
https://secure.urkund.com/view/158826330-304149-193235#/sources 1/139

Document Information

Analyzed document JAVA Programming.pdf (D166064006)

Submitted 5/6/2023 7:13:00 AM

Submitted by Mumtaz B

Submitter email mumtaz@code.dbuniversity.ac.in

Similarity 21%

Analysis address mumtaz.dbuni@analysis.urkund.com

Sources included in the report

URL: http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

Fetched: 2/16/2022 9:52:13 PM
220

139E1120, 151E1120,155E1140-Advanced Java Programming.doc

Document 139E1120, 151E1120,155E1140-Advanced Java Programming.doc (D165246352)
1

Entire Document

Master of Computer Applications

.

Table of Contents Introduction Module I: Java Introduction/ Core Java Programming Unit 1: Java Overview 1.0 Introduction

1.1 Unit Objectives 1.1 Overview of Java 1.2. Java Buzzwords 1.3 Data Types, Variables and Arrays 1.3.1 The Simple Types 1.3.2

Literals 1.3.3 Variables 1.3.4 Arrays 1.4 Unit Summary 1.5 Key Terms 1.6 Check Your Progress Unit 2: Operators 2.0

Introduction 2.1 Unit Objectives 2.2

Arithmetic Operators 2.3 The Relational Operators 2.4 The Bitwise Operators 2.5 The Logical Operators 2.6 The Assignment

Operators 2.7

The Other Operators 2.8 Unit Summary 2.9 Key Terms 2.10 Check Your Progress

Unit 3: Control Statements 3.0 Introduction 3.1 Unit Objectives 3.2 Selection statements 3.3 Iteration Statements 3.4 Jump

Statements 3.5 Unit Summary 3.6 Key Terms 3.7 Check Your Progress Unit 4: Introducing Classes 4.0 Introduction 4.1 Unit

Objectives 4.2 Class Fundamentals 4.3 Declaring objects 4.4 Introducing methods 4.5 Constructors 4.6 Garbage Collection

4.7 Unit Summary 4.8 Key Terms 4.9 Check Your Progress Unit 5: A Closer Look at Methods and Classes 5.0 Introduction 5.1

Unit Objectives 5.2 Overloading methods 5.3 Overloading Constructors 5.4 Argument Passing 5.5 Recursion 5.6 Introducing

Access control 5.7 Introducing Nested and Inner Classes 5.8 Unit Summary 5.9 Key Terms

5.10 Check Your Progress Module II: Inheritance, Exception handling and Multithread Unit 6: Inheritance 6.0 Introduction

6.1 Unit Objectives 6.2 Inheritance Basics 6.3 Using Super 6.4 Creating a Multilevel Hierarchy 6.5 Method Overriding 6.6

Dynamic Method Dispatch 6.7 Using Abstract Classes 6.8 Using final with Inheritance 6.9 The Object Class 6.10Unit

Summary 6.11 Key Terms 6.12 Check Your Progress Unit 7: Packages & Interfaces 7.0 Introduction 7.1 Unit Objectives 7.2

Packages 7.4 Importing Packages 7.5 Interfaces 7.6 Unit Summary 7.7 Key Terms 7.8 Check Your Progress Unit 8: Exception

Handling 8.0 Introduction 8.1 Unit Objectives 8.2 Exception-Handling Fundamentals 8.3 Exception Types 8.4 Using try and

catch

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 2/139

8.5 throw clause 8.6 Java’s Built-in Exceptions 8.7 Creating User defined Exception classes 8.8 Unit Summary 8.9 Key Terms

8.10 Check Your Progress Unit 9: Multi Thread Programming 9.0 Introduction 9.1 Unit Objective 9.2 Multithreaded

Programming in JAVA 9.3 The Java Thread Model 9.4 The Thread Class and the Runnable Interface 9.4.1 Creating a Thread

9.5 Creating Multiple Threads 9.6 Thread Priorities 9.7 Synchronization 9.8 Inter Thread Communication 9.9 Unit Summary

9.10 Key Terms 9.11 Check Your Progress Module III: String handling, Utility classes, java.lang and java.io Unit 10: String

Handling 10.0 Introduction 10.1 Unit Objective 10.2 The String Constructors 10.3 Special String operations 10.4 Character

Extraction 10.5 String Methods 10.6 StringBuffer 10.7 Unit Summary 10.8 Key Terms 10.9 Check Your Progress

Unit 11: The Collection Interfaces and Collection Classes 11.0 Introduction 11.1 Unit Objective 11.2

The Collection Interface 11.3 The List Interface 11.4 The Set Interface 11.5 The Map Interface 11.6 The Enumeration Interface

11.7 The Iterator Interface 11.8 The ArrayList class 11.9 The LinkedList Class 11.10

Vector Class 11.11 Stack Class 11.12 Hashtable Class 11.13 Properties Class 11.14 StringTokenizer Class 11.15 Date Class 11.16

Unit Summary 11.17 Key Terms 11.18 Check Your Progress Unit 12: Files And I/Ostreams 12.0 Introduction 12.1 Unit Objective

12.2 File 12.2.1 Directories 12.2.2 Using FilenameFilter 12.2.3 The listFiles() Alternative 12.2.4 Creating Directories 12.3 The

Stream Classes 12.3.1 The Byte Streams 12.3.2 The Character Streams 12.4 Serialization 12.5 Unit Summary 12.6 Key Terms

12.7 Check Your Progress Module V: Networking, Images, Applet class and Swing Unit 13: Networking 13.0 Introduction 13.1

Unit Objective 13.2 Networking 13.3 The Networking Classes and Interfaces 13.3.1 InetAddress 13.3.2 TCP/IP Client Sockets

13.3.3 TCP/IP Server Sockets 13.3.4 URL and URLConnection classes 13.3.5 Datagrams 13.4 Unit Summary 13.5 Key Terms

13.6 Check Your Progress Unit 14: Applet 14.0 Introduction 14.1 Unit Objective 14.2 The Applet Class 14.3 Applet

Architecture 14.4 The HTML APPLET tag 14.4.1 Passing Parameters to Applets 14.5 Unit Summary 14.6 Key Terms 14.7 Check

Your Progress Unit 15: Event Handling 15.0 Introduction 15.1 Unit Objective 15.2 The Delegation Event Model 15.3 Event

Classes 15.4 Event Listener Interfaces 15.5 Unit Summary

15.6 Key Terms 15.7 Check Your Progress Unit 16: Working With Graphics 16.0 Introduction 16.1 Unit Objective 16.2 Working

with Graphics 16.3 Working with Color 16.4 Working with Fonts 16.5 Understanding Layout Manager 16.6. Unit Summary

16.7 Key Terms 16.8 Check Your Progress Unit 17: Swing Component Classes 17.0 Introduction 17.1 Unit Objective 17.2

JApplet 17.3 JFrame and JDialog 17.4 JText Fields 17.5 JButtons 17.6 JCombo Boxes 17.7 JList 17.8 JTabbed Panes 17.9

JScroll Panes 17.10 Unit Summary 17.11 Key Terms 17.12 Check Your Progress

Module I: Java Introduction/ Core Java Programming

Unit 1: Java Overview 1.0 Introduction 1.1 Unit Objectives 1.1 Overview of Java 1.2. Java Buzzwords 1.3 Data Types, Variables

and Arrays 1.3.1 The Simple Types 1.3.2 Literals 1.3.3 Variables 1.3.4 Arrays 1.4 Unit Summary 1.5 Key Terms 1.6 Check Your

Progress 1.0

Introduction

Java

programming language was originally developed by Sun Microsystems which was initiated by James Gosling and released

in 1995 as

a core component of Sun Microsystems‘ Java platform (Java 1.0 [J2

SE]).

With the advancement of Java and its widespread popularity, multiple configurations were built to suit various types of

platforms. Ex: J2EE for Enterprise Applications, J2ME for Mobile Applications. Sun Microsystems has renamed the new J2

versions as Java SE, Java EE and Java ME, respectively. Java is guaranteed to be Write Once, Run Anywhere.

Java

can be used to create two types of programs: applications and applets. An application is a program that runs on your

computer, under the operating system of that computer. An applet is an application designed to be transmitted over the

Internet and executed by a Java-compatible Web browser. An applet is an intelligent program that can react to user input

and dynamically change. It can also run the animation or sound in the Web browser. 1.1

Unit Objective

The aim of this Unit is to impart knowledge on: ● overview of several key features of Java ● the object oriented paradigm

● the buzzwords of Java ● the data types, variables and arrays 1.1

Overview of Java Java is an

Object-oriented programming language.

100% MATCHING BLOCK 1/221

All computer programs consist of two elements: code and data.

https://secure.urkund.com/view/158826330-304149-193235#/sources 3/139

100% MATCHING BLOCK 10/221

Object-oriented programming organizes a program around its data (that is, objects) and a set of well-defined interfaces

to that data. An object-oriented program can be characterized as data controlling access to code.

Object

means a real word entity such as pen, chair, table etc.

Object-Oriented Programming is a methodology or paradigm to design a program using classes and objects. It simplifies

the software development and maintenance by providing some concepts: ●
Object:

Any

entity that has state and behavior is known as an object.

For example: chair, pen, table, keyboard, bike etc. It can be physical and logical. ● Class: Collection of objects is called class.

It is a logical entity. ●
Inheritance:

Inheritance

is the process by which one object acquires the properties of another object.

This is important because it supports the concept of hierarchical classification.

It provides code reusability. It is used to achieve runtime polymorphism. ●
Polymorphism:

Polymorphism is the ability of an object to take on many forms. The most common use of polymorphism in OOP occurs

when a parent class reference is used to refer to a child class object.

For example:

to draw something e.g., shape or rectangle etc. In java, we use method overloading and method overriding to achieve

polymorphism. ●
Abstraction: Hiding internal details and showing functionality is known as abstraction. For example: phone calls, we don't

know the internal processing. In Java, we use abstract classes and interfaces to achieve abstraction. ● Encapsulation:

Binding (or wrapping) code and data together into a single unit is known as encapsulation. For example: capsule, it is

wrapped with different medicines. A java class is an example of encapsulation. Java bean is the fully encapsulated class

because all the data members are private here.

A First Simple Program A simple java program named Example.java is shown in Figure (given below). The program begins

with the following lines: /*

100% MATCHING BLOCK 2/221

This is a simple Java program. Call this file "Example.java". */

This is a multi-line comment. Like most other programming languages, Java lets the user enter a remark into a program ‘s

source file. The contents of the comments are ignored by the compiler.

100% MATCHING BLOCK 3/221

PROGRAM /* This is a simple Java program. Call this file "Example.java". */ class Example { // Your program begins with a

call to main(). public static void main(String args[]) { System.out.println("This is a simple Java program."); } }

Fig. 1.1: First Java Program Compiling the Program To compile the Example program, execute the compiler, javac,

specifying the name of the source file on the command line, as shown here: C:\<

javac Example.java The javac compiler creates a file called Example.class that contains the bytecode version of the program.

As discussed earlier, the Java bytecode is the intermediate representation of your program that contains instructions the

Java interpreter will execute. Thus, the

output of javac is not code that can be directly executed. To actually run the program, you must

use the Java interpreter, called java. To do so, pass the class name Example as a command-line argument, as shown

https://secure.urkund.com/view/158826330-304149-193235#/sources 4/139

here: C:\<java Example When the program is run, the following output is displayed: This is a simple Java program. The

next line of code in the program is shown here: class Example { This line uses the keyword class to declare that a new class

is being defined. Example is an identifier that is the name of the class. The entire class definition, including all of its

members, will be between the opening curly brace ({) and the closing curly brace (}). The next line in the program is the

single- line comment, shown here:

// Your program begins with a call to main(). The next line of code is shown here: public static void main(String args[]) { This

line begins the main() method. As the comment preceding it suggests, this is the line at which the program will begin

executing. All Java applications begin execution by calling main(). The public keyword is an access specifier, which allows

the programmer to control the visibility of class members. When a class member is preceded by public, then that member

may be accessed by code outside the class in which it is declared. The keyword static allows main() to be called without

having to instantiate a particular instance of the class. This is necessary since main() is called by the Java interpreter before

any objects are made. The keyword void simply tells the compiler that main() does not return a value. In main(), there is

only one parameter. String args[] declares a parameter named args, which is an array of instances of the class String. (Arrays

are collections of similar objects.) Objects of type String store character strings. In this case, args receives any command-

line arguments present when the program is executed. The last character on the line is the {. This signals the start of main()‘s

body. All of the code that comprises a method will occur between the method‘s opening curly brace and its closing curly

brace. The next line of code is shown here. Notice that it occurs inside main(). System.out.println("This is a simple Java

program."); This line outputs the string ―This is a simple Java program.‖ followed by a new line on the screen. The first } in

the program ends main(), and the last } ends the Example class definition. 1.2. Java Buzzwords Java is: ● Simple: Java is

designed to

be easy to learn. ● Secure: With Java's secure feature, it enables

the development of

virus-free, tamper-free systems. Authentication techniques are based on public-key encryption. ●
Portable: Being architectural-neutral and having no implementation dependent aspects of the specification makes Java

portable. Compilers in Java are written in ANSI C with a clean portability boundary which is a POSIX subset.

●
Object Oriented: In Java, everything is an Object. Java can be easily extended since it is based on the Object model. ●
Robust: Java makes an effort to eliminate error prone situations by emphasizing mainly on compile time error checking and

runtime checking. ●
Multithreaded: With Java's multithreaded feature, it is possible to write programs that can do many tasks simultaneously.

This design feature allows developers to construct

smoothly running interactive applications. ● Architectural-

neutral: Java compiler generates an architecture-neutral object file format, which makes the compiled code

to be

executable on many processors, with the presence of Java runtime system. ●
Interpreted: Java byte code is translated on the fly to native machine instructions and is not stored anywhere. The

development process is more rapid and analytical since the linking is an incremental and

lightweight process ●
Platform independent: Unlike many other programming languages including C and C++, when Java is compiled, it is not

compiled into platform specific machines, rather into platform independent bytecode. This byte code is distributed over the

web and interpreted by virtual Machine (JVM) on whichever platform it is being run. ●
High Performance: With the use of Just-In-Time compilers, Java enables high performance. ● Distributed:

100% MATCHING BLOCK 4/221

Java is designed for the distributed environment of the internet. ●

Dynamic: Java is considered to be more dynamic than C or C++ since it is designed to adapt to an evolving environment.

Java programs can carry

an

extensive amount of run-time information that can be used to verify and resolve accesses to objects on run-time. 1.3

Data Types, Variables And Arrays Java is a strongly typed language. There are no automatic coercions or conversions of

conflicting types as in some languages. The Java compiler checks all expressions and parameters to ensure that the types

are compatible. 1.3.1 The Simple

https://secure.urkund.com/view/158826330-304149-193235#/sources 5/139

100% MATCHING BLOCK 5/221

Types Java defines eight simple (or elemental) types of data: byte, short, int, long, char, float, double, and boolean. These

can be put in four groups: ● Integers: This group includes byte, short, int, and long, which are for whole valued signed

numbers. ● Floating-point numbers: This group includes float and double, which represent numbers with fractional

precision. ● Characters: This group includes char, which represents symbols in a character set, like letters and numbers. ●
Boolean: This group includes boolean, which is a special type for representing true/false values.

These types can be used to construct arrays or user defined class types. Thus, they form the basis for all other types of data

that can be created. The width and ranges of these types vary widely, as shown in this table Table (given below). 1.3.2 Literals

● Integer Literals: Integers are probably the most commonly used type in the typical program. Any whole number value is

an integer literal. The Integer literal can be Decimal(base 10), Octal(base 8) and Hexadecimal(base 16). Octal values are

denoted in Java by a leading zero. Example 07. A hexadecimal constant is denoted with a leading zero-x, for example

0X987. Name Width in bits Range Integers Long 64 –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 Int 32 –

2,147,483,648 to 2,147,483,647 Short 16 –32,768 to 32,767 Floating Point Nos. Float 32 1.4e−045 to 3.4e+038 Double 64

4.9e–324 to 1.8e+308 Character Char 0 65,536

Table 1.1 Width and Range of Simple Data types

●
Floating –point Literals: Floating-point numbers represent decimal values with a fractional component. They can be

expressed in either standard or scientific notation. In Standard notation, it is represented as 3.14159. Scientific notation uses

a standard-notation with an exponent by an E or e followed by a decimal number, which can be positive or negative.

Examples include 6.022E23, 314159E–05, and 2e+100. ● Boolean Literal: Boolean literals are simple. There are only two

logical values that a boolean value can have, true and false. The true literal in Java does not equal 1, nor does the false literal

equal 0. In Java, they can only be assigned to variables declared as boolean, or used in expressions with Boolean operators.

● Character Literals: Characters in Java are indices into the Unicode character set. A literal character is represented inside a

pair of single quotes. All of the visible ASCII characters can be directly entered inside the quotes, such as „a‟, „z‟, and „@‟. For

characters that are impossible to enter directly, there are several escape sequences given in

the table (given below). ●
String Literals:

String literals in Java are specified by enclosing a sequence of characters between a pair of double quotes. Examples of

string literals are “Hello World”, “two\

lines” and “\”This is in quotes\”” Table 1.2: Character Escape Sequences 1.3.3

100% MATCHING BLOCK 6/221

Variables The variable is the basic unit of storage in a Java program. A variable is defined by the combination of an

identifier, a type, and an optional initializer. In addition, all variables have a scope, which defines their visibility, and a

lifetime.

89% MATCHING BLOCK 7/221

Declaring a Variable In Java, all variables must be declared before they can be used. The basic form of a variable

declaration is shown here: type identifier [= value][, identifier [= value] ...] ; The type is one of Java‘s atomic types, or the

name of a class or interface. The identifier is the name of the variable.

You can initialize the variable by specifying an equal sign and a value. While initializing, the initialization expression must

result in a value of the same (or compatible) type as that specified for

the variable. To declare more than one variable of the specified type, use a comma- separated list.

For example,

100% MATCHING BLOCK 8/221

int d = 3, e, f = 5; // declares three more ints, initializing d and f. byte z = 22; // initializes z.

https://secure.urkund.com/view/158826330-304149-193235#/sources 6/139

Java allows variables to be initialized dynamically, using any expression valid at the time the variable is declared. For

example, here is a short program that computes the length of the hypotenuse of a right triangle given the lengths of its two

opposing sides: // Demonstrate dynamic initialization.

class DynInit { public static void main(String args[]) { double a = 3.0, b = 4.0; // c is dynamically initialized double c =

Math.sqrt(a * a + b * b); System.out.println("

Hypotenuse is " + c); } } The Scope and Lifetime of Variables: Java allows variables to be declared within any block. A block

defines a scope.

100% MATCHING BLOCK 9/221

A scope determines what objects are visible to other parts of your program. It also determines the lifetime of those

objects.

In Java, the two major scopes are those defined by a class and those defined by a method. As a general rule, variables

declared inside a scope are not visible (that is, accessible) to code that is defined outside that scope. Thus, when you

declare a variable within a scope, you are localizing that variable and protecting it from unauthorized access and/or

modification. Scopes can be nested. Although blocks can be nested, you cannot declare a variable to have the same name

as one in an outer scope. Variables are created when their scope is entered and destroyed when their scope is left. This

means that a variable will not hold its value once it has gone out of scope.

Type Conversion and Casting:

96% MATCHING BLOCK 11/221

It is common to assign a value of one type to a variable of another type.

100% MATCHING BLOCK 12/221

When one type of data is assigned to another type of variable, an automatic type conversion will take place if the

following two conditions are met: ● The two types are compatible. ● The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For example, the int type is always large enough

to hold all valid byte values, so no explicit cast statement is required.

To create a conversion between two incompatible types, you must use a cast. A cast is simply an explicit type conversion.

95% MATCHING BLOCK 13/221

It has this general form: (target-type) value Here, target-type specifies the desired type to convert the specified value to.

For example, the following fragment casts an int to a byte. If the integer‘s value is larger than the range of a byte, it will be

reduced modulo (the remainder of an integer division by the) byte‘s range. For example, int a; byte b; // ... b = (byte) a;

1.3.4

92% MATCHING BLOCK 14/221

Arrays An array is a group of like-typed variables that are referred to by a common name. Arrays of any type can be

created and may have one or more dimensions. A specific element in an array is accessed by its index. Arrays offer a

convenient means of grouping related information. One-Dimensional Arrays A one-dimensional array is, essentially, a list

of like-typed variables. To create an array variable of the desired type

and to link it to the actual, physical array of the desired type, the following form is used. array-var = new type[size]; This

example allocates a 12-element array of integers and links them to month_days. month_days = new int[12]; After this

statement executes, month_days will refer to an array of 12 integers. Further, all elements in the array will be initialized to

zero.

https://secure.urkund.com/view/158826330-304149-193235#/sources 7/139

100% MATCHING BLOCK 15/221

Multidimensional Arrays In Java, multidimensional arrays are actually arrays of arrays.

100% MATCHING BLOCK 16/221

To declare a multidimensional array variable, specify each additional index using another set of square brackets. For

example, the following declares a two-dimensional array variable called twoD. int twoD[] [] = new int[4][5]; This allocates

a 4 by 5 array and assigns it to twoD. Internally this matrix is implemented as an array of arrays of int.

Strings Java does not support string type rather it defines a String as an object. The String type is used to declare string

variables. Arrays of strings can be declared. A quoted string constant can be assigned to a String variable. A variable of type

String can be assigned to another variable of type String.

An object of type String can be passed as an argument to

println(). For example, consider the following fragment: String str = "this is a test"; System.out.println(str); 1.4

Unit Summary

Java is an

Object-oriented programming language.

100% MATCHING BLOCK 17/221

All computer programs consist of two elements: code and data.

