

that uses only two digits, 0 and 1 is called the binary

number system. The binary number system is also called a

base two system. The two symbols 0 and 1 are known as

bits (binary digits). The binary system groups numbers by

twos and by powers of two, shown in Figure 1.2. The word

binary comes from a Latin word meaning two at a time.

Figure 1.2 Binary Position Values as a Power of 2 The

weight or place value of each position can be expressed in

terms of 2, and is represented as 2 0, 2 1, 2 2, etc. The least

significant digit has a weight of 2 0 (= 1). The second

position to the left of the least significant digit is multiplied

by 2 1 (= 2). The third position has a weight equal to 2 2 (=

4). Thus, the weights are in the ascending powers of 2 or 1,

2, 4, 8, 16, 32, 64, 128, etc. The numeral 10 two (one, zero,

base two) stands for two, the base of the system. 6 Self-

Instructional In binary counting, single digits are used for

none and one. Two-digit numbers are used for 10 two and

11 two [2 and 3 in decimal numerals]. For the next

counting number, 100 two (4 in decimal numerals) three

digits are necessary. After 111 two (7 in decimal numerals)

four-digit numerals are used until 1111 two (15 in decimal

numerals) is reached, and so on. In a binary numeral, every

position has a value 2 times the value of the position to its

right. A binary number with 4 bits, is called a nibble and a

binary number with 8 bits is known as a byte. For example,

the number actually stands for the following

representation: = Computer Fundamentals = = = In

general, [b n b n 1... b 2, b 1, b 0] 2 = b n 2 n + b n 1 2 n b

b b Similarly, the binary number can be written as (MSD)

(LSD) = = =

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 129/133

102/127 SUBMITTED TEXT 160 WORDS

In each binary digit, the value increases in powers of two

starting with 0 to the left of the binary point and decreases

to the right of the binary point starting with power –1. Use

of Binary Number System in Digital Computers The binary

number system is used in digital computers because all

electrical and electronic circuits can be made to respond

to the two-state concept. A switch, for instance, can be

either opened or closed, only two possible states exist. A

transistor can be made to operate either in cut-off or

saturation; a magnetic tape can be either magnetized or

non-magnetized; a signal can be either High or Low; a

punched tape can have a hole or no hole. In all of these

illustrations, each device is operated in any one of the two

possible states and the intermediate condition does not

exist. Thus, 0 can represent one of the states and 1 can

represent the other. Hence, binary numbers are

convenient to use in analysing or designing digital circuits.

4.5.2

96% MATCHING TEXT 160 WORDS

In each binary digit, the value increases in powers of two

starting with 0 to the left of the binary point and decreases

to the right of the binary point starting with power 1. Why

is Binary Number System Used in Digital Computers? The

binary number system is used in digital computers

because all electrical and electronic circuits can be made

to respond to the two states concept. A switch, for

instance, can be either opened or closed only two possible

states exist. A transistor can be made to operate either in

cut-off or saturation; a magnetic tape can be either

magnetized or non-magnetized; a signal can be either

HIGH or LOW; a punched tape can have a hole or no hole.

In all of these examples, each device is operated in any

one of the two possible states and the intermediate

condition does not exist. Thus, 0 can represent one of the

states and 1 can represent the other. Hence, binary

numbers are convenient to use in analysing or designing

digital circuits.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

103/127 SUBMITTED TEXT 204 WORDS

Decimal Number System The number system which

utilizes ten distinct digits, i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 is

known as decimal number system. It represents numbers

in terms of groups of ten, as shown in Figure 4.4. We

would be forced to stop at 9 or to invent more symbols if

it were not for the use of positional notation. It is

necessary to learn only 10 basic numbers and positional

notational system in order to count any desired figure.

Figure 4.4 Decimal Position Values The decimal number

system has a base or radix of 10. Each of the ten decimal

digits 0 through 9 has a place value or weight depending

on its position. The weights are units, tens, hundreds and

so on. The same can be written as the power of its base as

10 0 , 10 1 , 10 2 , 10 3 ... etc. Thus, the number 1993

represents quantity equal to 1000 + 900 + 90 + 3.

Actually, this should be written as {1 × 10 3 + 9 × 10 2 + 9

× 10 1 + 3 × 10 0 }. Hence, 1993 is the sum of all digits

multiplied by their weights. Each position has a value 10

times greater than the position to its right. For example,

the number 379 actually stands for the following

representation.

96% MATCHING TEXT 204 WORDS

Decimal Number System The number system which

utilizes ten distinct digits, i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 is

known as the decimal number system. It represents

numbers in terms of groups of ten, as shown in Figure 1.1.

You would be forced to stop at 9 or to invent more

symbols if it were not for the use of positional notation. It

is necessary to learn only 10 basic numbers and positional

notational system in order to count any desired figure.

Figure 1.1 Decimal Position Values as Powers of 10 The

decimal number system has a base or radix of 10. Each of

the ten decimal digits 0 through 9, has a place value or

weight depending on its position. The weights are units,

tens, hundreds and so on. The same can be written as the

power of its base as 10 0, 10 1, 10 2, etc. Thus, the number

1993 represents quantity equal to Actually, this should be

written as Hence, 1993 is the sum of all digits multiplied by

their weights. Each position has a value 10 times greater

than the position to its right. Self-Instructional Material 5

13 Computer Fundamentals For example, the number 379

actually stands for the following representation: = =

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 130/133

104/127 SUBMITTED TEXT 142 WORDS

In this example, 9 is the least significant digit (LSD) and 3 is

the most significant digit (MSD). Example 4.4: Write the

number 1936.469 using decimal representation. Solution:

1936.469 10 = 1 × 10 3 + 9 × 10 2 + 3 × 10 1 + 6 × 10 0 +

4 × 10 –1 + 6 × 10 –2 + 9 × 10 –3 = 1000 + 900 + 30 + 6

+ 0.4 + 0.06 + 0.009 = 1936.469 It is seen that powers are

numbered to the left of the decimal point starting with 0

and to the right of the decimal point starting with –1. The

general rule for representing numbers in the decimal

system by using positional notation is as follows: a n a n –

1 ... a 2 a 1 a 0 = a n 10 n + a n – 1 10 n–1 + ... a 2 10 2 + a

1 10 1 + a 0 10 0 Where n is the number of digits to the left

of the decimal point. 4.5.3 Binary

100% MATCHING TEXT 142 WORDS

In this example, 9 is the least significant digit (LSD) and 3 is

the most significant digit (MSD). Example 1.1: Write the

number using decimal representation. Solution: = = = It is

seen that powers are numbered to the left of the decimal

point starting with 0 and to the right of the decimal point

starting with 1. The general rule for representing numbers

in the decimal system by using positional notation is as

follows: a n a n 1... a 2 a 1 a 0 = a n 10 n + a n 1 10 n a a a

Where n is the number of digits to the left of the decimal

point Binary

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

105/127 SUBMITTED TEXT 22 WORDS

a·a n-1 + b·a n-2 . a·a n-1 + b·a n-2 =a(A? n-1 + B? n-1) +

b(A? n-2 + B? n-2) =A? n-2 (a? + b) + B? n-2 (a? + b) =A?

n-2 ? 2 + B? n-2 ? 2 =A? n + B? n i =a

35% MATCHING TEXT 22 WORDS

a = a + b; a += b; a = a + 1; a += 1; a= a b; a = b; a = a 2; a

= 2; a = b; a*= b; a = a*(b + c); a*= b + c; a = b; a / =

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

106/127 SUBMITTED TEXT 13 WORDS

a ‘divide and conquer’ strategy in which the sequence is

divided into two halves. ?

100% MATCHING TEXT 13 WORDS

a divide and conquer strategy in which the sequence is

divided into two halves.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

107/127 SUBMITTED TEXT 14 WORDS

In the merging process, the elements of two arrays are

combined, creating a new array. ?

100% MATCHING TEXT 14 WORDS

In the merging process, the elements of two arrays are

combined, creating a new array.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

108/127 SUBMITTED TEXT 12 WORDS

sorting algorithm, the sorted array is built one entry at a

time. ?