100% MATCHING BLOCK 18/221

Object-oriented programming organizes a program around its data (that is, objects) and a set of well-defined interfaces

to that data. An object oriented program can be characterized as data controlling access to code.

Object

means a real word entity such as pen, chair, table etc.

Object- Oriented Programming is a methodology or paradigm to design a program using classes and objects. 1.5

Key Terms ●
Multithreaded: With Java's multithreaded feature, it is possible to write programs that can do many tasks simultaneously.

This design feature allows developers to construct

smoothly running interactive applications. ● Architectural-

neutral: Java compiler generates an architecture-neutral object file format, which makes the compiled code

to be

executable on many processors, with the presence of Java runtime system. ●
Interpreted: Java byte code is translated on the fly to native machine instructions and is not stored anywhere. The

development process is more rapid and analytical since the linking is an incremental and

lightweight process

●
Platform independent: Unlike many other programming languages including C and C++, when Java is compiled, it is not

compiled into platform specific machines, rather into platform independent bytecode. This byte code is distributed over the

web and interpreted by virtual Machine (JVM) on whichever platform it is being run. ●
High Performance: With the use of Just-In-Time compilers, Java enables high performance. ● Distributed:

100% MATCHING BLOCK 19/221

Java is designed for the distributed environment of the internet. ●

Dynamic: Java is considered to be more dynamic than C or C++ since it is designed to adapt to an evolving environment.

Java programs can carry

an

extensive amount of run-time information that can be used to verify and resolve accesses to objects on run-time. 1.6

https://secure.urkund.com/view/158826330-304149-193235#/sources 8/139

Check Your Progress 1.

List down the characteristic features of Java. 2. Explain the simple data types provided by Java 3. What is Literal? Elucidate

the types of literals in Java 4. Write note on Scope and Lifetime of a variable. 5. Brief on Arrays?

Unit 2: Operators 2.0 Introduction 2.1 Unit Objectives 2.2

Arithmetic Operators 2.3 The Relational Operators 2.4 The Bitwise Operators 2.5 The Logical Operators 2.6 The Assignment

Operators 2.7

The Other Operators 2.8 Unit Summary 2.9 Key Terms 2.10 Check Your Progress 2.0 Introduction

Java provides a rich set of operators to manipulate variables. All the Java operators

can be divided

into the following groups: •

Arithmetic Operators • Relational Operators • Bitwise Operators • Logical Operators • Assignment Operators • Misc

Operator 2.1

Objectives This Unit aims to help the learners • understand

the various groups of operators • applies the appropriate operators in the expressions • realizes the need for operator

precedence 2.2

Arithmetic

100% MATCHING BLOCK 20/221

Operators: Arithmetic operators are used in mathematical expressions in the same way that they are used in algebra. The

following table (

given below)

lists the arithmetic operators. Assume integer variable A holds 10 and variable B holds 20, then:

Operator Description Example + Addition: Adds values on either side of the operator A + B will give 30 - Subtraction:

Subtracts right hand operand from left hand operand

A - B will

give 10 * Multiplication: Multiplies values on either side of the operator A * B will give 200 / Division: Divides left hand

operand by right hand operand B / A will give 2 % Modulus: Divides left hand operand by rights hand operand and returns

remainder B % A will give 0 ++

Increment: Increases the value of operand by 1 B++ gives 21 -- Decrement: Decreases the value of operand by 1 B-- gives

19

Table 2.1 Arithmetic Operators

Example: The following simple example

program named Test.java demonstrates the arithmetic operator.

PROGRAM

public

class Test{ public static void main(String args[]){ int a =10; int b =20; int c =25; int d =25; System.out.println("

a + b = "+(a + b));

System.out.println("

a - b = "+(a - b)); System.out.println("

a * b = "+(a * b)); System.out.println("

b / a = "+(b / a)); System.out.println("b % a = "+(b % a)); System.out.println("

c % a = "+(c % a)); System.out.println("a++ = "+(

a++));

System.out.println("

b-- = "+(

a--)); // Check the difference in d++ and ++d System.out.println("d++ = "+(d++)); System.out.println("++d = "+(++d)); } }

The

output of the program Test.java is:

a + b =30 a - b =-10 a * b =200 b / a =2 b % a =0 c % a =5

a++=10 b--=11

d++=25 ++d =27

Fig. 2.1 Illustration of Arithmetic Operators 2.3

The Relational Operators The relational operators supported by Java language are listed in Table (

given below).

Assume variable A holds 10 and variable B holds 20, then:

https://secure.urkund.com/view/158826330-304149-193235#/sources 9/139

Table 2.2 Relational Operators

Example The following simple example program demonstrates the relational operators. Fig. 2.2 Illustration of Relational

Operators

PROGRAM

public

class Test{

public static void main(String args[]){ int a =10; int b =20; System.out.println("

a == b = "+(a == b)); System.out.println("a != b = "+(a != b)); System.out.println("

a < b = "+(a < b)); System.out.println("

a > b = "+(a > b)); System.out.println("

b <= a = "+(b <= a)); System.out.println("b >= a = "+(b >= a)); } }

OUTPUT a == b =false a != b =true a < b =false a >

b =true b <=

a =true b >= a =false

Operator Description Example & Binary AND Operator copies a bit to the result if it exists in both operands. (A & B) will give

12 which is: 0000 1100 | Binary OR Operator copies a bit if it exists in either operand. (A | B) will give 61 which is: 0011 1101

^ Binary XOR Operator copies the bit if it is set in one operand but not both. (A ^ B) will give 49 which is: 0011 0001 ~ Binary

Ones Complement Operator is unary and has the effect of ‘flipping’ bits. (~A) will give: 60 which is: 1100 0011 >>

Binary Left Shift Operator. The left operand's value is moved left by the number of bits specified by the right operand.

A >> 2 will give 240 which is: 1111 0000 << Binary Right Shift

Operator. The left

operand's

value is moved right by the number of bits specified by the right operand.

A << 2 will give 15 which is: 1111 <<< Shift right

zero fill operator. The left

operand's

value is moved right by the number of bits specified by the right operand and shifted values are filled up with zeros. A

<<<2 will give 15 which is: 0000 1111 2.4

100% MATCHING BLOCK 21/221

The Bitwise Operators Java defines several bitwise operators, which can be applied to the integer types, long, int, short,

char, and byte.

Bitwise operator works on bits and performs bit-by-bit

operations. Assume if a = 60; and b = 13; now in binary format, they will be as follows:

The following table lists the bitwise operators: Assume integer variable A holds 60 and variable B holds 13, then:

Table 2.3 Bitwise Operators

Example: The following simple example program demonstrates the bitwise operators.

PROGRAM

public

class Test{

public static void main(String args[]){

int

a =60; /* 60 = 0011 1100 */ int b =13; /* 13 = 0000 1101 */ int c =0;

c =

a & b; /* 12 = 0000 1100 */ System.out.println("

a & b = "+ c); c =

a | b; /* 61 = 0011 1101 */ System.out.println("

a | b = "+ c); c = a ^ b; /* 49 = 0011 0001 */ System.out.println("

a ^ b = "+ c); c =~a; /*-61 = 1100 0011 */ System.out.println("~a = "+ c); c =

a >>2; /* 240 = 1111 0000 */ System.out.println("

a >> 2 = "+ c); c = a <<2; /* 215 = 1111 */ System.out.println("a << 2 = "+ c); c = a <<<2; /* 215 = 0000

1111 */ System.out.println("a <<< 2 = "+ c); } }

OUTPUT a & b =12 a | b =61 a ^

b =49 ~a =-61 a >>2=240

a <<15 a <<<15

https://secure.urkund.com/view/158826330-304149-193235#/sources 10/139

Fig. 2.3 Illustration of Bitwise Operators 2.5 The Logical Operators The following Table (given below) lists the logical

operators.

Assume Boolean variables A holds true and variable B holds false, then:

Operator Description

Example &&

Called Logical AND operator. If both the operands are non-zero, then

the

condition becomes true. (A && B) is false. || Called Logical OR Operator. If any of the two operands are

non-zero, then the

condition becomes true. (A || B) is true. ! Called Logical NOT Operator. Used to reverse the logical state of its operand. If a

condition is true then

the Logical NOT operator will make it false. ! (A && B) is true. Table 2.4 Logical Operators

Example

The following simple example program demonstrates the logical operators.

Fig. 2.4 Illustration of Logical Operators

PROGRAM

public

class Test{ public static void main(String args[]){

boolean a =true; boolean b =false;

System.out.println("a && b = "+(

a&&b)); System.out.println("a || b = "+(a||b)); System.out.println("!(

a && b) = "+!(a && b)); } } OUTPUT

a && b =false a || b =true !(a && b)=

true 2.6 The Assignment Operators

The assignment operators supported by Java language

are:

Operator Description

Example =

Simple

assignment operator,

Assigns values from right side operands to left side operand

C = A + B will assign value of

A + B into

C += Add AND assignment operator, It

adds right operand to the left operand and assign the result to left

operand C += A is equivalent to C = C + A -= Subtract AND assignment operator, It

subtracts right operand from the left operand and assign the result to left operand

C -= A is equivalent to C = C - A *= Multiply AND assignment operator, It multiplies

C -= A is equivalent to C = C – A

right operand with the left operand and assign the result to left operand

C *= A is equivalent to C = C * A /=

Divide AND assignment operator, It

divides left operand with the right operand and assign the result to left operand

C /= A is

equivalent to C = C / A %= Modulus AND assignment operator, It takes

modulus using two operands and assign the result to left operand

C %= A

is

equivalent to C = C % A >>= Left shift

AND

assignment operator

C >>= 2 is same as C = C >> 2

<<= Right shift AND assignment operator C <<= 2

is

same as C = C << 2 &=

Bitwise AND assignment operator C &= 2 is same as C = C & 2 ^=

bitwise exclusive OR

https://secure.urkund.com/view/158826330-304149-193235#/sources 11/139

and assignment operator C ^= 2 is same as C = C ^ 2 |= bitwise inclusive OR and assignment operator C |= 2 is same as C =

C | 2

Example: The following simple example

program demonstrates the assignment operators.

PROGRAM

public

class Test{ public static void main(String args[]){ int a =10; int b =20; int c =0; c = a + b; System.out.println("

c = a + b = "+ c);

c += a ;

System.out.println("c += a = "+ c); c -= a ; System.out.println("c -= a = "+ c); c *= a ; System.out.println("c *=

a = "+ c); a =10;

c =15;

c /= a ; System.out.println("c /= a = "+ c); a =10; c =15; c %= a ;

System.out.println("c %= a = "+ c); c >>=2; System.out.println("

c >>= 2 = "+ c); c <<=2; System.out.println("

c <<= 2 = "+ c);

c <<=2;

System.out.println("c <<= a = "+ c); c &= a ; System.out.println("c &= 2 = "+ c); c ^= a ; System.out.println("c ^= a = "+

c); c |= a ; System.out.println("

c |= a = "+ c); } } OUTPUT c = a + b =30 c += a =40 c -= a =30 c *= a =300 c /= a =1

c %= a =5 c >>=2=20 c <<=2=5 c <<=2=1 c &= a =0 c ^= a =10 c |= a =10

Fig. 2.5 Illustration of Assignment Operators 2.7 The Other Operators There are few other operators supported by Java

Language.

Conditional Operator (?:):

Conditional operator is also known as the ternary operator. This operator consists of three operands and is used to evaluate

Boolean expressions. The goal of the operator is to decide which value should be assigned to the variable. The operator is

written as: variable x =(expression)? value if true : value

if false

Example PROGRAM

public

class Test{ public static void main(String args[]){ int a , b; a =10; b =(a ==1)?20:30; System.out.println("

Value of b is : "+ b); b =(a ==10)?20:30; System.out.println("

Value of b is : "+ b); } } OUTPUT Value of b is:30 Value of b is:20

Fig. 2.6 Illustration of Conditional Operators Instance of

Operator: This operator is used only

for object reference variables. The operator checks whether the object is of

a particular type(class type or interface type).

Instance of

operator is written as: (Object reference variable) instanceof (class/interface type) If the object referred by the variable on

the left side of the operator is of the same class/interface type on the right side, then the result will be true. Following is the

example: String name = “James”; boolean result = name instanceof String;

// This will return true since name is type of String

Precedence of Java Operators: Operator precedence determines the grouping of terms in an expression. This affects how

an expression is evaluated. Certain operators have higher precedence than others. For example, x = 7 + 3 * 2; here, x is

assigned 13, not 20 because operator * has higher precedence than +, so it first gets multiplied with 3*2 and then add into 7.

Here, operators with the highest precedence appear at the top of the table, those with the lowest appear at the bottom.

Within an expression, higher precedence operators will be evaluated first.

Table 2.7 Precedence of Java Operators Category Operator Associativity Postfix () [] . (dot operator) Left to right

Unary ++ - - ! ~

Right to left Multiplicative * / % Left to right Additive + - Left to right Shift <<<<<>> Left to right Relational

<<= >>= Left to right Equality == != Left to right Bitwise AND & Left to right Bitwise XOR ^ Left to right Bitwise OR

| Left to right Logical AND && Left to right Logical OR || Left to right Conditional ?: Right to left Assignment = += -= *= /=

%= <<= >>= &= ^= |= Right to left

Comma , Left to right 2.8

Unit Summary

Java provides a rich set of operators to manipulate variables. All the Java operators

can be divided

into the

https://secure.urkund.com/view/158826330-304149-193235#/sources 12/139

following groups: •

Arithmetic Operators

• Relational Operators • Bitwise Operators • Logical Operators • Assignment Operators • Misc Operator 2.9 Key Terms •

100% MATCHING BLOCK 22/221

Arithmetic operators are used in mathematical expressions in the same way that they are used in algebra. •

Relational Operators are the operators used to create a relationship and compare the values of two operands. •

100% MATCHING BLOCK 23/221

Java defines several bitwise operators, which can be applied to the integer types, long, int, short, char, and byte.

Bitwise operator works on bits and performs bit-by-bit

operations. • A logical operator is a symbol or word used to connect two or more expressions such that the value of the

compound expression produced depends only on that of the original expressions and on the meaning of the operator.

Common logical operators include AND, OR, and NOT. 2.10 Check Your Progress •

List down the different types of operators in Java. • Mention the Bitwise operators in Java. • Explain the conditional operator

with an example. • Write note on Logical operators in Java.

Unit 3: Control Statements 3.0 Introduction 3.1 Unit Objectives 3.2 Selection statements 3.3 Iteration Statements 3.4 Jump

Statements 3.5 Unit Summary 3.6 Key Terms 3.7 Check Your Progress 3.0

Introduction A programming language uses control statements to cause the flow of execution to advance and branch

based on changes to the state of a program. Java‘s program control statements can be put into the following categories:

selection, iteration, and jump. Selection statements allow your program to choose different paths of execution based upon

the outcome of an expression or the state of a variable. Iteration

statements enable program execution to repeat one or more statements (

that is, iteration statements form loops). Jump statements allow your program to execute in a nonlinear fashion. 3.1

Objectives This Unit intends to help the learners

to: ● Understand the various flow control statements in Java ● learn the difference between the Selection, Iteration, and

Jump control structures ● apply the appropriate control statements to the specified problem 3.2

Selection statements Java supports two selection statements: if and switch. These statements are used to control the flow

of the program‘s execution based upon conditions known only during run time. If

100% MATCHING BLOCK 24/221

The if statement is Java‘s conditional branch statement. It can be used to route program execution through two different

paths. Here is the general form of the if statement: if (condition) statement1; else statement2; Here, each statement may

be a single statement or a compound statement enclosed in curly braces (that is, a block). The condition is any expression

that returns a boolean value. The else clause is optional.

The if works like this: If the condition is true, then statement1 is executed. Otherwise, statement2 (if it exists) is executed. In

no case will both statements be executed. For example, consider the following:

100% MATCHING BLOCK 25/221

A common programming construct that is based upon a sequence of nested ifs is the if-else-if ladder.

The syntax is :

96% MATCHING BLOCK 26/221

if(condition) statement; else if(condition) statement; else if(condition) statement; ... else statement; The

if statements are executed from the top down. As soon as one of the conditions controlling the if is true, the statement

associated with that if is executed, and the rest of the ladder is bypassed. If none of the conditions is true, then the final

https://secure.urkund.com/view/158826330-304149-193235#/sources 13/139

83% MATCHING BLOCK 27/221

else statement will be executed. Switch The switch statement is Java‘s multiway branch statement. It provides an easy

way to dispatch execution to different parts of

the code based on the value of

an expression. The general form of a switch statement is:

94% MATCHING BLOCK 28/221

switch (expression) { case value1: // statement sequence break; case value2: // statement sequence break; ... case valueN:

// statement sequence break; default: // default statement sequence } The expression must be of type byte, short, int, or

char; each of the values specified in the case statements must be of a type compatible with the expression. Each case

value must be a unique literal (that is, it must be a constant, not a variable). Duplicate case values are not allowed.

The switch statement works like this:

The value of the expression is compared with each of the literal values in the case statements. If a match

is found, the code sequence following that case statement is executed. If none of the constants matches the value of the

expression, then the default statement is executed. The break statement is used inside the switch to terminate a statement

sequence. When a break statement is encountered, execution branches to the first line of code that follows the entire

switch statement.

PROGRAM

class SampleSwitch { public static void main(String args[]) { for(int i=0; i>6; i++)

switch(i) {

case 0:

System.out.println("i is zero."); Break;

case 1: System.out.println("i is one."); break;

case 2: System.out.println("

i is two.");

break; case 3: System.out.println("

i is three."); break

default: System.out.println("

i is

greater than 3."); } } } OUTPUT i is

zero. i is one. i is two. i is three. i is greater than 3. i is greater than 3. 3.3

100% MATCHING BLOCK 29/221

Iteration Statements Java‘s iteration statements are for, while, and do-while. These statements

are

88% MATCHING BLOCK 30/221

commonly call loops. A loop repeatedly executes the same set of instructions until a termination condition is met.

96% MATCHING BLOCK 31/221

While The while loop is Java‘s most fundamental looping statement. It repeats a statement or block while its controlling

expression is true. Its general form

is:

https://secure.urkund.com/view/158826330-304149-193235#/sources 14/139

100% MATCHING BLOCK 32/221

while(condition) { // body of loop } The condition can be any Boolean expression. The body of the loop will be executed

as long as the conditional expression is true. When

the

100% MATCHING BLOCK 33/221

condition becomes false, control passes to the next line of code immediately following the loop. The curly braces are

unnecessary if only a single statement is being repeated.

For

example:

PROGRAM

public

class Test{

public static void main(String args[]){

int x =10; while(x >16){ System.out.

print("value of x : "+ x); x++; System.out.print("\n"); } } }

OUTPUT value of

x :10 value of x :11 value of x :12 value of x :13

value of x :14 value of x :15

do-while There are times when you would like to test the termination expression at the end of the loop rather than at the

beginning. Fortunately, Java supplies a loop that does just that: the do-while. The do- while loop always executes its body

at least once, because its conditional expression is at the bottom of the loop. Its general form is

100% MATCHING BLOCK 34/221

do { // body of loop } while (condition); Each iteration of the do-while loop first executes the body of the loop and then

evaluates the conditional expression. If this expression is true, the loop will repeat. Otherwise, the loop terminates.

As with all of Java‘s loops, condition must be a Boolean expression.

PROGRAM

public

class Test{ public static void main(String args[]){ int x =10; do{ System.out.

print("value of x : "+ x); x++; System.out.

print("\n"); }

while(

x >13);

} } OUTPUT value of x :10

value of x :11 value of x :12

For for

89% MATCHING BLOCK 35/221

is a powerful and versatile construct. Here is the general form of the for statement: for(initialization; condition; iteration) {

// body } If only one statement is being repeated, there is no need for the curly braces. The for loop operates as follows.

When the loop first starts, the initialization portion of the loop is executed and it sets the value of the loop control variable,

which acts as a counter that controls the loop. Next,

the

https://secure.urkund.com/view/158826330-304149-193235#/sources 15/139

97% MATCHING BLOCK 36/221

condition is evaluated. This must be a Boolean expression. It usually tests the loop control variable against a target value.

If this expression is true, then the body of the loop is executed. If it is false, the loop terminates. Next, the iteration portion

of the loop is executed. This is usually an expression that increments or decrements the loop control variable. The loop

then iterates, first evaluating the conditional expression, then executing the body of the loop, and then executing the

iteration expression with each pass. This process repeats until the controlling expression is false.

PROGRAM

public

class Test{ public static void main(String args[]){ for(int x =10; x >13; x++){ System.out.

print("

value of x : "+ x); System.out.print("\n"); } } } OUTPUT value of x :10

value of x :11 value of x :12 3.4

Jump Statements Java supports three jump statements: break, continue, and return. These statements transfer control to

another part of your program.

100% MATCHING BLOCK 37/221

In Java, the break statement has three uses. First, as you have seen, it terminates a statement sequence in a switch

statement. Second, it can be used to exit a loop. Third, it can be used as a ―civilized‖ form of goto.

Using break to Exit a Loop By using break, you can force immediate termination of a loop, bypassing the conditional

expression and any remaining code in the body of the loop.

When a

break statement is encountered inside a loop, the loop is terminated and program control resumes at the next statement

following the loop.