83% MATCHING TEXT 12 WORDS

sorting algorithm. In it, the sorted array (or list) is built one

entry at a time.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 131/133

109/127 SUBMITTED TEXT 13 WORDS

The ordered sequence of inserted elements is stored at

the beginning of the array. ?

100% MATCHING TEXT 13 WORDS

The ordered sequence of inserted elements is stored at

the beginning of the array.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

110/127 SUBMITTED TEXT 20 WORDS

iteration of the inner loop scans and shifts the entire

sorted subsection of the array before the next element is

inserted. ?

100% MATCHING TEXT 20 WORDS

iteration of the inner loop scans and shifts the entire

sorted subsection of the array before the next element is

inserted.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

111/127 SUBMITTED TEXT 20 WORDS

A binary number with 4 bits is called a nibble and a binary

number with 8 bits is called a byte. ?

89% MATCHING TEXT 20 WORDS

A binary number with 4 bits, is called a nibble and a binary

number with 8 bits is known as a byte.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

112/127 SUBMITTED TEXT 22 WORDS

number system that utilizes ten distinct digits, i.e., 0, 1, 2, 3,

4, 5, 6, 7, 8 and 9 is known as

87% MATCHING TEXT 22 WORDS

number system which utilizes ten distinct digits, i.e., 0, 1, 2,

3, 4, 5, 6, 7, 8 and 9 is known as

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

113/127 SUBMITTED TEXT 19 WORDS

algorithm is based on the merging process where all the

elements are copied in one array and kept in

100% MATCHING TEXT 19 WORDS

algorithm is based on the merging process where all the

elements are copied in one array and kept in

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

114/127 SUBMITTED TEXT 16 WORDS

is designed for inserting a value into a sorted sequence at

the beginning of an array. 4.

100% MATCHING TEXT 16 WORDS

is designed for inserting a value into a sorted sequence at

the beginning of an array.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

115/127 SUBMITTED TEXT 16 WORDS

Sorting is a method of arranging keys in a file in the

ascending or descending order. 5.

100% MATCHING TEXT 16 WORDS

Sorting is a method of arranging keys in a file in the

ascending or descending order.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 132/133

116/127 SUBMITTED TEXT 23 WORDS

binary number system is used in digital computers

because all electrical and electronic circuits can be made

to respond to the two-state concept. 9.

93% MATCHING TEXT 23 WORDS

binary number system is used in digital computers

because all electrical and electronic circuits can be made

to respond to the two states concept.

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

117/127 SUBMITTED TEXT 14 WORDS

Summary 5.9 Key Terms 5.10 Answer to ‘Check Your

Progress’ 5.11 Questions and Exercises 5.12 Further

Reading 5.0 INTRODUCTION

89% MATCHING TEXT 14 WORDS

Summary 3.29 Key Terms 3.30 Answers to Check Your

Progress 3.31 Questions and Exercises 3.32 Further

Reading 7 8 INTRODUCTION

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

118/127 SUBMITTED TEXT 39 WORDS

two integers a and d with d ? 0, there exist unique integers

q and r such that a = qd + r and 0 > r > | d |, where |

d | denotes the absolute value of

50% MATCHING TEXT 39 WORDS

two given integers a and b where b 0 there exists

exceptional integers q and r such that a = q b + r and 0 r

> b, where b represents the absolute value of

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

119/127 SUBMITTED TEXT 78 WORDS

a ? 0, b ? 0 By definition, | a| = a, | b| = b. Further, a ? 0, b ?

0 imply ab ???? Thus, |ab | = ab = |a | | b | Case II. a ? 0, b ?