Here is a simple example: PROGRAM // Using break to exit a loop.

class BreakLoop { public static void main(String args[]) { for(int i=0; i>100; i++) { if(i == 7) break; //

terminate loop if i is 7 System.out.println("i: " + i); } System.out.println("Loop complete."); } } OUTPUT i: 0 i: 1 i: 2 i: 3 i: 4 i: 5

i: 6 Loop complete. Using break as a Form of Goto In addition to its uses with the switch statement and loops, the break

statement can also be employed by itself to provide a ―civilized‖ form of the goto statement. The general form of the

labeled break statement is shown here: break label; Here, label is the name of a label that identifies a block of code. When

this form of break executes, control is transferred out of the named block of code. One of the most common uses for a

labeled break statement is to exit from nested loops. For example, in the following program, the outer loop executes only

once:. PROGRAM // Using break to exit from nested loops

class BreakLoop4 { public static void main(String args[]) { outer: for(int i=0; i>3; i++) { System.out.

print("Pass " + i + ": "); for(int j=0; j>100; j++) { if(j == 10) break outer; // exit both loops System.out.

print(j + " "); } System.out.println("This will not print"); } System.out.println("Loops complete."); } } OUTPUT Pass 0: 0 1 2 3 4 5

6 7 8 9 Loops complete. Using Continue

Sometimes there is a need to continue running the loop, but stop processing the remainder of the code in its body for this

particular iteration. The continue statement performs such an action. In while and do-while loops, a continue statement

causes control to be transferred directly to the conditional expression that controls the loop. In a for loop, control goes first

to the iteration portion of the for statement and then to the conditional expression. For all three loops, any intermediate

code is bypassed. Here is an example program that uses ‘continue’ to cause two numbers to be printed on each line. This

code uses the % operator to check if i is even. If it is, the loop continues without printing a newline.

As with the break statement, continue may specify a label to describe which enclosing loop to continue. Return The last

control statement is ‘return’. At any time in a method the return statement can be used to cause execution to branch back

to the caller of the method. Thus, the return statement immediately terminates the method in which it is executed. The

following example illustrates this point. Here, return causes execution to return to the Java run-time system, since it is the

run- time system that calls main(). PROGRAM // Demonstrate return.

class Return { public static void main(String args[]) {

boolean t = true; System.out.println("Before the return."); if(t)

return; // return to caller System.out.println("This won't execute."); } } OUTPUT Before the return. 3.5

Unit Summary

https://secure.urkund.com/view/158826330-304149-193235#/sources 16/139

A programming language uses control statements to cause the flow of execution to advance and branch based on changes

to the state of a program. Java‘s program control statements can be put into the following categories: selection, iteration,

and jump. Selection statements allow your program to choose different paths of execution based upon the outcome of an

expression or the state of a variable. Iteration

statements enable program execution to repeat one or more statements (

that is, iteration statements form loops). Jump statements allow your program to execute in a nonlinear fashion. 3.6 Key

Terms ● Selection statements

allow a program to test several conditions, and execute instructions based on which condition is true. That is why selection

statements are also referred to as conditional statements. ● Iteration statements cause statements (or compound

statements) to be executed zero or more times, subject to some loop-termination criteria ● The Java jumping statements

are the control statements which transfer the program execution control to a specific statement. Java has three types of

jumping statements break, continue and return 3.7 Check Your Progress 1.

Write the general form of switch statement. Give an example. 2. How does the ‗do-while‘ statement differ from the ‗while‘

statement? 3. Explain the use of break and continue statement in a ‗for‘ loop. 4. Write a Java program to calculate the

factorial of a given number. 5. Write a program to print the traffic signal using

a switch statement.

Unit 4: Introducing Classes 4.0 Introduction 4.1 Unit Objectives 4.2 Class Fundamentals 4.3 Declaring objects 4.4

Introducing methods 4.5 Constructors 4.6 Garbage Collection 4.7 Unit Summary 4.8 Key Terms 4.9 Check Your Progress 4.0

Introduction The class forms the basis for object-oriented programming in Java. It is the logical construct upon which the

entire Java language is built because it defines the shape and nature of an object.

70% MATCHING BLOCK 38/221

Thus, a class is a template for an object, and an object is an instance of a class. The two words object and instance are

used interchangeably

in this text. 4.1

Unit Objective This Unit intends to introduce: •

the structure of Class and its definition • object definition and its usage • the addition of methods to the class and its return

value • constructors and parameterized constructors • the automatic garbage collection facility of Java 4.2

Class Fundamentals

100% MATCHING BLOCK 39/221

A class is declared by use of the class keyword. The

100% MATCHING BLOCK 40/221

The general form of a class definition is shown here:

100% MATCHING BLOCK 41/221

The data, or variables, defined within a class are called instance variables. The code is contained within methods.

Collectively, the methods and variables defined within a class are called members of the class. In most classes, the

instance variables are acted upon and accessed by the methods defined for that class. Thus, it is the methods that

determine how a class‘ data can be used.

Variables defined within a class are called instance variables because each instance of the class (that is, each object of the

class) contains its own copy of these variables. Thus, the data for one object is separate and unique from the data for

another. Example Here is a class called Box that defines three instance variables: width, height, and depth. Currently, Box

does not contain any methods. PROGRAM /* A program that uses the Box class. Filename: BoxDemo.java */

class Box { double width; double height; double depth; } // This class declares an object of type Box. class BoxDemo { public

static void main(String args[]) { Box

my

https://secure.urkund.com/view/158826330-304149-193235#/sources 17/139

box = new Box(); //object declaration double vol; //assign values to mybox's instance variables mybox.width = 10;

mybox.height = 20; mybox.depth = 15; // compute volume of box vol = mybox.width * mybox.height * mybox.depth;

System.out.println("Volume is " + vol); } } OUTPUT Volume is 3000.0 This program must be named BoxDemo.java, because

the main() method is in the class called BoxDemo, not the class called Box. When you compile this program, you will find

that two .class files have been created, one for Box and one for BoxDemo. To run this program, execute BoxDemo.class, the

following output will be displayed. Volume is 3000.0 4.3 Declaring objects Declaring

88% MATCHING BLOCK 42/221

objects of a class is done in a two-step process. First, declare a variable of the class type. This variable does not define an

object. Instead, it is simply a variable that can refer to an object. Second, acquire an actual, physical copy of the object

and assign it to that variable. This is achieved by using the new operator. The new operator dynamically allocates (that is,

allocates at run time) memory for an object and returns a reference to it. This reference is, more or less, the address in

memory of the object allocated by new.

This reference is then stored in the variable. Thus, in Java, all class objects must be dynamically allocated. In the preceding

sample programs, to create a Box object, the following statement is used : Box mybox = new Box(); // create a Box object

called mybox The dot operator links the name of the object with the name of an instance variable. For example, to assign

the width variable of mybox the value 100, you would use the following statement: mybox.width = 100; Fig.4.1 Declaring

object of type Box Assigning Object Reference Variables: Object reference variables act differently from that of an

assignment statement. For example, Box b1 = new Box(); Box b2 = b1; After the execution of this fragment, b1 and b2 will

both refer to the same object. The assignment of b1 to b2 did not allocate any memory or copy any part of the original

object. It simply makes b2 refer to the same object as does b1. Thus,

any changes made to the object through b2 will affect the object to which b1 is referring,

since they are the same object. This situation is depicted here: Fig.4.2 Object reference

4.4 Introducing methods Classes usually consist of two things: instance variables and methods.

68% MATCHING BLOCK 43/221

This is the general form of a method: type name(parameter-list) { // body of method } Here,

type specifies the type of data returned by the method. This can be any valid type, including class types that you create. If

the method does not return a value, its return type must be void. The name of the method is specified by name. This can be

any legal identifier other than those already used by other items within the current scope. The parameter-list is a sequence

of type and identifier pairs separated by commas. Parameters are essentially variables that receive the value of the

arguments passed to the method when it is called. If the method has no parameters, then the parameter list will be empty.

Methods that have a return type other than void return a value to the calling routine using the following form of the return

statement: return value; Here, value is the value returned. The example program is discussed below : When mybox1.volume(

) is executed, the Java run-time system transfers control to the code defined inside volume(). After the statements inside

volume() have executed, control is returned to the calling routine, and execution resumes with the line of code following

the call. When vol = mybox1.volume(); statement is executed, the value of mybox1.volume() is 3,000 and this value then is

stored in vol. There are two important things to understand about returning values: ● The

type of data returned by a method must be compatible with the return type specified by the method.

For example, if the return type of some method is boolean, it could not return an integer. ● The variable receiving the value

returned by a method (such as vol, in this case)

must also be compatible with the return type specified for the method.

Adding a Method That Takes Parameters: A better approach to setting the dimensions of a box is to create a method that

takes the dimension of a box in its parameters and sets each instance variable appropriately. This concept is implemented

by the following program. PROGRAM // This program uses a parameterized method. class

76% MATCHING BLOCK 44/221

Box { double width; double height; double depth; // compute and return volume double volume() { return width * height *

depth; } //

sets dimensions of box void setDim(

https://secure.urkund.com/view/158826330-304149-193235#/sources 18/139

100% MATCHING BLOCK 45/221

double w, double h, double d) { width = w; height = h; depth = d; } }

class BoxDemo5 { public static void main(String args[]) { Box mybox1 = new Box(); double vol; // initialize each box

mybox1.setDim(10, 20, 15); // get volume of first box vol = mybox1.volume(); System.out.println("Volume is " + vol); } }

OUTPUT Volume

is 3000.0 4.5

Constructors A constructor initializes an object immediately upon creation. It has the same name as the class in which it

resides and is syntactically similar to a method.

Once defined, the constructor is automatically called immediately after the object is created, before the new operator

completes. Constructors look a little strange because they have no return type, not even void. This is because the implicit

return type of a class‘ constructor is the class type itself. The following example demonstrates the use of constructors.

PROGRAM /* Here, Box uses a constructor to initialize the

dimensions of a box. */

71% MATCHING BLOCK 46/221

class Box { double width; double height; double depth; // This is the constructor for Box. Box() {

System.out.println("Constructing Box"); width = 10; height = 10; depth = 10; } // compute and return volume double

volume() { return width * height * depth; } }

class BoxDemo6 { public static void main(String args[]) { // declare, allocate, and initialize Box objects Box mybox1 = new

Box(); double vol; // get volume of first box vol = mybox1.volume(); System.out.println("Volume is " + vol); OUTPUT

Constructing Box Volume

is 1000.0 When Box mybox1 = new Box(); statement is executed, the new Box() is calling the Box() constructor and

initializing the instance variables. When there is no explicit definition of a constructor for a class, then Java creates a default

constructor for the class. Thus in the earlier

versions of Box example, the default constructor automatically initializes all instance variables to zero. Parameterized

Constructors In order to construct Box objects of various dimensions, parameterized constructors are used. For example,

the following version of Box defines a parameterized constructor which sets the dimensions of a box as specified by those

parameters. When the line, Box mybox2 = new Box(3,6, 9); is executed, the values 3, 6 and 9 are passed to the Box()

constructor when new creates the object. Thus, mybox2‘s copy of width, height, and depth will contain the values 3, 6, and

9, respectively. This is illustrated in the following example. PROGRAM /* Here, Box uses a parameterized constructor to

initialize the dimensions of a box. */

100% MATCHING BLOCK 47/221

class Box { double width; double height; double depth; // This is the constructor for Box. Box(double w, double h, double

d) { width = w; height = h; depth = d; } // compute and return volume double volume() { return width * height * depth; } }

class BoxDemo7 { public static void main(String args[]) { // declare, allocate, and initialize Box objects Box mybox2 = new

Box(3, 6, 9); double vol;

// get volume of box vol = mybox2.volume(); System.out.println("Volume is " + vol); } } OUTPUT Volume

is 162.0 this keyword: Java defines this keyword that

100% MATCHING BLOCK 48/221

can be used inside any method to refer to the current object.

89% MATCHING BLOCK 49/221

consider the following version of Box(): // A redundant use of this. Box(double w, double h, double d) { this.width = w;

this.height = h; this.depth = d; } The use of this is redundant, but perfectly correct. Inside Box(), this will always refer to the

invoking object.

https://secure.urkund.com/view/158826330-304149-193235#/sources 19/139

97% MATCHING BLOCK 50/221

However, when a local variable has the same name as an instance variable, the local variable hides the instance variable.

This

is why width, height, and depth were not used as the names of the parameters to the Box() constructor inside the Box class.

4.6

89% MATCHING BLOCK 51/221

Garbage Collection Objects are dynamically allocated by using the new operator, how such objects are destroyed, and

their memory released for later reallocation

is a hidden secret in Java. Java

97% MATCHING BLOCK 52/221

handles deallocation automatically. The technique that accomplishes this is called garbage collection. It works like this:

when no references to an object exist, that object is assumed to be no longer needed, and the memory occupied by the

object can be reclaimed.

Garbage collection only occurs periodically during the execution of your program. 4.7 Unit Summary Thus, this Unit

introduced the fundamentals of the class and creation of objects using class. It also sheds light on methods, constructor

and garbage collection.

4.8

Key Terms

A constructor initializes an object immediately upon creation. It has the same name as the class in which it resides and is

syntactically similar to a method.

89% MATCHING BLOCK 53/221

Garbage Collection: Objects are dynamically allocated by using the new operator, how such objects are destroyed, and

their memory released for later reallocation

is a hidden secret in Java. 4.9

Check Your Progress 1.

Explain the concept of classes and objects with respect to Java. 2. Write

a note on the

Constructor and its use. 3. What is Garbage collection? 4. Define a class name car with appropriate attributes. Also define an

object to access the car class.

Unit 5: A Closer Look at Methods and Classes 5.0

Introduction 5.1 Unit Objectives 5.2 Overloading methods 5.3 Overloading Constructors 5.4 Argument Passing 5.5

Recursion 5.6 Introducing Access control 5.7 Introducing Nested and Inner Classes 5.8 Unit Summary 5.9 Key Terms 5.10

Check Your Progress 5.0

Introduction This Unit continues the discussion of methods and classes begun in the preceding lesson. It examines several

topics relating to methods, including overloading, parameter passing, and recursion. 5.1

Unit Objective This Unit intends to introduce

the following topics: • Method overloading and Constructor overloading • Argument passing (call-by-value, call-by-

reference) • Recursion and Access control (public and private) • Static variables and methods • Nested and inner classes 5.2

Overloading

https://secure.urkund.com/view/158826330-304149-193235#/sources 20/139

80% MATCHING BLOCK 54/221

methods In Java it is possible to define two or more methods within the same class that share the same name, as long as

their parameter declarations are different. When this is the case, the methods are said to be overloaded, and the process is

referred to as method overloading. Here is a simple example that illustrates method overloading: PROGRAM //

Demonstrate method overloading. class OverloadDemo { void

87% MATCHING BLOCK 55/221

void test() { System.out.println("No parameters"); } // Overload test for two integer parameters. void test(int a, int b) {

System.out.println("a and b: " + a + " " + b); } // overload test for a double parameter double test(double a) {

System.out.println("double a: " + a); return a*a; } } class Overload { public static void main(String args[]) { OverloadDemo

ob = new OverloadDemo(); double result; // call all versions of test() ob.test(); ob.test(10, 20); result = ob.test(123.25);

System.out.println("Result of ob.test(123.25): " + result); } } OUTPUT No parameters a and b: 10 20, double a: 123.25 Result

of ob.test(123.25): 15190.5625

100% MATCHING BLOCK 56/221

Method overloading is one of the ways that Java implements polymorphism.

When an overloaded method is invoked, Java uses the type and/or number of arguments as its guide to determine which

version of the overloaded method to actually call. Thus,

overloaded methods must differ in the type and/or number of

their parameters. While overloaded methods may have different return types, the

return type alone is insufficient to distinguish two versions of a method. In some cases Java‘s automatic type conversions

can play a role in overload resolution. Consider the following code fragment.

76% MATCHING BLOCK 57/221

class Overload { public static void main(String args[]) { OverloadDemo ob = new OverloadDemo(); int i = 88; ob.test();

ob.test(10, 20); ob.test(

i); // this will invoke test(double) ob.test(123.2); // this will invoke test(double) } } when test() is called with an integer

argument inside Overload, no matching method is found. However, Java can automatically convert an integer into a

double, and this conversion can be used to resolve the call. Java elevates i to double and then calls test(double). 5.3

Overloading Constructors In addition to overloading normal methods, constructor methods can also overload. Here is a

program that contains an improved version of Box that does just that: BOX Class with overloaded constructors /* Here, Box

defines three constructors to initialize the dimensions of a box various ways. */ class Box { double width; double height;

double

100% MATCHING BLOCK 58/221

depth; // constructor used when all dimensions specified Box(double w, double h, double d) { width = w; height = h;

depth = d; } // constructor used when no dimensions specified Box() { width = -1; // use -1 to indicate height = -1; // an

uninitialized depth = -1; // box } // constructor used when cube is created Box(double len) { width = height = depth = len;

} // compute and return volume double volume() { return width * height * depth; } }

MAIN PROGRAM that calls the BOX class class OverloadCons { public static void main(String args[]) { // create boxes using

the various constructors Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box(); Box mycube = new Box(7); double vol; // get volume of first box

https://secure.urkund.com/view/158826330-304149-193235#/sources 21/139

42% MATCHING BLOCK 59/221

vol = mybox1.volume(); System.out.println("Volume of mybox1 is " + vol); // get volume of second box vol =

mybox2.volume(); System.out.println("Volume of mybox2 is " + vol); // get volume of cube vol = mycube.volume();

System.out.println("Volume of mycube is " + vol); } } OUTPUT Volume of mybox1 is 3000.0 Volume of mybox2 is -1.0

Volume of mycube is 343.0

Using Objects as Parameters It is common to pass objects to methods. For example, consider the following program:

PROGRAM // Objects may be passed to methods. class Test { int a, b; Test(int i, int j) { a = i; b = j; } // return true if o is equal

to the invoking object boolean equals(Test o) { if(o.a == a && o.b == b) return true; else return false; } }

87% MATCHING BLOCK 60/221

class PassOb { public static void main(String args[]) { Test ob1 = new Test(100, 22);

Test ob2 = new Test(100, 22); Test ob3 = new Test(-1, -1); System.out.println("ob1 == ob2: " + ob1.equals(ob2));

System.out.println("ob1 == ob3: " + ob1.equals(ob3));

} } OUTPUT ob1 == ob2: true ob1 == ob3: false The equals () method inside Test compares two objects for equality and

returns the result. That is, it compares the invoking object with the one that it is passed. 5.4 Argument Passing

98% MATCHING BLOCK 61/221

In general, there are two ways that a computer language can pass an argument to a subroutine. The first way is call-by-

value. This method copies the value of an argument into the formal parameter of the subroutine. Therefore, changes

made to the parameter of the subroutine have no effect on the argument. The second way an argument can be passed is

call-by-reference. In this method, a reference to an argument (not the value of the argument) is passed to the parameter.

Inside the subroutine, this reference is used to access the actual argument specified in the call. This means that changes

made to the parameter will affect the argument used to call the subroutine. Java uses both approaches.

Call-by-value In Java, when a simple type is passed to a method, it is passed by value. Thus, what occurs to the parameter

that receives the argument has no effect outside the method.

93% MATCHING BLOCK 62/221

For example, consider the following program: PROGRAM // Simple types are passed by value. class Test { void meth (int i,

int j) { i *= 2; j /= 2; } } class CallByValue { public static void main (String args[]) { Test ob = new Test (); int a = 15, b = 20;

System.out.println("a and b before call: " + a + " " + b); ob.meth(a, b); System.out.println("a and b after call: " + a + " " + b); }

} OUTPUT a and b before call: 15 20 a and b after call: 15 20

The operations that occur inside meth() have no effect on the values of a and b used in the call; their values here did not

change to 30 and 10. Call-by-reference When an object is passed to a method, the situation changes dramatically, as

objects are passed by reference. Thus, the parameter that receives it will refer to the same object as that referred to by the

argument. This effectively means that objects are passed to methods by use of call-by-reference. Changes to the object

inside the method do affect the object used as an argument. For example, consider the following program: Test Class //

Objects are passed by reference. class Test { int a, b; Test(int i, int j) { a = i; b = j; } // pass an object void meth(Test o) { o.a *=

2; o.b /= 2;

} } Main class that uses Test class

57% MATCHING BLOCK 63/221

class CallByRef { public static void main(String args[]) { Test ob = new Test(15, 20); System.out.println("ob.a and ob.b before

call: " + ob.a + " " + ob.b); ob.meth(ob); System.out.println("ob.a and

ob.b after call: " + ob.a + " " + ob.b); } } OUTPUT ob.a

https://secure.urkund.com/view/158826330-304149-193235#/sources 22/139

and ob.b before call: 15 20 ob.a and ob.b after call: 30 10 Thus the actions inside meth() have affected the object used as an

argument. Returning Objects A method can return any type of data, including class types. For example, in the following

program, the incrByTen() method returns an object in which the value of a is ten greater than it is in the invoking object.

PROGRAM // Returning an object. class Test { int a; Test(int i) { a = i; } Test incrByTen() { Test temp = new Test(a+10); return

temp;

} }

46% MATCHING BLOCK 64/221

class RetOb { public static void main(String args[]) { Test ob1 = new Test(2); Test ob2; ob2 = ob1.incrByTen();

System.out.println("ob1.a: " + ob1.a); System.out.println("ob2.a: " +

ob2.a); ob2 = ob2.incrByTen(); System.out.println("ob2.a

after second increase: " + ob2.a); } } OUTPUT ob1.a: 2 ob2.a: 12 ob2.a

after second increase: 22 Each time incrByTen() is invoked, a new object is created, and a reference to it is returned to the

calling routine. 5.5

100% MATCHING BLOCK 65/221

Recursion Java supports recursion. Recursion is the process of defining something in terms of itself. As it relates to Java

programming, recursion is the attribute that allows a method to call itself. A method that calls itself is said to be recursive.

The classic example of recursion is the computation of the factorial of a number. The factorial of a number N is the

product of all the whole numbers between 1 and N.

For example, 3 factorial is 1 × 2 × 3, or 6. Here is how a factorial can be computed by use of a recursive method: PROGRAM

//

91% MATCHING BLOCK 66/221

A simple example of recursion. class Factorial { // this is a recursive function int fact(int n) { int result; if(n==1) return 1;

result = fact(n-1) * n; return result; } } class Recursion { public static void main(String args[]) { Factorial f = new Factorial();

System.out.println("Factorial of 4 is " + f.fact(4)); } } OUTPUT Factorial of 4 is 24 When fact()

is called with an argument of 1, the function returns 1; otherwise it returns the product of fact(n–1)*n. To evaluate this

expression, fact() is called with n–1. This process repeats until n equals 1 and the calls to the method begin returning. 5.6

Introducing Access control

100% MATCHING BLOCK 67/221

Java supplies a rich set of access specifiers. Some aspects of access control are related mostly to inheritance or packages.

(A package is, essentially, a grouping of classes.) These parts of Java‘s access control mechanism will be discussed later.

100% MATCHING BLOCK 68/221

How a member can be accessed is determined by the access specifier that modifies its declaration. Java‘

100% MATCHING BLOCK 69/221

Java‘s access specifiers are public, private, and protected. Java also defines a default access level. protected applies only

when inheritance is involved.

https://secure.urkund.com/view/158826330-304149-193235#/sources 23/139

93% MATCHING BLOCK 70/221

When a member of a class is modified by the public specifier, then that member can be accessed by any other code.

When a member of a class is specified as private, then that member can only be accessed by other members of its class.

100% MATCHING BLOCK 71/221

When no access specifier is used, then by default the member of a class is public within its own package but cannot be

accessed outside of its package.

To understand the effects of public and private access, consider the following program:

PROGRAM /* This program demonstrates the difference between public and private. */ class Test { int a; // default access

public int b; // public access private int c; // private access // methods to access c void setc(int i) { // set c's value c = i; } int

getc() { // get c's value return c; } }

87% MATCHING BLOCK 72/221

class AccessTest { public static void main(String args[]) { Test ob = new Test(); //

These are OK, a and b may be accessed directly ob.a = 10; ob.b = 20; // This is not OK and will cause an error // ob.c = 100;

// Error! // You must access c through its methods ob.setc(100); // OK System.out.println("a, b, and c: " + ob.a + " " + ob.b +

" " + ob.getc()); } }

Inside the Test class, a uses default access, which for this example is the same as specifying public. b is explicitly specified as

public. Member c is given private access. This means that it cannot be accessed by code outside of its class. So, inside the

AccessTest class, c cannot be used directly. It must be accessed through its public methods: setc() and getc().

Understanding Static There will be times when there is a need to define a class member that will be used independently of

any object of that class. To create such a member, precede its declaration with the keyword static. When a member is

declared static, it can be accessed before any objects of its class are created, and without reference to any object. Both

methods and variables can be declared as static. Instance variables declared as static are, essentially, global variables. When

objects of its class are declared, no copy of a static variable is made. Instead, all instances of the class share the same static

variable. Methods declared as static have several restrictions: ● They can only call other static methods. ● They must only

access static data. ● They cannot refer to this or super in any way. The following example shows a class that has a static

method, some static variables, and a static initialization block: PROGRAM // Demonstrate static variables, methods, and

blocks. class UseStatic { static int a = 3; static int b; static void meth(

int

x) {

System.out.println("x = " + x);

System.out.println("a = " + a); System.out.println("b = " + b); } static { System.out.println("

Static block initialized."); b = a * 4; }

public static void main(String args[]) { meth(42); } } OUTPUT Static block initialized. x = 42 a = 3 b = 12 As soon as the

UseStatic class is loaded, all of the static statements are run. First, a is set to 3, then the static block executes (printing a

message), and finally, b is initialized to a * 4 or 12. Then main() is called, which calls meth(), passing 42 to x. The three

println() statements refer to the two static variables a and b, as well as to the local variable x. Introducing final A variable can

be declared as final. Doing so prevents its contents from being modified. This means that you must initialize a final variable

when it is declared. For example: final int FILE_NEW = 1; final int FILE_OPEN = 2; final int FILE_SAVE = 3; final int

FILE_SAVEAS = 4; final int FILE_QUIT = 5; Subsequent parts of the program can now use FILE_OPEN, etc., as if they were

constants, without fear that a value has been changed. Variables declared as final do not occupy memory on a per- instance

basis. Thus, a final variable is essentially a constant. The keyword final can also be applied to methods, but its meaning is

substantially different than when it is applied to variables. This second usage of final is discussed, when inheritance is

described. 5.7 Introducing Nested and

Inner Classes It is possible to define a class within another class;

such classes are known as nested classes. The scope of a nested class is bounded by the scope of its enclosing class. Thus,

if class B is defined within class A, then B is known to A, but not outside of A. A nested class has access to the members,

https://secure.urkund.com/view/158826330-304149-193235#/sources 24/139

including private members, of the class in which it is nested. However, the enclosing class does not have access to the

members of the nested class. There are two types of nested classes: static and non-static. A static nested class is one which

has the static modifier applied. Because it is static, it must access the members of its enclosing class through an object. That

is, it cannot refer to members of its enclosing class directly. Because of this restriction, static nested classes are seldom

used. The most important type of nested class is the inner class. An inner class is a non-static nested class.

100% MATCHING BLOCK 73/221

It has access to all of the variables and methods

of its outer class and may refer to them directly in the same way that other non-static members of the outer class do. Thus,

an inner class is fully within the scope of its enclosing class. The following program illustrates how to define and use an

inner class. The class named Outer has one instance variable named outer_x, one instance method named test(), and

defines one inner class called Inner. PROGRAM // Demonstrate an inner class. class Outer { int outer_x = 100; void test() {

Inner inner = new Inner(); inner.display(); } // this is an inner class class Inner { void display() { System.out.println("display:

outer_x = " + outer_x); } } } class InnerClassDemo { public static void main(String args[]) { Outer outer = new Outer();

outer.test(); } }

OUTPUT display: outer_x = 100 In the program, an inner class named Inner is defined within the scope of class Outer.

Therefore, any code in class Inner can directly access the variable outer_x. An instance method named display () is defined

inside Inner. This method displays outer_x on the standard output stream. The main () method of InnerClassDemo creates

an instance of class Outer and invokes its test () method. That method creates an instance of class Inner, and the display ()

method is called. 5.8 Unit Summary This Unit gave ideas on topics relating to methods, including overloading, parameter

passing, and recursion. 5.9

Key Terms

100% MATCHING BLOCK 74/221

Recursion is the process of defining something in terms of itself. As it relates to Java programming, recursion is the

attribute that allows a method to call itself. A method that calls itself is said to be recursive.

A static nested class is one which has the static modifier applied. Because it is static, it must access the members of its

enclosing class through an object. 5.10

Check Your Progress 1.

Explain method overloading and its benefits. 2. What is the main advantage of constructor overloading? 3. How do we

access the static variables and static methods of a class? 4. Write

a

note on recursive methods. 5. What are nested classes and inner classes? Compare and contrast. 6. Write a Java program to

find the factorial of a given number using recursion.

Module II: Inheritance, Exception handling and Multithread

Unit 6: Inheritance 6.0 Introduction 6.1 Unit Objectives 6.2 Inheritance Basics 6.3 Using Super 6.4 Creating a Multilevel

Hierarchy 6.5 Method Overriding 6.6 Dynamic Method Dispatch 6.7 Using Abstract Classes 6.8 Using final with Inheritance

6.9 The Object Class 6.10Unit Summary 6.11 Key Terms 6.12 Check Your Progress 6.0

Introduction Inheritance

is one of the cornerstones of object-oriented programming because it allows the creation of hierarchical classifications.

Using inheritance, a general class can be created that defines traits common to a set of related items. This class can then be

inherited by other, more specific classes, each adding those things that are unique to it.

In the terminology of Java, a class that is inherited is called

a superclass. The class that does the inheriting is called a subclass. Therefore, a subclass is a specialized version of a

superclass. It inherits all of the instance variables and methods defined by the superclass and adds its own, unique elements.

6.1

Unit Objective This Unit

throws light on the important OOP Concept, Inheritance. It also discusses the following topics related to inheritance. •

Using super keyword • Method overriding • Dynamic MethodDispatch • Usage of Abstract Classes • Purpose of Final

keyword in Inheritance

6.2

Inheritance

https://secure.urkund.com/view/158826330-304149-193235#/sources 25/139

Basics To inherit a class, simply incorporate the definition of one class into another by using the extends keyword. The

following program creates a superclass called A and a subclass called B. PROGRAM // This program uses inheritance to

extend Box.

98% MATCHING BLOCK 75/221

class Box { double width; double height; double depth; // construct clone of an object Box(Box ob) { // pass object to

constructor width = ob.width; height = ob.height; depth = ob.depth; } // constructor used when all dimensions specified

Box(double w, double h, double d) { width = w; height = h; depth = d; } // constructor used when no dimensions specified

Box() { width = -1; // use -1 to indicate height = -1; // an uninitialized depth = -1; // box } // constructor used when cube

is created Box(double len) { width = height = depth = len; } // compute and return volume double volume() { return width

* height * depth; } } //

Here, Box is extended to include weight. class BoxWeight extends Box { double weight; // weight of box //

66% MATCHING BLOCK 76/221

constructor for BoxWeight BoxWeight(double w, double h, double d, double m) { width = w; height = h; depth = d;

71% MATCHING BLOCK 77/221

weight = m; } } class DemoBoxWeight { public static void main(String args[]) { BoxWeight mybox1 = new BoxWeight(10,

20, 15, 34.3); BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076); double vol; vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol); System.out.println("Weight of mybox1 is " + mybox1.weight);

System.out.println(); vol = mybox2.volume(); System.out.println("Volume of mybox2 is " + vol); System.out.println("Weight

of mybox2 is " + mybox2.weight); } } OUTPUT Volume of mybox1 is 3000.0 Weight of mybox1 is 34.3 Volume of mybox2

is 24.0 Weight of mybox2 is 0.076

The general form of a class declaration that inherits a superclass is shown here: class subclass-name extends superclass-

name { // body of class } Java does not support the inheritance of multiple superclasses into a single subclass. However, a

hierarchy of inheritance in which a subclass becomes a superclass of another subclass can be created. 6.3 Using Super

Sometimes, there is

a

need to create a superclass that keeps the details of its implementation to itself (that is, that keeps its data members private).

In this case, there would be no way for a subclass to directly access or initialize these variables on its own. In that case, a

subclass that

58% MATCHING BLOCK 78/221

needs to refer to its immediate superclass can use the keyword super. super has two general forms.

The first calls the superclass‘constructor. The second is

73% MATCHING BLOCK 79/221

used to access a member of the superclass that has been hidden by a member of a subclass. Using super to Call

Superclass Constructors A subclass can call a constructor method defined by its superclass by use of the following form

of super: super(parameter-list); Here, parameter-list specifies any parameters needed by the constructor in the

superclass. PROGRAM //

https://secure.urkund.com/view/158826330-304149-193235#/sources 26/139

97% MATCHING BLOCK 80/221

A complete implementation of BoxWeight. class Box { private double width; private double height; private double depth;

// construct clone of an object Box(Box ob) { // pass object to constructor width = ob.width; height = ob.height; depth =

ob.depth; } // constructor used when all dimensions specified Box(double w, double h, double d) { width = w; height = h;

depth = d; } // constructor used when no dimensions specified Box() { width = -1; // use -1 to indicate height = -1; // an

uninitialized depth = -1; // box } // constructor used when cube is created Box(double len) { width = height = depth = len;

} // compute and return volume double volume() { return width * height * depth; } } // BoxWeight now fully implements all

constructors. class BoxWeight extends Box { double weight; // weight of box // construct clone of an object

BoxWeight(BoxWeight ob) { // pass object to constructor super(ob); weight = ob.weight; } // constructor when all

parameters are specified BoxWeight(double w, double h, double d, double m) { super(w, h, d); // call superclass

constructor weight = m; } // default constructor BoxWeight() { super(); weight = -1; } // constructor used when cube is

created BoxWeight(double len, double m) { super(len); weight = m; } } class DemoSuper { public static void main(String

args[]) { BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3); BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);

BoxWeight mybox3 = new BoxWeight(); // default BoxWeight mycube = new BoxWeight(3, 2); BoxWeight myclone = new

BoxWeight(mybox1); double vol; vol = mybox1.volume(); System.out.println("Volume of mybox1 is " + vol);

System.out.println("Weight of mybox1 is " + mybox1.weight); System.out.println(); vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol); System.out.println("Weight of mybox2 is " + mybox2.weight);

System.out.println(); vol = mybox3.volume(); System.out.println("Volume of mybox3 is " + vol); System.out.println("Weight

of mybox3 is " + mybox3.weight); System.out.println(); vol = myclone.volume(); System.out.println("Volume of myclone is

" + vol); System.out.println("Weight of myclone is " + myclone.weight); System.out.println(); vol = mycube.volume();

System.out.println("Volume of mycube is " + vol); System.out.println("Weight of mycube is " + mycube.weight);

System.out.println(); } } OUTPUT Volume of mybox1 is 3000.0 Weight of mybox1 is 34.3 Volume of mybox2 is 24.0 Weight

of mybox2 is 0.076 Volume of mybox3 is -1.0 Weight of mybox3 is -1.0 Volume of myclone is 3000.0 Weight of myclone

is 34.3 Volume of mycube is 27.0 Weight of mycube is 2.0

Notice that super() is called with an object of type BoxWeight—not of type Box. This still invokes the constructor Box(Box

ob). As mentioned earlier, a superclass variable can be used to reference any object derived from that class. Thus, we are

able to pass a BoxWeight object to the Box constructor. Of course, Box only has knowledge of its own members. When a

subclass calls super(), it is calling the constructor of its immediate superclass. Thus, super() always refers to the superclass

immediately above the calling class. This is true even in a multileveled hierarchy. Also, super() must always be the first

statement executed inside a subclass constructor. Using Super to access the member of the superclass

55% MATCHING BLOCK 81/221

The second form of super acts somewhat like this, except that it always refers to the superclass of the subclass in which it

is used. This usage has the following general form: super.member Here, member can be

either a method or an instance variable.

This second form of super is most applicable to situations in which member names of a subclass hide members by the

same name in the superclass. Consider this simple class hierarchy: //

97% MATCHING BLOCK 82/221

Using super to overcome name hiding. class A { int i; } // Create a subclass by extending class A. class B extends A { int i; //

this i hides the i in A B(int a, int b) { super.i = a; // i in A i = b; // i in B } void show() { System.out.println("i in superclass: " +

super.i); System.out.println("i in subclass: " + i); } } class UseSuper { public static void main(String args[]) { B subOb = new

B(1, 2); subOb.show(); } } OUTPUT i in superclass: 1 i in subclass: 2 Although the

instance variable i in B hides the i in A, super allows access to the i defined in the superclass.

6.4 Creating a Multilevel Hierarchy Given three classes called A, B, and C, C can be a subclass of B, which is a subclass of A.

When this type of situation occurs, each subclass inherits all of the traits found in all of its superclasses. In this case, C

inherits all aspects of B and A. The following program demonstrates a multilevel hierarchy. PROGRAM // Extend BoxWeight

to include shipping costs. // Start with Box.

https://secure.urkund.com/view/158826330-304149-193235#/sources 27/139

94% MATCHING BLOCK 83/221

class Box { private double width; private double height; private double depth; // construct clone of an object Box(Box ob)

{ // pass object to constructor width = ob.width; height = ob.height; depth = ob.depth; } // constructor used when all

dimensions specified Box(double w, double h, double d) { width = w; height = h; depth = d; } // constructor used when no

dimensions specified Box() { width = -1; // use -1 to indicate height = -1; // an uninitialized depth = -1; // box } //

constructor used when cube is created Box(double len) { width = height = depth = len; } // compute and return volume

double volume() { return width * height * depth; } } // Add weight. class BoxWeight extends Box { double weight; // weight

of box // construct clone of an object BoxWeight(BoxWeight ob) { // pass object to constructor super(ob); weight =

ob.weight; } // constructor when all parameters are specified BoxWeight(double w, double h, double d, double m) {

super(w, h, d); // call superclass constructor weight = m; } // default constructor BoxWeight() { super(); weight = -1; } //

constructor used when cube is created BoxWeight(double len, double m) { super(len); weight = m; } } //

Add shipping costs class Shipment extends BoxWeight { double cost; //

58% MATCHING BLOCK 84/221

construct clone of an object Shipment(Shipment ob) { // pass object to constructor super(ob); cost = ob.cost; } //

constructor when all parameters are specified Shipment(double w, double h, double d, double m, double c) { super(w, h,

d, m); // call superclass constructor cost = c; } // default constructor Shipment() { super(); cost = -1; } // constructor used

when cube is created Shipment(double len, double m, double c) { super(len, m);

cost = c; } } class DemoShipment { public static void main(String args[]) { Shipment shipment1 = new Shipment(10, 20, 15,

10, 3.41); Shipment shipment2 = new Shipment(2, 3, 4, 0.76, 1.28); double vol;

50% MATCHING BLOCK 85/221

vol = shipment1.volume(); System.out.println("Volume of shipment1 is " + vol); System.out.println("Weight of shipment1 is "

+ shipment1.weight); System.out.println("Shipping cost: $" + shipment1.cost); System.out.println(); vol =

shipment2.volume(); System.out.println("Volume of shipment2 is " + vol); System.out.println("Weight of shipment2 is " +

shipment2.weight); System.out.println("Shipping cost: $" + shipment2.cost); } } OUTPUT Volume of shipment1 is 3000.0

Weight of shipment1 is 10.0 Shipping cost: $3.41 Volume of shipment2 is 24.0 Weight of shipment2 is 0.76

Shipping cost: $1.28 Because of inheritance, Shipment can make use of the previously defined classes of Box and

BoxWeight, adding only the extra information it needs for its own, specific application. This is part of the value of

inheritance; it allows the reuse of code. This example illustrates one other important point: super() always refers to the

constructor in the closest superclass. The super() in Shipment calls the constructor in BoxWeight. The super() in BoxWeight

calls the constructor in Box. In a class hierarchy, if a superclass constructor requires parameters, then all subclasses must

pass those parameters ―up the line.‖ This is true whether or not a subclass needs parameters of its own. 6.5

79% MATCHING BLOCK 86/221

Method Overriding In a class hierarchy, when a method in a subclass has the same name and type signature as a method

in its superclass, then the method in the subclass is said to override the method in the superclass. When an overridden

method is called from within a subclass, it will always refer to the version of that method defined by the

subclass. The version of the method defined by the superclass will be hidden. Consider the following: PROGRAM //

100% MATCHING BLOCK 87/221

Method overriding. class A { int i, j; A(int a, int b) { i = a; j = b; } // display i and j void show() { System.out.println("i and j: " + i

+ " " + j); } } class B extends A { int k; B(int a, int b, int c) { super(a, b); k = c; } // display k – this overrides show() in A void

show() { System.out.println("k: " + k); } } class Override { public static void main(String args[]) { B subOb = new B(1, 2, 3);

subOb.show(); // this calls show() in B } } OUTPUT k: 3

https://secure.urkund.com/view/158826330-304149-193235#/sources 28/139

When show() is invoked on an object of type B, the version of show() defined within B is used. That is, the version of show(

) inside B overrides the version declared in A. To access the superclass version of an overridden function, super keyword can

be used. Replace the B class with the following code:

70% MATCHING BLOCK 88/221

class B extends A { int k; B(int a, int b, int c) { super(a, b); k = c; } void show() { super.show(); // this calls A's show()

System.out.println("k: " + k); } }

OUTPUT i and j: 1 2 k: 3 Method overriding occurs only when the names and the type signatures of the two methods are

identical. If they are not, then the two methods are simply overloaded. 6.6 Dynamic Method Dispatch Method overriding

forms the basis for one of Java‘s most powerful concepts: dynamic method dispatch.

Dynamic method dispatch is the

91% MATCHING BLOCK 89/221

mechanism by which a call to an overridden method is resolved at run time, rather than compile time.

Only through Dynamic method dispatch Java implements run-time polymorphism. When an overridden method is called

through a superclass

reference, Java determines which version of that method to execute based upon the type of

the object being referred to at the time the call occurs. Thus, this determination is made at run time. When different types of

objects are referred to, different versions of an overridden method will be called. Here is an example that illustrates dynamic

method dispatch: PROGRAM //

100% MATCHING BLOCK 90/221

Dynamic Method Dispatch class A { void callme() { System.out.println("Inside A's callme method"); } } class B extends A { //

override callme() void callme() { System.out.println("Inside B's callme method"); } } class C extends A { // override callme()

void callme() { System.out.println("Inside C's callme method"); } } class Dispatch { public static void main(String args[]) { A a

= new A(); // object of type A B b = new B(); // object of type B C c = new C(); // object of type C A r; // obtain a reference

of type A r = a; // r refers to an A object r.callme(); // calls A's version of callme r = b; // r refers to a B object r.callme(); //

calls B's version of callme r = c; // r refers to a C object r.callme(); // calls C's version of callme } } OUTPUT Inside A‘s

callme method Inside B‘s callme method Inside C‘s callme method

This program creates one superclass called A and two subclasses of it, called B and C. Subclasses B and C override callme()

declared in A. Inside the main() method, objects of type A, B, and C are

declared. Also, a reference of type A, called r, is declared. The program then assigns a reference to each type of object to r

and uses that reference to invoke callme(). As the output shows, the version of callme() executed is determined by the type

of object being referred to at the time of the call. Overridden methods allow Java to support run-time polymorphism.

Polymorphism is essential to object-oriented programming for one reason: it allows a general class to specify methods that

will be common to all of its derivatives, while allowing subclasses to define the specific implementation of some or all of

those methods. 6.7 Using Abstract Classes That is, sometimes you will want to create a superclass that only defines a

generalized form that will be shared by all of its subclasses, leaving it to each subclass to fill in the details. Such a class

determines the nature of the methods that the subclasses must implement. Java‘s solution to this problem is the abstract

method. To declare an abstract method, use this general form: abstract type name(parameter-list); Any class that contains

one or more abstract methods must also be declared abstract. To declare a class abstract, you simply use the abstract

keyword in front of the class keyword at the beginning of the class declaration. There can be no objects of an abstract class.