0 In this case | a| = – a and | b| = b. But a > 0, b ? 0

imply ab > 0. So, | a b| = – a b = |a| |

26% MATCHING TEXT 78 WORDS

a += b; a = a + 1; a += 1; a= a b; a = b; a = a 2; a = 2; a =

a*b; a*= b; a = a*(b + c); a*= b + c; a = a/b; a / = b; a =

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

120/127 SUBMITTED TEXT 53 WORDS

b > 0 Here, |a | = – a, |b | = – b and a b < 0 ? |ab | =

ab So, |a b | = (– a) (– b) = |a | |b | (3) For all a, b in R, |a + b

| ? |a | + |b |

41% MATCHING TEXT 53 WORDS

b; a = a + 1; a += 1; a= a b; a = b; a = a 2; a = 2; a = a*b;

a*= b; a = a*(b + c); a*= b + c; a = a/b; a / = b;

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

121/127 SUBMITTED TEXT 96 WORDS

a, b ??R, (|a | + |b|) 2 = |a | 2 + 2 |a | |b | + |b | 2 = a 2 + 2

|a | |b | + b 2 . Number Theory NOTES Self-Instructional

Material 223 Since, |a | 2 = a 2 and |b | 2 = b 2 = a 2 + 2 |a

b| + b 2 ? a 2 + 2 ab + b 2 by Property (1) Thus, (|a | + |b|)

2 ?? (a + b) 2 = |a + b | 2 ? |a | + | b | ?? |a + b | (4) For a,

36% MATCHING TEXT 96 WORDS

a + b; a += b; a = a + 1; a= a a = b; a 2; a = 2; a = a*b; a*=

b; a*(b + c); b + c; a = a/b; a / = b; a = a/2; a / = 2; d = d (a

+ b); d = a +

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

https://secure.urkund.com/view/158826019-231749-951747#/sources 133/133

122/127 SUBMITTED TEXT 58 WORDS

a, 0) = ?a?, (0, b) = ?b? Clearly, ?a??a, ?a??0 If c?a, then c??

a??(a, 0) = ?a? Similarly (0, b) = ?b? 2. If a?b, then (a, b) = ?

a? ?a??a, and a?b ? ?a??b If c?a, c?b, then c??a? ? (a, b) = ?

a? 3.

44% MATCHING TEXT 58 WORDS

a = a + b; a += a = a + 1; a += 1; a= a b; a = b; a = a 2; a =

2; a = a*b; a*= b; a = a*(b + c); a*= b + c; a = a/b; a / =

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

123/127 SUBMITTED TEXT 51 WORDS

a and b. i.e., (a, b) = (– a, b) = (a, – b) = (– a, – b) Let, d = (

a, b). Then, d?a, d?b ? d?–a, d ?b c?–a, c?b ? c?a, c?b ? c?d

? d = (– a, b).

38% MATCHING TEXT 51 WORDS

a += b; a = a += 1; a= a b; a = b; a = a 2; a = 2; a = a*b;

a*= b; a = a*(b + c); a*= b + c; a = a/b; a / = b; a = a/2; a +

b);

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

124/127 SUBMITTED TEXT 35 WORDS

a + b, a 2 – ab + b 2) = 1 or 3. Solution: Let, g.c.d.(a + b, a

2 – ab + b 2) = d Then,d?a + b, d?a 2 – ab + b 2 ?

40% MATCHING TEXT 35 WORDS

a*= b; a = a*(b + c); a*= b + c; a = a/b; a / = b; a = a/2; a /

= 2; d = d (a + b); d = a + b

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

125/127 SUBMITTED TEXT 16 WORDS

integers q?, r?such that, a = q??b? + r?, where 0 ? r??> ?

b? (As ?b?< 0

75% MATCHING TEXT 16 WORDS

integers q and r such that a = q b + r and 0 r > b, where

b

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

126/127 SUBMITTED TEXT 27 WORDS

c) a 1? ??b 1 (mod c) ? c?a – b, c?a 1 – b 1 ? c? (a + a 1) – (

b + b 1) ? a + a 1 ??b + b 1 (

77% MATCHING TEXT 27 WORDS

c) = (a + b) + c a (b c) = (a b) c Commutativity: a + b = b +

a a b = b

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

127/127 SUBMITTED TEXT 22 WORDS

b, c?n? c?b, c?a – b as n?a – b ? c?a – b + b = a ? c?a,

57% MATCHING TEXT 22 WORDS

b + c) = (a + c a (b c) = (a b) c Commutativity: a + b = b +

a a

http://docplayer.net/203702115-Computer-fundamentals-bcom-bcom-304-venkateshwara-open-university.html