That is, an abstract class cannot be directly instantiated with the new operator. Such objects would be useless, because an

abstract class is not fully defined. Also, abstract constructors, or abstract static methods can‘t be declared. Any subclass of

an abstract class must either implement all of the abstract methods in the superclass or be itself declared abstract. Here is

the simple example: PROGRAM //

https://secure.urkund.com/view/158826330-304149-193235#/sources 29/139

97% MATCHING BLOCK 91/221

Using abstract methods and classes. abstract class Figure { double dim1; double dim2; Figure(double a, double b) { dim1 =

a; dim2 = b; } // area is now an abstract method abstract double area(); } class Rectangle extends Figure {

Rectangle(double a, double b) { super(a, b); } // override area for rectangle double area() { System.out.println("Inside Area

for Rectangle."); return dim1 * dim2; } } class Triangle extends Figure { Triangle(double a, double b) { super(a, b); } //

override area for right triangle double area() { System.out.println("Inside Area for Triangle."); return dim1 * dim2 / 2; } } class

AbstractAreas { public static void main(String args[]) { // Figure f = new Figure(10, 10); // illegal now Rectangle r = new

Rectangle(9, 5); Triangle t = new Triangle(10, 8); Figure figref; // this is OK, no object is created figref = r;

System.out.println("Area is " + figref.area()); figref = t; System.out.println("Area is " + figref.area()); } }

OUTPUT Inside Area for Rectangle. Area is 45.0 Inside Area for Triangle. Area is 40.0 6.8 Using final with Inheritance The

keyword final can be used to prevent overriding and also to stop inheritance. Both are discussed here. Using final

92% MATCHING BLOCK 92/221

to prevent overriding To disallow a method from being overridden, specify final as a modifier at the start of its declaration.

Methods declared as final cannot be overridden. The following fragment illustrates final:

PROGRAM SEGMENT

100% MATCHING BLOCK 93/221

class A { final void meth() { System.out.println("This is a final method."); } } class B extends A { void meth() { // ERROR! Can't

override. System.out.println("Illegal!"); } }

OUTPUT Can’t override Because meth() is declared as final, it cannot be overridden in B. If

an

attempt is made to do so, a compile-time error will result.

95% MATCHING BLOCK 94/221

Using final to Prevent Inheritance To prevent a class from being inherited. To do this, precede the class declaration with

final. Declaring a class as final implicitly declared all of its methods as final, too. As you might expect, it is illegal to declare

a class as both abstract and final since an abstract class is incomplete by itself and relies upon its subclasses to provide

complete implementations. Here is an example of a final class: final class A { // ... } // The following class is illegal. class B

extends A { // ERROR! Can't subclass A // ... } 6.9 The

Object Class There is one special class, Object, defined by Java. All other classes are subclasses of Object. That is, Object is

a superclass of all other classes. This means that a reference variable of type Object can refer to an object of any other class.

Object defines the following methods, which means that they are available in every object. Method Purpose Object clone()

Creates a new object that is the same as the object being cloned. boolean quals(Objectobject) Determines whether one

object is equal to another. void finalize() Called before an unused object is recycled. Class getClass() Obtains the class of an

object at run time. int hashCode() Returns the hash code associated with the invoking object. void notify() Resumes

execution of a thread waiting on the invoking object. void notifyAll() Resumes execution of all threads waiting on the

invoking object. String toString() Returns a string that describes the object. void wait() Waits on another thread of execution.

void wait (long milliseconds) void wait (long milliseconds, int nanoseconds)

The methods getClass (), notify(), notifyAll(), and wait() are declared as final. The other methods may be overridden. 6.10

Unit Summary This Unit discussed the basics of Inheritance, its type and use of keyword super. It also covered the method

overriding, dynamic method dispatch, uses of abstract class and final keyword in inheritance. 6.11

Key Terms

Dynamic method dispatch is the

91% MATCHING BLOCK 95/221

mechanism by which a call to an overridden method is resolved at run time, rather than compile time. 6.12

https://secure.urkund.com/view/158826330-304149-193235#/sources 30/139

Check Your Progress 1.

Give the purpose of the keyword super‘. 2. What is an abstract class? Give an example. 3. How does Java implement

polymorphism? Explain. 4. Differentiate between overriding and overloading a method. 5. Write note on Dynamic dispatch

method or run-time polymorphism. 6. Give the uses of final‘ keyword. 7. List the various methods used by

the Object class.

Unit 7: Packages & Interfaces 7.0 Introduction 7.1 Unit Objectives 7.2 Packages 7.4 Importing Packages 7.5 Interfaces 7.6 Unit

Summary 7.7 Key Terms 7.8 Check Your Progress 7.0

Introduction

100% MATCHING BLOCK 96/221

Packages and interfaces are two of the basic components of a Java program.

In general, a Java source file can contain

90% MATCHING BLOCK 97/221

any (or all) of the following four internal parts: • A single package statement (optional) • Any number of import statements

(optional) • A single public class declaration (required) • Any number of classes private to the package (optional) 7.1

Objectives The Unit aims

to: • give the overview of the innovative features of Java – the Packages and Interfaces. • introduce the ways by which the

Packages can be defined and implemented • know the means of importing Packages and • Define, implement and apply

Interfaces 7.2

Packages

Packages are used in Java in order to prevent naming conflicts, to control access, to make searching/locating and usage of

classes, interfaces, enumerations and annotations easier, etc. A Package can be defined as a grouping of related

types(classes, interfaces, enumerations and annotations) providing access protection and

name space

management. Some of the existing packages in Java are: • java.lang - bundles the fundamental classes • java.io - classes for

input, output functions are bundled in this

package

Programmers can define their own packages to bundle groups of classes/interfaces, etc. It is a good practice to group

related classes implemented by you so that a programmer can easily determine that the classes, interfaces, enumerations,

annotations are related.

Defining a Package To create a package is quite easy: simply include a package command as the first statement in a Java

source file.

100% MATCHING BLOCK 98/221

Any classes declared within that file will belong to the specified package.

The package statement defines a name space in which classes are stored. If you omit

the package statement, the class names are put into the default package, which has no name.

76% MATCHING BLOCK 99/221

This is the general form of the package statement: package pkg; Here, pkg is the name of

the package. For example, the following statement creates a package called MyPackage. package MyPackage; A hierarchy

of packages can be created. To do so, simply separate each package name from the one above it by use of a period. The

general form of a multileveled package statement is shown here: package pkg1[.pkg2[.pkg3]]; A package hierarchy must be

reflected in the file system of your Java development system. For example, a package declared as package java.awt.image;

needs to be stored in java/awt/image, java\awt\image, or java:awt:image on UNIX, Windows, or Macintosh file system,

respectively. Be sure to choose the package names carefully. A package cannot

be

https://secure.urkund.com/view/158826330-304149-193235#/sources 31/139

renamed without renaming the directory in which the classes are stored. Finding Packages and CLASSPATH Finding the path

of the package can be done in

92% MATCHING BLOCK 100/221

two ways. First, by default, the Java run-time system uses the current working directory as its starting point. Thus, if

the

92% MATCHING BLOCK 101/221

package is in the current directory, or a subdirectory of the current directory, it will be found. Second, a directory path

can be specified or the CLASSPATH environment variable can be set.

100% MATCHING BLOCK 102/221

For example, consider the following package specification. package MyPack; In order for a program to find MyPack, one

of two things must be true. Either the program is executed from a directory immediately above MyPack, or CLASSPATH

must be set to include the path to MyPack.

A Short Package Example Here is a simple example that explains the package concept: PROGRAM // A simple package

package MyPack; class Balance { String name; double bal; Balance(String n, double b) { name = n; bal =

50% MATCHING BLOCK 103/221

b; } void show() { if(bal>0) System.out.print("--< "); System.out.println(name + ": $" + bal); } } class AccountBalance {

public static void main(String args[]) {

Balance current[] = new Balance[3]; current[0] = new Balance("K. J. Fielding", 123.23); current[1] = new Balance("Will Tell",

157.02); current[2] = new Balance("Tom Jackson", -12.33); for(int i=0; i>3; i++) current[i].show(); } } OUTPUT Tom

Jackson : $-12.33 Call this file AccountBalance.java and put it in a directory called MyPack. Next, compile the file. Make sure

that the resulting .class file is also in the MyPack directory. Then try executing the AccountBalance class, using the following

command line: java MyPack.AccountBalance

7.3 Access Protection Classes and packages are

72% MATCHING BLOCK 104/221

both means of encapsulating and containing the name space and scope of variables and methods. Packages act as

containers for classes and other subordinate packages. Classes act as containers for data and code.

The class is Java‘s smallest unit of abstraction. Because of the interplay between classes and packages,

65% MATCHING BLOCK 105/221

Java addresses four categories of visibility for class members: • Subclasses in the same package • Non-subclasses in the

same package • Subclasses in different packages • Classes that are neither in the same package nor subclasses The

three

100% MATCHING BLOCK 106/221

access specifiers, private, public, and protected, provide a variety of ways to produce the many levels of access required

by these categories.

Table 7.1 sums up the interactions. Visibility

https://secure.urkund.com/view/158826330-304149-193235#/sources 32/139

80% MATCHING BLOCK 107/221

Private No modifier Protected Public Same class Yes Yes Yes Yes Same package Subclass No Yes Yes Yes Same package

non- subclass No Yes Yes Yes Different package subclass No No Yes Yes Different package non- subclass No No No Yes

Table 7.1 Class member access

An Access Example The following example shows all combinations of the access control modifiers. This example has two

packages and five classes. The source for the first package defines three classes: Protection, Derived, and SamePackage.

The first class defines four int variables in each of the legal protection modes. The variable n is declared with the default

protection, n_pri is private, n_pro is protected, and n_pub is public.

The second class, Derived, is a subclass of Protection in the same package, p1. This grants Derived access to every variable

in Protection except for n_pri, the private one. The third class, SamePackage, is not a subclass of Protection, but is in the

same package and also has access to all but n_pri. Package 1 File name: Protection.java package p1; public class Protection

{ int n = 1; private int n_pri = 2; protected int n_pro = 3; public int n_pub = 4; public Protection() {

System.out.println("base constructor"); System.out.println("n = " + n); System.out.println("n_pri = " + n_pri);

System.out.println("n_pro = " + n_pro); System.out.println("n_

pub = " + n_pub); } } File name: Derived.java package p1; class Derived extends Protection { Derived() {

System.out.println("derived constructor"); System.out.println("n = " + n); // class only // System.out.println("n_pri = " + n_pri);

System.out.println("n_pro = " + n_pro); System.out.println("n_

pub = " + n_pub); } } File name: SamePackage.java

package p1; class SamePackage { SamePackage() { Protection p = new Protection();

System.out.println("same package constructor"); System.out.println("n = " + p.n); // class only // System.out.println("n_pri = "

+ p.n_pri); System.out.println("n_pro = " + p.n_pro); System.out.println("

n_pub = " + p.n_pub); } } Following is the source code for the other package, p2. The two classes defined in p2 cover the

other two conditions which are affected by access control. The first class, Protection2, is a subclass of p1.Protection. This

grants access to all of p1.Protection‘s variables except for n_pri (because it is private) and n, the variable declared with the

default protection. Thus, the default only allows access from within the class or the package, not extra-package subclasses.

Finally, the class OtherPackage has access to only one variable, n_pub, which was declared public. Package 2 File name:

Protection2.java package p2; class Protection2 extends p1.Protection { Protection2() { System.out.println("derived other

package constructor"); // class or package only //

System.out.println("n = " + n); // class only // System.out.println("n_pri = " + n_pri); System.out.println("n_pro = " + n_pro);

System.out.println("n_

pub = " + n_pub); }

} File name: OtherPackage.java package p2; class OtherPackage { OtherPackage() { p1.Protection p = new p1.Protection();

System.out.println("other package constructor"); // class or package only // System.out.println("n = " + p.n); // class only //

System.out.println("n_pri = " + p.n_pri); // class, subclass or package only // System.out.println("n_pro = " + p.n_pro);

System.out.println("n_pub = " + p.n_pub); } } To test these two packages, use the following code: To test package 1 // Demo

package p1. package p1; // Instantiate the various classes in p1. public class Demo { public static void main(String args[]) {

Protection ob1 = new Protection(); Derived ob2 = new Derived(); SamePackage ob3 = new SamePackage(); } } To test

package 2 // Demo package p2. package p2; // Instantiate the various classes in p2.

public class Demo { public static void main(String args[]) { Protection2 ob1 = new Protection2(); OtherPackage ob2 = new

OtherPackage(); } } 7.4 Importing Packages

100% MATCHING BLOCK 108/221

Java includes the import statement to bring certain classes, or entire packages, into visibility. Once imported, a class can

be referred to directly, using only its name. The import statement is a convenience to the programmer and is not

technically needed to write a complete Java program.

https://secure.urkund.com/view/158826330-304149-193235#/sources 33/139

99% MATCHING BLOCK 109/221

In a Java source file, import statements occur immediately following the package statement (if it exists) and before any

class definitions. This is the general form of the import statement: import pkg1[.pkg2].(classname|*); Here, pkg1 is the

name of a top-level package, and pkg2 is the name of a subordinate package inside the outer package separated by a dot

(.). There is no practical limit on the depth of a package hierarchy, except that imposed by the file system. Finally, specify

either an explicit classname or a star (*), which indicates that the Java compiler should import the entire package. This

code fragment shows both forms in use: import java.util.Date; import java.io.*;

Here is a sample program : PROGRAM package MyPack; /* Now, the Balance class, its constructor, and its show() methods

are public. This means that they can be used by non- subclass code outside their package. */ public class Balance {

String name; double bal; public Balance(String n, double b) { name = n; bal = b; } public void show() { if(bal<0)

System.out.print("--< "); System.out.println(name + ": $" + bal); } } MAIN PROGRAM import MyPack.*; class TestBalance {

public static void main(String args[]) { /* Because Balance is public, you may use Balance class and call its constructor. */

Balance test = new Balance("J. J. Jaspers", 99.88); test.show(); // you may also call show() } } OUTPUT J. J. Jaspers : $99.88

The Balance class is now public. Also, its constructor and its show() method are public, too. This means that they can be

accessed by any type of code outside the MyPack package. For example, here TestBalance imports MyPack and is then able

to make use of the Balance class. 7.5 Interfaces An interface

is a collection of abstract methods. A class implements an interface, thereby inheriting the abstract methods of the

interface.

An interface is not a class.

Writing an interface is similar to

writing a class, but

they are two different concepts.

A class describes the attributes and behaviors of an object. An interface contains behaviors that a class implements. Unless

the

the class that implements the interface is abstract, all the methods of the interface need to be defined in the class. • An

interface is similar to a class in the following ways: • An interface can contain any number of methods. • An interface is

written in a file with a .java extension, with the name of the interface matching the name of the file. The bytecode of an

interface appears in a .class file. Interfaces appear in packages, and their corresponding bytecode file must be in a directory

structure that matches the package name.

However, an interface is different from a class in several ways, including: ● An interface

cannot be instantiated. ●
An interface does not contain any constructors. ● All of the methods in an interface are abstract. ● An interface cannot

contain instance fields. The only fields that can appear in an interface must be declared both static and final. ● An interface

is not extended by a class; it is implemented by a class. ● An interface can extend multiple interfaces.

Defining an Interface An interface is defined much like a class. This is the general form of an interface: access interface

name { return-type method-name1(parameter-list); return-type method-name2(parameter-list); type final-varname1 =

value; type final-varname2 = value; // ... return-type method-nameN(parameter-list); type final-varnameN = value; } Here,

access is either public or not used. When no access specifier is included, then default access results, and the interface is

only available to other members of the package in which it is declared.

When it is declared as public, the interface can be used by any other code. name is the name of the interface and can be

any valid identifier. Notice that the methods which are declared have no bodies. They end with a semicolon after the

parameter list. They are, essentially, abstract methods; there can be no default implementation of any method specified

within an interface. Each class that includes an interface must implement all of the methods. Variables can be declared

inside of interface declarations. They are implicitly final and static, meaning they cannot be changed by the implementing

class. They must also be initialized with a constant value. All methods and variables are implicitly public if the interface, itself,

is declared as public. Here is an example of an interface definition. It declares a simple interface which contains one method

called callback() that takes a single integer parameter. interface Callback { void callback(int param); }

https://secure.urkund.com/view/158826330-304149-193235#/sources 34/139

100% MATCHING BLOCK 110/221

Implementing Interfaces Once an interface has been defined, one or more classes can implement that interface. To

implement an interface, include the implements clause in a class definition, and then create the methods defined by the

interface. The general form of a class that includes the implements clause looks like this: access class classname [extends

superclass] [implements interface [,interface...]] { // class-body } Here, access is either public or not used. If a class

implements more than one interface, the interfaces are separated with a comma. If a class implements two interfaces that

declare the same method, then the same method will be used by clients of either interface. The methods that implement

an interface must be declared public. Also, the type signature of the implementing method must match exactly the type

signature specified in the interface definition.

It is both permissible and common for classes that implement interfaces to define additional members of their own. Here is

a small example class that implements the Callback interface shown earlier. PROGRAM SEGMENT class Client implements

Callback { // Implement Callback's interface public void callback(int p) { System.out.println("callback called with " + p);

} } Accessing Implementations through Interface References

Any instance of any class that implements the declared interface can be referred to by

such a

variable. When you call a method through one of these references, the correct version will

be called

based on the actual instance of the interface being referred to. This is one of the

key features of interfaces. The following example illustrates this. Implementation 1 PROGRAM SEGMENT class Client

implements Callback { // Implement Callback's interface public void callback(int p) { System.out.println("callback called with

" + p); } } Implementation 2 class AnotherClient implements Callback { // Implement Callback's interface public void

callback(int p) { System.out.println("Another version of callback"); System.out.println("p squared is " + (p*p)); } } Interface

References class TestIface2 { public static void main(String args[]) { Callback c = new Client(); AnotherClient ob = new

AnotherClient(); c.callback(4); c = ob; // c now refers to AnotherClient object c.callback(4);

} }

Applying Interfaces

In this example, the

Bank

interface has only one method. Its implementation is provided

by SBI and PNB classes. In

the real scenario, the

interface is defined by someone, but implementation is provided by different implementation providers. And, it is used by

someone else. The implementation part is hidden by the user which uses the interface.

PROGRAM //

File: TestInterface2.java interface Bank{ float rateOfInterest(); } class SBI implements Bank{ public float rateOfInterest(){return

9.15f;} } class PNB implements Bank{ public float rateOfInterest(){return 9.7f;} } class TestInterface2{

public static void main(String[] args){ Bank b=new SBI(); System.out.println("ROI: "+b.

rateOfInterest()); } } OUTPUT ROI: 9.15 7.6

Unit Summary This Unit discussed the power of packages in access control and elaborated the usage of interfaces for

effective programming.

7.7

Key Terms •

Packages are used in Java in order to prevent naming conflicts, to control access, to make searching/locating and usage of

classes, interfaces, enumerations and annotations easier, etc. •

An interface

is a collection of abstract methods. A class implements an interface, thereby inheriting the abstract methods of the

interface.

An interface is not a class.

Writing an interface is similar to writing a class, but

they are two different concepts. 7.8

Check Your Progress 1.

Explain the concept of Package, through an example. 2. Discuss the various levels of access protection available for

packages and their implementation. 3. Explain the purpose of the import statement. 4. What is an Interface? Explain it with

an example. 5. Show that multiple implementations of an Interface is possible.

https://secure.urkund.com/view/158826330-304149-193235#/sources 35/139

Unit 8: Exception Handling 8.0 Introduction 8.1 Unit Objectives 8.2 Exception-Handling Fundamentals 8.3 Exception Types

8.4 Using try and catch 8.5 throw clause 8.6 Java’s Built-in Exceptions 8.7 Creating User defined Exception classes 8.8 Unit

Summary 8.9 Key Terms 8.10 Check Your Progress 8.0

Introduction An exception is an abnormal condition that arises in a code sequence at run time. In computer languages that

do not support exception handling, errors must be checked and handled manually, typically through the use of error codes,

and so on. This approach is cumbersome. Java‘s exception handling avoids these problems and brings run-time error

management into the object-oriented world. 8.1

Objectives This Unit elaborates the error handling mechanism. It explains the Exception handling supported by Java

through try, catch and throw Procedure for creating the User defined exception classes. 8.2

Exception-Handling Fundamentals Java exception handling is managed via five keywords: try, catch, throw, throws, and

finally. Briefly, here is how they work. Program statements that you want to monitor for exceptions are contained within a

try block. If an exception occurs within the try block, it is thrown. Your code can catch this exception (using catch) and

handle it in some rational manner. System- generated exceptions are automatically thrown by the Java run-time system. To

manually throw an exception, use the keyword throw. Any exception that is thrown out of a method must be specified as

such by a throws clause. Any code that absolutely must be executed before a method return is put in a finally block.

This is the general form of an exception-handling

block:

Here, ExceptionType is the type of exception that has occurred. 8.3 Exception Types All exception types are subclasses of

the built-in class Throwable. Thus, Throwable is at the top of the exception class hierarchy. Immediately below Throwable

are two subclasses that partition exceptions into two distinct branches. One branch is headed by Exception. This class is

used for exceptional conditions that user programs should catch. There is an important subclass of Exception, called

RuntimeException, used to create custom exception types. division by zero and invalid array indexing are examples. he

other branch is topped by Error, which defines exceptions

that are not expected to be caught under normal circumstances by

your program. Exceptions of type Error are used by the Java run-time system to indicate errors having to do with the run-

time environment, itself. Stack overflow is an example of such an error. This section deals only with the branch Exceptions.

In Java, if an exception arises, and it is not caught by the user program, Java run-time system invokes

100% MATCHING BLOCK 111/221

the default handler. The default handler displays a string describing the exception, prints a stack trace from the point at

which the exception occurred, and terminates the program. 8.4

Using try and catch A try and its catch statement form a unit. The scope of the catch clause is restricted to those statements

specified by the immediately preceding try statement. A catch statement cannot catch an exception thrown by another try

statement (except in the case of nested try statements). The statements that are protected by try must be surrounded by

curly braces. That is, they must be within a block.) try block cannot have a single statement. The goal of most well-

constructed catch clauses should be to resolve the exceptional condition and then continue on as if the error had never

happened. For example, in the next program each iteration of the for loop obtains two random integers. Those two integers

are divided by each other, and the result is used to divide the value 12345. The final result is put into a. If either division

operation causes a divide-by- zero error, it is caught, the value of a is set to zero, and the program continues. PROGRAM //

Handle an exception and move on.

import java.util.Random;

class HandleError { public static void main(String args[]) {

int

a=0, b=0,

c=0;

Random r = new Random(); for(int i=0; i>32000; i++) { try { b = r.nextInt(); c = r.nextInt();

a = 12345 / (b/c); } catch (ArithmeticException e) { System.out.println("Division by zero."); a = 0; //

set a to zero and continue } System.out.println("a: " + a); } } }

To display the system error message, the catch block in the preceding program can be rewritten like this:

https://secure.urkund.com/view/158826330-304149-193235#/sources 36/139

77% MATCHING BLOCK 112/221

catch (ArithmeticException e) { System.out.println("Exceptio: " + e); a = 0; // set a to zero and continue } When this version

is substituted in the program, the following message will be displayed. Exception: java.lang.ArithmeticException: / by zero

Multiple catch Clauses In some cases, more than one exception could be raised by a single piece of code. To handle this

type of situation, two or more catch clauses

can be specified,

100% MATCHING BLOCK 113/221

each catching a different type of exception. When an exception is thrown, each catch statement is inspected in order, and

the first one whose type matches that of the exception is executed. After one catch statement executes, the others are

bypassed, and execution continues after the try/catch block. The following example traps two different exception types:

PROGRAM //

94% MATCHING BLOCK 114/221

Demonstrate multiple catch statements. class MultiCatch { public static void main(String args[]) { try { int a = args.length;

System.out.println("a = " + a); int b = 42 / a; int c[] = { 1 }; c[42] = 99; } catch(ArithmeticException e) {

System.out.println("Divide by 0: " + e); } catch(ArrayIndexOutOfBoundsException e) { System.out.println("Array index oob: "

+ e); } System.out.println("After try/catch blocks."); } } This program will cause a division-by-zero exception if it is started

with no command line parameters, since a will be equal

to

95% MATCHING BLOCK 115/221

zero. It will survive the division if you provide a command-line argument, setting a to something larger than zero. But it

will cause an ArrayIndexOutOfBoundsException, since the int array c has a length of 1, yet the program attempts to assign

a value to c[42]. Here is the output generated by running it both ways: C:\<java MultiCatch a = 0 Divide by 0:

java.lang.ArithmeticException: / by zero After try/catch blocks. C:\<java MultiCatch TestArg a = 1 Array index oob:

java.lang.ArrayIndexOutOfBoundsException After try/catch blocks.

When multiple catch statements are used, the exception subclasses must come before any of their superclasses. Nested try

Statements The try statement can be nested. That is, a try statement can be inside the block of another try. Each time a try

statement is entered, the context of that exception is pushed on the stack. If an inner try statement does not have a catch

handler for a particular exception, the stack is unwound and the next try statement‘s catch handlers are inspected for a

match. This continues until one of the catch statements succeeds, or until all the nested try statements are exhausted. If no

catch statement matches, then the Java run-time system will handle the exception. Here is an example that uses nested try

statements

PROGRAM // An

example of nested try

89% MATCHING BLOCK 116/221

statements. class NestTry { public static void main(String args[]) { try { int a = args.length; /*

If no command-line args are present, the following statement will generate a divide-by-zero exception. */ int b = 42 / a;

System.out.println("a = " + a); try { // nested try block /* If one command-line arg is used, then a divide-by-zero exception

will be generated by the following code. */ if(a==1) a = a/(a-a); // division by zero /* If two command-line args are used,

then generate an out-of-bounds exception. */ if(a==2) { int c[] = { 1 }; c[42] = 99; // generate an out-of-bounds exception }

}

catch(ArrayIndexOutOfBoundsException e) { System.out.println("Array index out-of-bounds: " + e); } }

catch(ArithmeticException e) { System.out.println("

https://secure.urkund.com/view/158826330-304149-193235#/sources 37/139

Divide by 0: " + e); } } } OUTPUT C:\<java NestTry Divide by 0: java.lang.ArithmeticException: / by zero

52% MATCHING BLOCK 117/221

C:\<java NestTry One a = 1 Divide by 0: java.lang.ArithmeticException: / by zero C:\<java NestTry One Two a = 2 Array

index

out-of-bounds: java.lang.ArrayIndexOutOfBoundsException 8.5 throw clause The throw statement is used to throw an

exception explicitly. The general form of throw is:

97% MATCHING BLOCK 118/221

throw ThrowableInstance; Here, ThrowableInstance must be an object of type Throwable or a subclass of Throwable.

Simple types, such as int or char, as well as non-Throwable classes, such as String and Object, cannot be used as

exceptions. Two ways

are used to

98% MATCHING BLOCK 119/221

obtain a Throwable object: using a parameter into a catch clause, or creating one with the new operator. The flow of

execution stops immediately after the throw statement; any subsequent statements are not executed. The nearest

enclosing try block is inspected to see if it has a catch statement that matches the type of the exception. If it does find a

match, control is transferred to that statement. If not, then the next enclosing try statement is inspected, and so on. If no

matching catch is found, then the default exception handler halts the program and prints the stack trace.

Here is a sample program that creates and throws an exception. The handler that catches the exception rethrows it to the

outer handler. PROGRAM //

100% MATCHING BLOCK 120/221

Demonstrate throw. class ThrowDemo { static void demoproc() { try { throw new NullPointerException("demo"); }

catch(NullPointerException e) { System.out.println("Caught inside demoproc."); throw e; // rethrow the exception } }

public static void main(String args[]) { try { demoproc(); } catch(NullPointerException e) { System.out.println("Recaught: " +

e); } } }

OUTPUT Caught inside demoproc. Recaught: java.lang.NullPointerException: demo

99% MATCHING BLOCK 121/221

throws clause If a method is capable of causing an exception that it does not handle, it must specify this behavior so that

callers of the method can guard themselves against that exception. You do this by including a throws clause in the

method‘s declaration. A throws clause lists the types of exceptions that a method might throw. This is necessary for all

exceptions, except those of type Error or RuntimeException, or any of their subclasses. All other exceptions that a method

can throw must be declared in the throws clause. If they are not, a compile-time error will result. This is the general form

of a method declaration that includes a throws clause: type method-name(parameter-list) throws exception-list { // body

of method } Here, exception-list is a comma-separated list of the exceptions that a method can throw.

Here is an example program. PROGRAM // This is now correct.

88% MATCHING BLOCK 122/221

class ThrowsDemo { static void throwOne() throws IllegalAccessException { System.out.println("Inside throwOne."); throw

new IllegalAccessException("demo"); } public static void main(String args[]) { try { throwOne(); } catch

(IllegalAccessException e) { System.out.println("Caught " + e); } } } OUTPUT inside throwOne caught

java.lang.IllegalAccessException:

https://secure.urkund.com/view/158826330-304149-193235#/sources 38/139

demo finally clause The finally clause

97% MATCHING BLOCK 123/221

creates a block of code that will be executed after a try/catch block has completed and before the code following the

try/catch block. The finally block will execute whether or not an exception is thrown. If an exception is thrown, the finally

block will execute even if no catch statement matches the exception. Any time a method is about to return to the caller

from inside a try/catch block, via an uncaught exception or an explicit return statement, the finally clause is also executed

just before the method returns. This can be useful for closing file handles and freeing up any other resources that might

have been allocated at the beginning of a method with the intent of disposing of them before returning. The finally clause

is optional. However, each try statement requires at least one catch or a finally clause.

The execution of finally clause is shown in figure 8.1

Here is an example program that shows three methods that exit in various ways, none without executing their finally

clauses: PROGRAM //

99% MATCHING BLOCK 124/221

Demonstrate finally. class FinallyDemo { // Through an exception out of the method. static void procA() { try {

System.out.println("inside procA"); throw new RuntimeException("demo"); } finally { System.out.println("procA' finally"); } }

// Return from within a try block. static void procB() { try { System.out.println("inside procB"); return; } finally {

System.out.println("procB's finally"); } } // Execute a try block normally. static void procC() { try { System.out.println("inside

procC"); } finally { System.out.println("procC's finally"); } } public static void main(String args[]) { try { procA(); } catch

(Exception e) { System.out.println("Exception caught"); } procB(); procC(); } }

OUTPUT

100% MATCHING BLOCK 125/221

inside procA procA‘s finally Exception caught inside procB procB‘s finally inside procC procC‘s finally

93% MATCHING BLOCK 126/221

In this example, procA() prematurely breaks out of the try by throwing an exception. The finally clause is executed on the

way out. procB()‘s try statement is exited via a return statement. The finally clause is executed before procB() returns. In

procC(), the try statement executes normally, without error. However, the finally block is still executed. 8.6

Java’s

Built-in Exceptions Java defines several exception classes, inside the standard package java.lang.

98% MATCHING BLOCK 127/221

The most general exceptions are subclasses of the standard type RuntimeException. Since java.lang is implicitly imported

into all Java programs, most exceptions derived from RuntimeException are automatically available. Furthermore, they

need not be included in any method ‘s throws list. In the language of Java, these are called unchecked exceptions

because the compiler does not check to see if a method handles or throws these exceptions. The unchecked exceptions

defined in java.lang are listed in Table 8-1

Exception Meaning

ArithmeticException Arithmetic error, such as divide-by-zero. ArrayIndexOutOfBoundsException Array index is out-of-

bounds ArrayStoreException Assignment to an array element of an incompatible type. ClassCastException Invalid cast.

IllegalArgumentException Illegal argument used to invoke a method. IllegalMonitorStateException Illegal monitor operation,

such as waiting on an unlocked thread. IllegalStateException Environment or application is in

an

https://secure.urkund.com/view/158826330-304149-193235#/sources 39/139

incorrect state. IllegalThreadStateException Requested operation not compatible with current thread state.

IndexOutOfBoundsException Some type of index is out-of- bounds. NegativeArraySizeException Array created with a

negative size. NullPointerException Invalid use of a null reference. NumberFormatException Invalid conversion of a string to

a numeric format. SecurityException Attempt to violate security. StringIndexOutOfBounds Attempt to index outside the

bounds of a string. UnsupportedOperationException An unsupported operation was encountered.

Table 8-1: Java’s

Unchecked RuntimeException Subclasses

Table 8-2. Java’s

Checked Exceptions Defined in java.lang Exception Meaning

ClassNotFoundException Class not found.

CloneNotSupportedException Attempt to clone an object that does not implement the Cloneable interface.

IllegalAccessException Access to a class is denied. InstantiationException Attempt to create an object of an abstract class or

interface. InterruptedException One thread has been interrupted by another thread. NoSuchFieldException A requested

field does not exist. NoSuchMethodException A requested method does not exist.

100% MATCHING BLOCK 128/221

Table 8-2 lists those exceptions defined by java.lang that must be included in a method‘s throws list if that method can

generate one of these exceptions and does not handle it itself. These are called checked exceptions. Java defines several

other types of exceptions that relate to its various class libraries. 8.7

Creating User defined Exception classes

User defined exceptions in java are also known as Custom exceptions. Most of the times, while developing an application in

java,

there is

a need to create and throw our own exceptions. These exceptions are known as User defined or Custom exceptions.

In order to define the custom exception, define a subclass of Exception Class. The

Exception class does not define any methods of its own. It inherits those methods provided by Throwable.

Thus, all exceptions, including those that we create, have the methods defined by Throwable available to them. They are

shown in Table 8-3. Method Description Throwable fillInStackTrace() Returns a Throwable object that contains a

Completed stack trace. This object can be rethrown. Throwable getCause() Returns the exception that underlies the

current exception. If there is no underlying exception, null is returned. String getLocalizedMessage() Returns a localized

description of the exception. String getMessage() Returns a description of the exception. StackTraceElement[]

getStackTrace() Returns an array that contains the stack trace, one element at a time as an array of StackTraceElement. The

method at the top of the stack is the last method called before the

exception was thrown. This method is found in the first element of the array. The StackTraceElement class gives your

program access to Information about each element in the trace, such as its method name. Throwable initCause(Throwable

causeExc) Associates causeExc with the invoking exception as a cause of the invoking exception. Returns a reference to the

exception. void printStackTrace() Displays the stack trace. void printStackTrace (PrintStream stream) Sends the stack trace to

the specified stream. Void setStackTrace (StackTraceElement elements[]) Sets the stack trace to the elements passed in

elements. This method is for specialized applications, not normal use. String toString() Returns a String object containing a

description of the exception. This method is called by println() when outputting a Throwable object. Table 8.3 The

Methods Defined by

Throwable The following example declares a new subclass of Exception and then uses that subclass to signal an error

condition in a method. It overrides the toString() method, allowing the description of the exception to be displayed using

println(). PROGRAM // This program creates a custom exception type. class MyException extends Exception { private int

detail; MyException(int a) { detail = a; } public String toString() {

return "MyException[" + detail + "]"; } } class ExceptionDemo { static void compute(int a) throws MyException {

System.out.println("Called compute(" + a + ")"); if(a < 10) throw new MyException(a);

59% MATCHING BLOCK 129/221

System.out.println("Normal exit"); } public static void main(String args[]) { try { compute(1); compute(20); } catch

(MyException e) { System.out.println("Caught " +

https://secure.urkund.com/view/158826330-304149-193235#/sources 40/139

e); } } } OUTPUT Called compute(1) Normal exit Called compute(20) Caught MyException[20] 8.8 Unit Summary This Unit

discussed the error handling mechanisms provided by Java. It also thrashed out the types of exceptions, the ways by which

they can be used in the programs and the definition of custom exceptions by creating the subclasses of

the Exception class. 8.9 Key Terms •

All exception types are subclasses of the built-in class Throwable. •

A try and its catch statement form a unit. The scope of the catch clause is restricted to those statements specified by the

immediately preceding try statement.

8.10

Check Your Progress 1.

How exception handling can be used for debugging a program? 2. Distinguish between checked Exception and unchecked

Exception. 3. Explain try-catch block with an example. 4. Differentiate between ‗throws‘ and ‗throw‘ keywords. 5. Discuss

the procedure to create the user defined exception.

Unit 9: Multi Thread Programming 9.0 Introduction 9.1 Unit Objective 9.2 Multithreaded Programming in JAVA 9.3 The Java

Thread Model 9.4 The Thread Class and the Runnable Interface 9.4.1 Creating a Thread 9.5 Creating Multiple Threads 9.6

Thread Priorities 9.7 Synchronization 9.8 Inter Thread Communication 9.9 Unit Summary 9.10 Key Terms 9.11 Check Your

Progress 9.0

54% MATCHING BLOCK 130/221

Introduction Java provides built-in support for multithreaded programming. A multithreaded program contains two or

more parts that can run concurrently. Each part of such a program is called a thread, and each thread defines a separate

path of execution. Thus, multithreading is a specialized form of

multitasking. 9.1

Unit Objectives This Unit

concentrates on Multithreaded programming. It enlightens the following topics: ● The Java thread model ● Creating single

and multiple threads ● Assigning priorities to threads ● Synchronizing the threads and ● Inter-thread communication 9.2

Multithreaded Programming in JAVA The Java run-time system depends on threads for many things, and all the class

libraries are designed with multithreading in mind. In fact, Java uses threads to enable the entire environment to be

asynchronous. This helps reduce inefficiency by preventing the waste of CPU cycles.

There are two distinct types of multitasking: process-based and thread-based. The difference between the process-based

and thread-based is listed in Table 9.1 Table 9-1 Process based Vs Thread based Multitasking programming S.No. Process

based Multitasking programming Thread based Multitasking programming 1 In process-based multitasking two or more

processes and programs can be run concurrently. In thread-based multitasking two or more threads can be run

concurrently. 2 It allows you to run java compiler and text editor at a same time. It allows a text editor to

91% MATCHING BLOCK 131/221

format text at the same time that it is printing, as long as these two actions are

being performed by two separate threads. 3 In process-based multitasking a process or a program is the smallest unit. In

thread-based multitasking a thread is the smallest unit. 4 Program is a bigger unit. Thread is a smaller unit. 5 Process based

multitasking requires more overhead. Thread based multitasking requires less overhead. 6 Here, it is unable to gain access

over idle

time of CPU.

It allows taking gain access over idle time taken by CPU. 7 Process requires its own address space. Threads share same

address space. 8 It is not under control of java. It is totally under control of java. 9 Process based multitasking is heavyweight

process Thread based multitasking is light weight process. 10 Inter-Process communication is expensive and Context

switching from one process to another is also costly. Inter-Thread communication is inexpensive and context switching

from one thread to the next is low cost. 11 It has slower data rate multitasking. It has faster data rate multithreading or

tasting. 9.3 The Java Thread Model Threads exist in several states. This is diagrammatically represented in Figure 9.1.

New When a new Thread object using

a

https://secure.urkund.com/view/158826330-304149-193235#/sources 41/139

new operator is created, its state is called as New Thread. At this point, thread is not alive and it‘s a state internal to Java

programming. Figure 9.1 Life cycle of a Thread Runnable When start() function on Thread object is called, it‘s state is

changed to Runnable. The control is given to Thread scheduler to finish it‘s execution. Whether to run this thread instantly

or keep it in runnable thread pool before running, depends on the OS implementation of thread scheduler. Running When

thread is executing, it‘s state is changed to Running. Thread scheduler picks one of the thread from the runnable thread

pool and change it‘s state to Running. Then CPU starts executing this thread. A thread can change state to Runnable, Dead

or Blocked from running state depends on time slicing, thread completion of run() method or waiting for some resources.

Blocked/Waiting A thread can be waiting for other thread to finish using thread join or it can be waiting for some resources

to available. For example producer consumer problem or waiter notifier implementation or IO resources, then it‘s state is

changed to Waiting. Once the thread wait state is over, it‘s state is changed to Runnable and it‘s moved back to runnable

thread pool. Terminated (Dead)

97% MATCHING BLOCK 132/221

At any time, a thread can be terminated, which halts its execution immediately. Once terminated, a thread cannot be

resumed. 9.4

90% MATCHING BLOCK 133/221

The Thread Class and the Runnable Interface Java‘s multithreading system is built upon the Thread class, its methods, and

its companion interface, Runnable. Thread encapsulates a thread of execution.

100% MATCHING BLOCK 134/221

The Thread class defines several methods that help manage threads.

Some of the important methods are listed here: Table 9.2 Methods of Thread class 9.4.1

Creating

a Thread A thread can be created

83% MATCHING BLOCK 135/221

by instantiating an object of type Thread. Java defines two ways in which this can be accomplished: • implement the

Runnable interface or • extend the Thread class, itself. Implementing

Runnable Creating a Thread by Implementing Runnable Interface is done in three steps. They are :

STEP 1: As a first step implement a run() method provided by Runnable interface. This method provides entry point for the

thread and you will put you complete business logic inside this method.

Following is simple

syntax of run() method: public void run() STEP 2: At second step instantiate a Thread object using the following constructor:

Thread(Runnable threadObj, String threadName); Where,

threadObj is an instance of a class that implements the

Runnable interface and threadName is the name given to the new thread. STEP 3: Once Thread object is created, start it by

calling start() method, which executes a call to run() method.

Following is simple syntax of start() method:

void start(); Here is an example that creates a new thread and starts it running: PROGRAM

class RunnableDemo implements Runnable { private Thread t; private String threadName; RunnableDemo(String name){

threadName = name; System.out.println("Creating " + threadName); } public void run() {

Programming in Java 140

System.out.println("Running " + threadName); try { for(int i = 4; i < 0; i--) { System.out.println("Thread: " + threadName + ",

" + i); // Let the thread sleep for a while. Thread.sleep(50); } } catch (InterruptedException e) { System.out.println("Thread " +

threadName + " interrupted."); } System.out.println("Thread " + threadName + " exiting."); } public void start () {

System.out.println("Starting " + threadName); if (t == null) { t =

new Thread (

this, threadName); t.start ();

https://secure.urkund.com/view/158826330-304149-193235#/sources 42/139

} } } public class TestThread { public static void main(String args[]) { RunnableDemo R1 = new RunnableDemo("Thread-1");

R1.start(); RunnableDemo R2 = new RunnableDemo("Thread-2"); R2.start(); } } OUTPUT Creating

Thread-1

Starting Thread-1

Extending Thread

Class The second way to create a thread is to create a new class that extends Thread

class using the following two simple steps. This approach provides more flexibility in handling multiple threads created using

available methods in Thread class.

PROGRAM

class ThreadDemo extends Thread {

private Thread t; private String threadName; ThreadDemo(String name) { threadName = name; System.out.println("Creating

" + threadName); } public void run() { System.out.println("Running " + threadName); try { for(int i = 4; i < 0; i--) {

System.out.println("Thread: " + threadName + ", " + i); // Let the thread sleep for a while.

Thread.sleep(50); } }catch (InterruptedException e) { System.out.println("Thread " + threadName + " interrupted."); }

System.out.println("Thread " + threadName + " exiting."); } public void start () { System.out.println("Starting " + threadName);

if (t == null) { t =

new Thread (

this, threadName); t.start (); } } } public class TestThread { public static void main(String args[]) { ThreadDemo T1 = new

ThreadDemo("Thread-1"); T1.start(); ThreadDemo T2 = new ThreadDemo("Thread-2"); T2.start(); } } OUTPUT Creating

Thread-1 Starting Thread-1 Creating Thread-2 Starting Thread-2 Running Thread-1 Thread: Thread-1, 4 Running Thread-2

Thread: Thread-2, 4 Thread: Thread-1, 3 Thread: Thread-2, 3 Thread: Thread-1, 2 Thread: Thread-2, 2 Thread: Thread-1, 1

Thread: Thread-2, 1 Thread Thread-1 exiting. Thread Thread-2 exiting. 9.5

Creating Multiple Threads Java allows the program to spawn as many threads as it needs. For example, the following

program creates three child threads: PROGRAM // Create multiple

threads. class NewThread implements Runnable { String name; // name of thread Thread

t; NewThread(String threadname) { name = threadname;

t =

new Thread(this, name); System.out.println("New thread: " + t); t.

72% MATCHING BLOCK 136/221

start(); // Start the thread } // This is the entry point for thread. public void run() { try { for(int i = 5; i < 0; i--) {

System.out.println(name + ": " + i); Thread.sleep(1000); } } catch (InterruptedException e) { System.out.println(name +

"Interrupted"); } System.out.println(name + " exiting."); } } class MultiThreadDemo { public static void main(String args[]) {

new NewThread("

One"); // start threads new NewThread("Two");

new NewThread("Three"); try { // wait for other threads to end

100% MATCHING BLOCK 137/221

Thread.sleep(10000); } catch (InterruptedException e) { System.out.println("Main thread Interrupted"); }

System.out.println("Main thread exiting."); } }

OUTPUT

New thread: Thread[One,5,main] New thread: Thread[Two,5,main] New thread: Thread[Three,5,main] One: 5 Two: 5 Three:

5 One: 4 Two: 4 Three: 4 One: 3 Three: 3 Two: 3 One: 2 Three: 2 Two: 2 One: 1 Three: 1 Two: 1 One

exiting. Two

exiting. Three exiting. Main thread exiting

https://secure.urkund.com/view/158826330-304149-193235#/sources 43/139

9.6 Thread Priorities Thread priorities are used by the thread scheduler to decide when each thread should be allowed to

run. In theory, higher-priority threads get more CPU time than lower priority threads. To set a thread‘s priority, use the

setPriority() method, which is a member of Thread. This is its general form: final void setPriority(int level) Here, level

specifies the new priority setting for the calling thread. The value of level must be within the range MIN_PRIORITY and

MAX_PRIORITY. Currently, these values are 1 and 10, respectively. To return a thread to default priority, specify

NORM_PRIORITY, which is currently 5. These priorities are defined as final variables within Thread. The current priority

setting can be obtained by calling the getPriority() method of Thread, shown here: final int getPriority() PROGRAM //

Demonstrate thread priorities. class clicker implements Runnable { int click = 0; Thread t; private volatile boolean running =

true; public clicker(int p) { t = new Thread(this); t.setPriority(p); } public void run() { while (running) { click++; } } public void

stop() { running = false; } public void start() { t.start(); } } class HiLoPri {

public static void main(String args[]) { Thread.currentThread().setPriority(Thread.MAX_PRIORI TY); clicker hi = new

clicker(Thread.NORM_PRIORITY + 2); clicker lo = new clicker(Thread.NORM_PRIORITY - 2); lo.start(); hi.start(); try {

100% MATCHING BLOCK 138/221

Thread.sleep(10000); } catch (InterruptedException e) { System.out.println("Main thread interrupted."); }

lo.stop(); hi.stop(); // Wait for child

62% MATCHING BLOCK 139/221

threads to terminate. try { hi.t.join(); lo.t.join(); } catch (InterruptedException e) { System.out.println("

InterruptedException caught"); } System.out.println("

Low-priority thread: " + lo.click); System.out.println("High-priority thread: " + hi.click); } } OUTPUT Low-priority thread:

4408112 High-priority thread: 589626904 The above example demonstrates two threads at different priorities, which do

not run on a preemptive platform in the same way as they run on a nonpreemptive platform. One thread is set two levels

above the normal priority, as defined by Thread.NORM_PRIORITY, and the other is set to two levels below it. The threads

are started and allowed to run for ten seconds. Each thread executes a loop, counting the number of iterations. After ten

seconds, the main thread stops both threads. The number of times that each thread made it through the loop is then

displayed. This program is tested under Windows 98.

9.7 Synchronization The process by which a thread ensures

92% MATCHING BLOCK 140/221

that the resource is used only by one thread at a time is called synchronization. Java provides unique, language-level

support for it. Key to synchronization is the concept of the monitor (also called a semaphore). A monitor is an object that

is used as a mutually exclusive lock, or mutex. Only one thread can own a monitor at a given time. When a thread

acquires a lock, it is said to have entered the monitor. All other threads attempting to enter the locked monitor will be

suspended until the first thread exits the monitor. These other threads are said to be waiting for the monitor. A thread that

owns a monitor can reenter the same monitor if it so desires.

The code can be synchronized in two ways: Using synchronized method Using synchronized statement Using synchronized

method To synchronize an object, call the method that is modified with the synchronized keyword. To understand the need

for synchronization, let‘s begin with a simple example that does not use it. The following program has three simple classes.

The first one, Callme, has a single method named call(). The call() method takes a String parameter called msg. This

method tries to print the msg string inside of square brackets. The interesting thing to notice is that after call() prints the

opening bracket and the msg string, it calls Thread.sleep(1000), which pauses the current thread for one second. The

constructor of the next class, Caller, takes a reference to an instance of the Callme class and a String, which are stored in

target and msg, respectively. The constructor also creates a new thread that will call this object‘s run() method. The thread

is started immediately. The run() method of Caller calls the call() method on the target instance of Callme, passing in the

msg string. Finally, the Synch class starts by creating a single instance of Callme, and three instances of Caller, each with a

unique message string. The same instance of Callme is passed to each Caller. PROGRAM // This program is not

https://secure.urkund.com/view/158826330-304149-193235#/sources 44/139

92% MATCHING BLOCK 141/221

synchronized. class Callme { void call(String msg) { System.out.print("[" + msg); try { Thread.sleep(1000); }

catch(InterruptedException e) { System.out.println("Interrupted"); } System.out.println("]"); } } class Caller implements

Runnable { String msg; Callme target; Thread t; public Caller(Callme targ, String s) { target = targ; msg = s; t = new

Thread(this); t.start(); } public void run() { target.call(msg); } } class Synch { public static void main(String args[]) { Callme

target = new Callme(); Caller ob1 = new Caller(target, "Hello"); Caller ob2 = new Caller(target, "Synchronized"); Caller ob3

= new Caller(target, "World"); // wait for threads to end try { ob1.t.join(); ob2.t.join(); ob3.t.join(); }

catch(InterruptedException e) { System.out.println("Interrupted"); } } }

OUTPUT Programming in Java 150 Hello[Synchronized[World]] In the above program, by calling sleep(), the call() method

allows execution to switch to another thread. This results in the mixed-up output of the three message strings. In this

program, nothing exists to stop all three threads from calling the same method, on the same object, at the same time. This

is known as a race condition. To fix the problem, the access to call() method must be serialized. That is, restrict its access to

only one thread at a time. To do this, simply add the keyword synchronized to call()‘s definition as shown here: class Callme

{ synchronized void call(String msg) { ... This prevents other threads from entering call() while another thread is using it.

After synchronized has been added to call(), the output of the program is as follows: [Hello] [Synchronized] [World] The

synchronized Statement Consider a situation when there is a need

95% MATCHING BLOCK 142/221

to synchronize access to objects of a class • that was not designed for multithreaded access, • the class does not use

synchronized methods

and • also

81% MATCHING BLOCK 143/221

this class was created by a third party, • do not have access to the source code.

In such a situation

94% MATCHING BLOCK 144/221

simply put calls to the methods defined by this class inside a synchronized block. This is the general form of the

synchronized statement: synchronized(object) { // statements to be synchronized } Here, object is a reference to the

object being synchronized. A synchronized block ensures that a call to a method that is a member of ‘object’ occurs only

after the current thread has successfully entered ‘object‘s’ monitor. Here is an

example. PROGRAM //

96% MATCHING BLOCK 145/221

This program uses a synchronized block. class Callme { void call(String msg) { System.out.print("[" + msg); try {

Thread.sleep(1000); } catch (InterruptedException e) { System.out.println("Interrupted"); } System.out.println("]"); } } class

Caller implements Runnable { String msg; Callme target; Thread t; public Caller(Callme targ, String s) { target = targ; msg

= s; t = new Thread(this); t.start(); } // synchronize calls to call() public void run() { synchronized(target) { // synchronized

block target.call(msg); } } } class Synch1 { public static void main(String args[]) { Callme target = new Callme(); Caller ob1 =

new Caller(target, "Hello"); Caller ob2 = new Caller(target, "Synchronized"); Caller ob3 = new Caller(target, "World"); //

wait for threads to end try { ob1.t.join(); ob2.t.join(); ob3.t.join(); } catch(InterruptedException e) {

System.out.println("Interrupted"); } } }

OUTPUT [Hello] [Synchronized] [World] 9.8

Inter Thread

Communication Java includes an elegant interprocess communication mechanism via the wait(), notify(), and notifyAll()

methods.

https://secure.urkund.com/view/158826330-304149-193235#/sources 45/139

These methods are implemented as final methods in Object, so all classes have them. All three methods can be called only

from within a synchronized context.

The Table 9-3 explains the important methods for

inter thread

communication. Method Description

wait() Causes the

current thread to wait until another thread invokes the notify().

96% MATCHING BLOCK 146/221

notify() Wakes up a single thread that is waiting on this object's monitor.

notifyAll() Wakes up all the threads that called wait() on the same object.

Table 9.3 Methods

for inter thread communication

The following example shows how two thread

can communicate using wait() and notify() method. PROGRAM class Chat { boolean flag = false; public synchronized void

Question(String msg) { if (flag) { try { wait();

} catch (InterruptedException e) { e.printStackTrace(); } } System.out.println(msg); flag = true; notify(); } public synchronized

void Answer(String msg) { if (!flag) { try { wait(); } catch (InterruptedException e) { e.printStackTrace(); } }

System.out.println(msg); flag = false; notify(); } } class T1 implements Runnable { Chat m; String[] s1 = { "Hi", "How are you ?",

"I am also doing fine!" }; public T1(Chat m1) { this.m = m1; new Thread(this, "Question").start(); } public void run() { for (int i =

0; i > s1.length; i++) { m.Question(s1[i]); } } }

class T2 implements Runnable { Chat m; String[] s2 = { "Hi", "I am good, what about you?", "Great!" }; public T2(Chat m2) {

this.m = m2; new Thread(this, "Answer").start(); } public void run() { for (int i = 0; i > s2.length; i++) { m.Answer(s2[

i]); } } } 9.9 Unit Summary

This Unit described one of the key features of Java, the Multithreaded programming. It includes all the aspects of

Multithreaded programming such as creating single and multiple threads, assigning priorities to the threads, synchronizing

the threads and also the interthread communication. 9.10

Key Terms Synchronization is

the process by which a thread ensures

58% MATCHING BLOCK 147/221

that the resource is used only by one thread at a time is called synchronization. Java provides unique, language-level

support for it.

Thread priorities are used by the thread scheduler to decide when each thread should be allowed to run. In theory, higher-

priority threads get more CPU time than lower priority threads. 9.10

Check Your Progress 1.

Differentiate Process and Thread. 2. Explain Thread model. 3. Exemplify the thread creation using a simple example. 4. What

do you mean by Synchronization? How do you achieve it? 5. Illustrate Multithreaded programming using an example

Module III: String handling, Utility classes, java.lang and java.io

Unit 10: String Handling 10.0 Introduction 10.1 Unit Objective 10.2 The String Constructors 10.3 Special String operations

10.4 Character Extraction 10.5 String Methods 10.6 StringBuffer 10.7 Unit Summary 10.8 Key Terms 10.9 Check Your

Progress 10.0

Introduction In Java a string is a sequence of characters. Java implements strings as objects of type String. Java has

methods to compare two strings, search for a substring, concatenate two strings, and change the case of letters within a

string. String objects can be constructed a number of ways, making it easy to obtain a string when needed. Once a String

object has been created, it cannot change the characters that comprise that string. For those cases in which a modifiable

string is desired, there is a companion class to String called StringBuffer, whose objects contain strings that can be modified

after they are created. 10.1

Unit Objective

This Unit explains: • The String and StringBuffer classes • The methods of String and StringBuffer classes to manipulate the

strings 10.2

The String Constructors The String class supports several constructors. To create an empty String, call the default

constructor. For example,

https://secure.urkund.com/view/158826330-304149-193235#/sources 46/139

String s = new String(); will create an instance of String with no characters in it. To create a String initialized

by an array of characters, use the constructor shown here: String(char chars[])

String(char chars[], int startIndex, int numChars) Here, startIndex specifies the index at which the subrange begins, and

numChars specifies the number of characters to use. Here is an example:

char chars[] = { 'a', 'b', 'c', 'd', 'e', 'f' }; String s1 = new String(chars);

String s2 = new String(chars, 2, 3); This constructor initializes s1 with the string “abcdef” and s2 with “cde”. To construct a

String object that contains the same character sequence as another String object use the following constructor format:

String(String strObj) Here, strObj is a String object. Consider this example: PROGRAM // Construct one String from another.

class MakeString { public static void main(String args[]) { char c[] = {'J', 'a', 'v', 'a'};

String s1 = new String(c); String s2 = new String(s1); System.out.println(s1); System.out.println(

s2); } }

OUTPUT Java Java The String class also provides constructors that initialize a string when given a byte array. Their forms are

shown here: String(byte asciiChars[]) String(byte asciiChars[], int startIndex, int

numChars) Here, asciiChars specifies the array of bytes. The second form allows you to specify a subrange. In each of these

constructors, the byte-to-character conversion is done by using the default character encoding of the platform. The

following program illustrates these constructors: PROGRAM // Construct string from subset of char array.

class SubStringCons { public static void main(String args[]) { byte ascii[] = {65, 66, 67, 68, 69, 70 }; String s1 = new

String(ascii); System.out.println(s1); String

s2 = new String(ascii, 2, 3); System.out.println(

s2); } } OUTPUT ABCDEF CDE 10.3 Special String operations Because strings are a common and important part of

programming, Java has added special support for several string operations within the syntax of the language. String Literals

An easier way to create a String instance is using a string literal. For each string literal in the program, Java automatically

constructs a String object. For example, the following code fragment creates two equivalent strings:

char chars[] = { 'a', 'b', 'c' }; String s1 = new String(chars);

String s2 = "abc"; // use string literal

String Concatenation In general, Java does not allow operators to be applied to String objects. The one exception to this

rule is the + operator, which concatenates two strings, producing a String object as the result. This allows you to chain

together a series of + operations. For example, the following fragment concatenates three strings: int age = "9"; String s =

"He is " + age + " years old."; System.out.println(s); This displays the string ―He is 9 years old.‖ This is because the int value

in age is automatically converted into its string representation within a String object. This string is then concatenated. String

Conversion and toString() When Java converts data into its string representation during concatenation, it does so by calling

one of the overloaded versions of the string conversion method valueOf() defined by String. valueOf() is overloaded for all

the simple types and for type Object. For the simple types, valueOf() returns a string that contains the human-readable

equivalent of the value with which it is called. For objects, valueOf() calls the toString() method on the object. For most

important classes, override toString() and provide your own string representations. The toString() method has this general

form: String toString() To implement toString(), simply return a String object that contains the human readable string that

appropriately describes an object of the class. The following program demonstrates this by overriding toString() for the Box

class: PROGRAM // Override toString() for Box class.

85% MATCHING BLOCK 148/221

class Box { double width; double height; double depth; Box(double w, double h, double d) { width = w; height = h; depth

= d; }

public

String toString() { return "Dimensions are " + width + " by " + depth + " by " + height + "."; } }

class toStringDemo { public static void main(String args[]) { Box b = new Box(10, 12, 14); String s = "Box b: " + b; //

concatenate Box object System.out.println(b); // convert Box to string System.out.println(

s); } } OUTPUT Dimensions are 10.0 by 14.0 by 12.0 Box b: Dimensions are 10.0 by 14.0 by 12.0

Function Syntax Description Example Output charAt() char charAt(int where) used to extract a single character at an index

class temp { public static void main(String args[]) { String str="Hello"; char ch=str.charAt(1); System.out.println(

ch); } } e getChars() void getChars(int sourceStart, int sourceEnd, char used to extract more than one character

class temp {public static void main(String args[]) {String str="Hello World";

ello

target[], int targetStart)

char ch[]=new char[4]; str.getChars(1,5,ch,0); System.out.

println(ch); } }

https://secure.urkund.com/view/158826330-304149-193235#/sources 47/139

getBytes() byte[] getBytes() extract

characters from String object and then convert the characters in a byte array

String str="Hello";

byte []=str.getBytes(); - toCharArray() char[] toCharArray() convert all the characters in a String object into an array of

characters. It is the best and easiest way to convert string to character array

class temp { public static void main(String args[]) { String str = "Hello World"; char ch[] = str.toCharArray();

System.out.println(ch); } } Hello World 10.4

Character Extraction The String class

provides a number of ways in which characters can be extracted from a String object. Many of the String methods employ

an index (or offset) into the string for their operation. Like arrays, the string indexes begin at zero. Here, the various methods

are listed with example. 10.5

String Methods The String class includes several methods. They are categorized into • String comparison • Searching String

• Modifying String • Data conversion and changing the case of character within a String.

● String comparison: Method Description Syntax equals() To compare two strings for equality boolean equals(Object str)

equalsIgnoreCase() To perform a comparison that ignores case differences, i.e When it compares two strings, it considers A-

Z to be the same as a-z. boolean equalsIgnoreCase(String str) == The == operator compares two object references to see

whether they refer to the same instance. (Object str == Object str) compareTo() A string is less than another if it comes

before the other in dictionary order and the function returns -1. A string is greater than another if it comes after the other in

dictionary order and the function returns 1. If both are equal, 0 is returned. The String method compareTo () serves this

purpose

int compareTo(String str)

EXAMPLE PROGRAM // Demonstrate equals() and equalsIgnoreCase().

class equalsDemo { public static void main(String args[]) { String s1 = "Hello"; String s2 = "Hello"; String s3 = "Good-bye";

String s4 = "HELLO"; String s5 = new String(s1); System.out.println(s1 + "

equals " + s2 + " -< " +

s1.equals(s2)); System.out.println(

s1 + " equals " + s3 + " -< " + s1.equals(s3)); System.out.println(s1 + " equals " + s4 + " -< " + s1.equals(s4));

System.out.println(s1 + " equalsIgnoreCase " + s4 + " -< " + s1.equalsIgnoreCase(s4)); System.out.println(s1 + " equals " +

s2 + " -< " + s1.equals(s5));

System.out.println(s1 + " == " + s2 + " -< " + (s1 == s5)); System.out.println(s1 + " compareto " + s2 + " -< " +

s1.compareTo(s2)); System.out.println(s1 + "

compareto " + s3 + " -< " + s1.compareTo(s3)); } } OUTPUT

Hello equals Hello -< true Hello equals Good-bye -< false Hello equals HELLO -< false

Hello equalsIgnoreCase HELLO -< true Hello equals Hello -< true Hello == Hello -< false //Though, the contents of

the two String objects are identical, they are distinct objects. Hello compareto Hello -< 0 Hello compareto Good-bye -

< 1 regionMatches The regionMatches() method compares a specific region inside a string with another specific region in

another string Boolean regionMatches(int startIndex, String str2, int str2StartIndex, int numChars) boolean

regionMatches(boolean ignoreCase, int startIndex, String str2, int str2StartIndex, int numChars) startsWith() The startsWith()

method determines whether a given String begins with a specified string. boolean startsWith(String str) endsWith() The

endsWith() determines whether the String in question ends with a specified string. boolean endsWith(String str) EXAMPLE

"Foobar".endsWith("bar") " Foobar".startsWith("Foo")

OUTPUT both are true ● Searching String: Method Description Syntax indexOf() Searches for the first occurrence of a

character orsubstring. int indexOf(int ch) int indexOf(String str, int startIndex) lastIndexOf() Searches for the last occurrence

of a character or substring. int lastIndexOf(int ch) int lastIndexOf(String str, int startIndex PROGRAM // Demonstrate

indexOf() and lastIndexOf().

class indexOfDemo { public static void main(String args[]) { String s = "Now is the time for all good men " + "to come to the

aid of their country."; System.out.println(s); System.out.println("indexOf(t) = " + s.indexOf('t'));

System.out.println("lastIndexOf(t) = " + s.lastIndexOf('t')); System.out.println("

indexOf(the) = " + s.indexOf("the")); System.out.println("lastIndexOf(the) = " + s.lastIndexOf("the"));

System.out.println("indexOf(t, 10) = " + s.indexOf('t', 10)); System.out.println("lastIndexOf(t, 60) = " + s.lastIndexOf('t', 60));

System.out.println("

indexOf(the, 10) = " + s.indexOf("the", 10)); System.out.println("lastIndexOf(the, 60) = " + s.lastIndexOf("the", 60)); } } OUTPUT

Now is the time for all good men to come to the aid of their country.

indexOf(t) = 7 lastIndexOf(t) = 65 indexOf(the) = 7 lastIndexOf(the) = 55

https://secure.urkund.com/view/158826330-304149-193235#/sources 48/139

indexOf(t, 10) = 11 lastIndexOf(t, 60) = 55 indexOf(the, 10) = 44 lastIndexOf(the, 60) = 55 ● Modifying String: Method

Description Syntax substring() returns a copy of the substring that begins at startIndex and runs to the end of the invoking

string or begins at startIndex up to,but not including, the endingindex String substring(int startIndex) String substring(int

startIndex, int endIndex) concat() creates a new object that contains the invoking string with the contents of str appended

to the end. concat() performs the same function as +. String concat(String str) replace() replaces all occurrences of one

character in the invoking string with another character. String replace(char original, char replacement) trim() returns a copy

of the invoking string from which any leading and trailing whitespace has been removed. String trim() PROGRAM

public

class Test{ public static void main(String args[]){ String Str=

new String("

Welcome to ADB University"); String s1 = "one"; String s2 = s1.concat("two"); String s3 = ― Welcome ―;

System.out.print("Return Value :");

System.out.println(Str.substring(10)); System.out.print("Return Value :");

System.out.println(Str.substring(10,18)); System.out.println(“Concatenated string : ” + s2); System.out.print("

Replaced Value :"); System.out.println(

Str.

replace('o','T')); System.out.print("Trimmed Value :"); System.out.

println(

s3.trim()); } }

OUTPUT Return Value : ADB University Return Value : ADB Concatenated string : onetwo Replaced Value : WelcTme tT ADB

University Trimmed Value : Welcome ● Data Conversion and changing the case: Method Description Syntax valueOf() The

valueOf() method converts data from its internal format into a human- readable form. All of the simple types are converted

to their common String representation. Any object that you pass to valueOf() will return the result of a call to the object‘s

toString() method. static String valueOf(double num)

static String valueOf(long num) static String valueOf(Object ob) static String valueOf(char chars[]) static String valueOf(char

chars[], int startIndex, int

numChars) toLowerCase() converts all the characters in a string from uppercase to

lowercase

String toLowerCase() PROGRAM

public

class Test{ public static void main(String args[]){

double d =102939939.939;

boolean b =true; long l =1232874; char[] arr ={'a','b','c','d','e','f','g'};

String s = "This is a test.";

System.out.println("Return Value : "+String.valueOf(d)); System.out.println("Return Value : "+String.valueOf(b));

System.out.println("Return Value : "+String.valueOf(l)); System.out.println("Return Value : "+String.valueOf(arr));

System.out.println("Original: " + s); String upper = s.toUpperCase(); String lower = s.toLowerCase();

System.out.println("Uppercase: " + upper); System.out.println("Lowercase: " + lower); } } OUTPUT

Return Value : 1.02939939939E8 Return Value : true Return Value : 1232874 Return Value : abcdefg

Original: This is a test. Uppercase: THIS IS A TEST. Lowercase: this is a test. 10.6

StringBuffer StringBuffer is a peer class of String that provides much of the functionality of strings. String represents fixed-

length, immutable character sequences.

In contrast, StringBuffer represents growable and writeable

character sequences. StringBuffer may have characters and substrings inserted in the middle or appended

to the end. StringBuffer defines these three constructors: StringBuffer() StringBuffer(int size) StringBuffer(String str)

The default constructor (the one with no parameters) reserves room for 16 characters without reallocation. The second

version accepts an integer argument that explicitly sets the size of the buffer. The third version accepts a String argument

that sets the initial contents of the StringBuffer object and reserves room for 16 more characters without reallocation.

Method Description Syntax length() Returns the current length of a StringBuffer int length() capacity() Returns the total

allocated capacity of the StringBuffer int capacity() ensureCapacity() to preallocate room for a certain number of characters

after a StringBuffer has been constructed void ensureCapacity(int capacity) setLength() To set the length of the buffer within

a StringBuffer object void setLength(int len) charAt() To get the value of a single character from a StringBuffer char

charAt(int where) setCharAt() To set the value of a character within a StringBuffer void setCharAt(int where, char ch)

append() concatenates

the string representation of any other type of data to the end of the invoking StringBuffer object. StringBuffer append(String

str) StringBuffer append(int num) StringBuffer append(Object obj)

insert()

https://secure.urkund.com/view/158826330-304149-193235#/sources 49/139

inserts one string into another StringBuffer insert(int index, String str) StringBuffer insert(int index, char ch) StringBuffer

insert(int index, Object obj)

reverse() returns the reversed object on which it was called StringBuffer reverse() delete() deletes a sequence of characters

from the invoking object and the substring deleted runs from startIndex to StringBuffer delete(int startIndex, int endIndex)

endIndex–1. deleteCharAt() deletes the character at the index specified by loc and it returns the resulting StringBuffer

object.

StringBuffer deleteCharAt(int loc)

PROGRAM

class StringBufferDemo { public static void main(String args[]) { StringBuffer sb = new StringBuffer("Hello"); String str =

"ADBU"; System.out.println("

buffer = " + sb);

System.out.println("length = " + sb.length()); System.out.println("capacity = " + sb.capacity()); System.out.println(―
char at ― + 2 + ―: ‖ + str.charAt(2)); str = str.setCharAt(2, “A”); System.out.println(―char replaced at ― + 2 + ―: ‖ + str);

sb.append(123); sb.insert(5, "World "); System.out.println(―appended string : ‖ + sb); System.out.println(―inserted string : ―
+ sb); sb.reverse(); System.out.println(―reversed string : ― + sb); StringBuffer sb1 = new StringBuffer("This is a test.");

Sb1.delete(4, 7); System.out.println("After delete: " + sb1); sb.deleteCharAt(0); System.out.println("After deleteCharAt: " + sb1);

} } OUTPUT buffer = Hello length = 5 capacity = 21 char at 2 : a char replaced at 2 :

ADBU

10.7 Unit Summary

This Unit illustrated the String and StringBuffer classes, which include various String methods for String comparison,

Searching String, Modifying String, conversion of data and changing the case of character within a String. It also discussed

the Character Extraction methods for manipulating the strings. 10.8

Key Terms

An easier way to create a String instance is using a string literal.

StringBuffer is a peer class of String that provides much of the functionality of strings. 10.9

Check Your Progress 1.

Differentiate String and StringBuffer class. 2. Discuss the various ways of Concatenating a string. 3. Briefly explain the

methods for Character Extraction. 4. List out the methods used for Modifying the String. 5. Discuss the important methods

in StringBuffer class for string manipulation.

Unit 11: The Collection Interfaces and Collection Classes 11.0

Introduction 11.1 Unit Objective 11.2

The Collection Interface 11.3 The List Interface 11.4 The Set Interface 11.5 The Map Interface 11.6 The Enumeration Interface

11.7 The Iterator Interface 11.8 The ArrayList class 11.9 The LinkedList Class 11.10

Vector Class 11.11 Stack Class 11.12 Hashtable Class 11.13 Properties Class 11.14 StringTokenizer Class 11.15 Date Class 11.16

Unit Summary 11.17 Key Terms 11.18 Check Your Progress 11.0

Introduction A collection is a group of objects. The java.util contains the Collection framework.

The collections framework was designed to meet several goals. • The framework had to be high-performance. The

implementations for the fundamental collections (dynamic arrays, linked lists, trees, and hashtables) are highly efficient. •

The framework had to allow different types of collections to work in a similar manner and with a high degree of

interoperability. • Extending and/or adapting a collection

had to be easy. The Java collections framework has a wide assortment of classes and interfaces that support a broad range

of functionality. This Lesson provides an overview of important interfaces.

11.1

Objectives This Unit elucidates the java.util package that contains one of Java‘s most powerful subsystems: collections. The

scope of this lesson is confined to the following interfaces and classes: • List,Set,Map, Enumeration and Iterator interfaces •

ArrayList, LinkedList, Vector, Stack, Properties, HashTable, StringTokenizer, and Date classes. 11.2

The

Collection Interface The Collection interface is the foundation upon which the collections framework is built. It declares the

core methods that all collections will have.

These methods are summarized in

Table 11.1. Method

Description

https://secure.urkund.com/view/158826330-304149-193235#/sources 50/139

boolean add(Object obj) Adds obj to the invoking collection. Returns true if obj was added to the collection. Returnsfalse if

obj is already a member of the collection, or if the collection does not allow duplicates. boolean addAll(Collection c) Adds

all the elements of c to the invoking collection. Returns true if the operation succeeded (i.e., the elements were added).

Otherwise, returns false. void clear() Removes all elements from the invoking collection. boolean contains(Object obj)

Returns true if obj is an element of the invoking collection. Otherwise, returns false. boolean containsAll(Collection c)

Returns true if the invoking collection contains all elements of c. Otherwise, returns false. boolean equals(Object obj)

Returns true if the invoking collection and obj are equal. Otherwise, returns false. int hashCode() Returns the hash code for

the invoking collection. boolean isEmpty() Returns true if the invoking collection is empty. Otherwise, returns false. Iterator

iterator() Returns an iterator for the invoking collection. boolean remove(Object obj) Removes one instance of obj from the

invoking collection. Returns true if the element was removed. Otherwise, returns false boolean removeAll(Collection c)

Removes all elements of c from the invoking collection. Returns true if the collection changed (i.e., elements were

removed). Otherwise, returns false.

boolean retainAll(Collection c) Removes all elements from the invoking collection except those in c. Returns true if the

collection changed (i.e., elements were removed). Otherwise, returns false. int size() Returns the number of elements held

in the invoking collection. Object[] toArray() Returns an array that contains all the elements stored in the invoking

collection. The array elements are copies of the collection elements. Object[] toArray(Object array[]) Returns an array

containing only those collection elements whose type matches that of array.

The

array elements are copies of the collection elements. If the size of array equals the number of matching elements, these are

returned in array. If the size of array is less than the number of matching elements, a new array of the necessary size is

allocated and returned. If the size of array is greater than the number of matching elements, the array element following the

last collection element is set to null. An ArrayStoreException is thrown if any collection element has a type that is not a

subtype of array.

Table 11.1 The Methods Defined by Collection 11.3

The List Interface The List interface extends Collection and declares the behavior of a collection that stores a sequence of

elements. Elements can be inserted or accessed by their position in the list, using a zero-based index. A list may contain

duplicate elements.

The classes which implement the List interface are called Lists. ArrayList, Vector and LinkedList are some examples of lists.

Here are some properties of lists. ● Elements of the lists are ordered using Zero based index. ● Access to the elements of

lists using an integer index. ● Elements can be inserted at a specific position using integer index. Any pre-existing elements

at or beyond that position are shifted right.

● Elements can be removed from a specific position. The elements beyond that position are shifted left. ● A list may contain

duplicate elements. ● A list may contain multiple null elements. List interface extends Collection interface. So, All methods

of

the Collection interface are inherited from the

List interface. Along with these methods, another 9 methods are included in the List interface to support the properties of

lists. Methods defined by List are summarized in Table 11.2. Method

Description void add(int index, Object obj) Inserts obj into the invoking list at the index passed in index. Any preexisting

elements at or beyond the point of insertion are shifted up. Thus, no elements are overwritten. boolean addAll(int index,

Collection c) Inserts all elements of c into the invoking list at the index passed in index. Any preexisting elements at or

beyond the point of insertion are shifted up. Thus, no elements are overwritten. Returns true if the invoking list changes and

returns false otherwise. Object get(int index) Returns the object stored at the specified index within the invoking collection.

int indexOf(Object obj) Returns the index of the first instance of obj in the invoking list. If obj is not an element of the list, –1

is returned. int lastIndexOf(Object obj) Returns the index of the last instance of obj in the invoking list. If obj is not an

element of the list, –1 is returned. ListIterator listIterator() Returns an iterator to the start of the invoking list. ListIterator

listIterator(int index) Returns an iterator to the invoking list that begins at the specified index. Object remove(int index)

Removes the element at position index from the invoking list and returns the deleted element. The resulting list is

compacted. That is, the indexes of

subsequent elements are decremented by one. Object set(int index, Object obj) Assigns obj to the location specified by

index within the invoking list. List subList(int start, int end) Returns a list that includes elements from start to end–1 in the

invoking list. Elements in the returned list are also referenced by the invoking object.

https://secure.urkund.com/view/158826330-304149-193235#/sources 51/139

The List is the base interface for all list types, and the ArrayList and LinkedList classes are two common List‘s

implementations. • ArrayList: An implementation that stores elements in a backing array. The array‘s size will be

automatically expanded if there isn‘t enough room when adding new elements into the list. It‘s possible to set the default

size by specifying an initial capacity when creating a new ArrayList. Basically, an ArrayList offers constant time for the

following operations: size, isEmpty, get, set, iterator, andlis tIterator; amortized constant time for the add operation; and

linear time for other operations. Therefore, this implementation can be considered if we want fast, random access of the

elements. • LinkedList: An implementation that stores elements in a doubly-linked list data structure. It offers constant time

for adding and removing elements at the end of the list; and linear time for operations at other positions in the list. Besides

ArrayList and LinkedList, Vector class is a legacy collection. Vector is thread-safe, but ArrayList and LinkedList are not. 11.4

The Set Interface The Set interface defines a set. It

extends Collection and declares the behavior of a collection that

does not allow duplicate elements. Therefore, the add() method returns false if an attempt is made to add duplicate

elements to a set. It does not define any additional methods of its own. The Java Collections Framework provides three

major implementations of the Set interface: HashSet, LinkedHashSet and TreeSet. HashSet: is the best-performing

implementation and is a widely-used Set implementation. It represents the core characteristics of sets: no duplication and

unordered. LinkedHashSet: This implementation orders its elements based on insertion order. So consider using a

LinkedHashSet when we want to store unique elements in order. TreeSet: This implementation orders its elements based on

their values, either by their natural

ordering, or by a Comparator provided at creation time. Therefore, besides the uniqueness of elements that a Set

guarantees, consider using HashSet when ordering does not matter; using LinkedHashSet when you want to order elements

by their Insertion order; using TreeSet when we want to order elements by their values. 11.5 The Map Interface A Map is an

object that maps keys to values, or is a collection of attribute-value pairs. A Map is not considered to be a true collection, as

the Map interface does not extend the Collection interface. A Map cannot contain duplicate keys and each key can map to

at most one value. Some implementations allow null key and null value (HashMap and LinkedHashMap) but some does not

(TreeMap). The order of a map depends on specific implementations, e.g TreeMap and LinkedHashMap have predictable

order, while HashMap does not. Maps are perfectly for key-value association mapping such as dictionaries. Maps are used

when we want to retrieve and update elements by keys, or perform lookups by keys. Some examples: • A map of error

codes and their descriptions. • A map of zip codes and cities. • A map of managers and employees. Each manager (key) is

associated with a list of employees (value) he manages. • A map of classes and students. Each class (key) is associated with a

list of students (value). In the Map interface, there are several implementations but only 3 major, common, and general

purpose implementations are widely used. They are HashMap, LinkedHashMap and TreeMap. The characteristics and

behaviors of each implementation are listed here. • HashMap: This implementation uses a hash table as the underlying data

structure. It implements all of the Map operations and allows null values and one null key. This class is roughly equivalent to

Hashtable - a legacy data structure before Java Collections Framework, but it is not synchronized and permits nulls.

HashMap does not guarantee the order of its key-value elements. Therefore, consider to use a HashMap when order does

not matter and nulls are acceptable. • LinkedHashMap: This implementation uses a hash table and a linked list as the

underlying data structures, thus the order of a LinkedHashMap is predictable, with insertion-order as the default order. This

implementation also allows nulls like HashMap. So consider using a LinkedHashMap when you want a Map with its key-

value pairs are sorted by their insertion order.

• TreeMap: This implementation uses a red-black tree as the underlying data structure. A TreeMap is sorted according to the

natural ordering of its keys, or by a Comparator provided at creation time. This implementation does not allow nulls. So

consider using a TreeMap when you want a Map sorts its key-value pairs by the natural order of the keys (e.g. alphabetic

order or numeric order), or by a custom order you specify. 11.6 The Enumeration Interface Enumeration is a simple interface

that declares two methods, namely the hasMoreElements() method and the nextElement() method. These two methods

enable us to enumerate all of the elements in any collection of objects. The hasMoreElements() method will return the value

true if there are valid elements in a collection of objects. When

the

hasMoreElements() method returns true, we can invoke the nextElement() method for retrieving the next element in the

collection of objects. Here is an example. PROGRAM // Program to illustrate Enumeration interface Import

java.util.Enumeration; Class Sample implements Enumeration { private int counter = 0; private Boolean flag = true; public

boolean hasMoreElements() { return flag; } public object nextElement() { counter = counter +1; if (counter <= 4) flag =

false; return new Integer(counter); } } class EnumerationDemo { public static void main(String args[]) { Sample sam = new

Sample(); While(sam.hasMoreElements()) { System.out.println(sam.nextElement()); } }

} OUTPUT 1 2 3 4 In the above program, the class Sample implements the Enumeration interface. As a result, it provides the

code for both the hasMoreElements() and nextElement() methods. Whenever the nextElement() method is invoked, a new

object is created and returned. At one stage, the hasMoreElement() method returns false and as a result, the program‘s

execution is terminated. 11.7

https://secure.urkund.com/view/158826330-304149-193235#/sources 52/139

The Iterator Interface Iterator enables you to cycle through a collection, obtaining or removing elements. ListIterator

extends Iterator to allow bidirectional traversal of a list, and the modification of elements.

The Iterator interface declares the methods shown in Table 11.3. Method

Description boolean hasNext() Returns true if there are more elements. Otherwise, returns false. Object next() Returns the

next element. Throws NoSuchElementException if there is not a next element. void remove() Removes the current

element. Throws IllegalStateException if an attempt is made to call remove() that is not preceded by a call to next().

Table 11.3 The Methods Declared by Iterator

Here is an example for iterator. PROGRAM // Demonstrate iterators.

import java.util.*; class IteratorDemo { public static void main(String args[]) { // create an array list ArrayList al = new

ArrayList(); // add elements to the array list al.add("C"); al.add("A");

al.add("E"); al.add("B"); al.add("D"); al.add("F"); //

use iterator to display contents of al System.out.print("Original contents of al: "); Iterator itr = al.iterator(); while(itr.hasNext())

{ Object element = itr.next(); System.out.print(element + " "); } System.out.println(); } }

OUTPUT

Original contents of al: C A E B D F 11.8

The ArrayList class The ArrayList class extends AbstractList and implements the List interface. ArrayList supports dynamic

arrays that can grow as needed.

Array lists are created with an initial size. When this size is exceeded, the collection is automatically enlarged. When objects

are removed, the array may be shrunk.

ArrayList has the constructors shown here: ArrayList() ArrayList(Collection c) ArrayList(int capacity) The first constructor

builds an empty array list. The second

constructor builds an array list that is initialized with the elements of the collection c. The third constructor builds an array

list that has the specified initial capacity. The

following program shows a simple use of ArrayList. An array list is created, and then objects of type String are added to it.

(Recall that a quoted string is translated into a String object.) The list is then displayed. Some of the elements are removed

and the list is displayed again. PROGRAM // Demonstrate

83% MATCHING BLOCK 149/221

ArrayList. import java.util.*; class ArrayListDemo { public static void main(String args[]) { //

create an array list ArrayList al = new ArrayList(); System.out.println("Initial size of al: " + al.size()); // add elements to the array

list al.add("C"); al.add("A"); al.add("E"); al.add("B"); al.add("D"); al.add("F"); al.add(1, "A2"); System.out.println("Size of al after

additions: " + al.size()); // display the array list System.out.println("Contents of al: " + al); // Remove elements from the array

list al.remove("F"); al.remove(2); System.out.println("Size of al after deletions: " + al.size()); System.out.println("Contents of al:

" + al); } } OUTPUT Initial size of al: 0 Size of al after additions: 7 Contents of al: [C, A2, A, E, B, D, F] Size of al after deletions:

5 Contents of al: [C, A2, E, B, D] 11.9

The LinkedList Class The LinkedList class extends AbstractSequentialList and implements the List interface. It provides a

linked-list data structure. It has the two constructors, shown here: LinkedList() LinkedList(Collection c)

The first constructor builds an empty linked list. The second constructor builds a linkedlist

that is initialized with the elements of the collection c.

In addition to the methods

that it inherits, the LinkedList class defines some useful methods of its own for manipulating and accessing lists. To add

elements to the start of the list, use addFirst(); to add elements to the end, use addLast(). Their signatures are shown here:

void addFirst(Object obj) void addLast(Object obj) Here, obj is the item being added. To obtain the first element, call getFirst(

). To retrieve the last element, call getLast(). Their signatures are shown here: Object getFirst() Object getLast() To remove

the first element, use removeFirst(); to remove the last element, call removeLast(). They are shown here: Object

removeFirst() Object removeLast()

The following program illustrates several of the methods supported by LinkedList: PROGRAM // Demonstrate LinkedList.

import java.util.*; class LinkedListDemo { public static void main(String args[]) { // create

a linked list LinkedList ll = new LinkedList(); // add elements to the linked list ll.add("F"); ll.add("B"); ll.add("D"); ll.add("E");

ll.add("C"); ll.addLast("Z"); ll.addFirst("A"); ll.add(1, "A2"); System.out.println("Original

contents of ll: " + ll);

// remove elements from the linked list ll.remove("F"); ll.remove(2); System.out.println("Contents of ll after

https://secure.urkund.com/view/158826330-304149-193235#/sources 53/139

deletion: " + ll); // remove first and last elements ll.removeFirst(); ll.removeLast(); System.out.println("ll after deleting first and

last: " + ll); // get and set a value Object val = ll.get(2); ll.set(2, (String) val + " Changed"); System.out.println("ll after change: "

+ ll); } } OUTPUT Original contents of ll: [A, A2, F, B, D, E, C, Z] Contents of ll after deletion: [A, A2, D, E, C, Z] ll after deleting

first and last: [A2, D, E, C] ll after change: [A2, D, E Changed, C] 11.10

Vector Class Vector implements a dynamic array. It is similar to ArrayList, but with two differences:

Vector is synchronized,

and it

contains many legacy methods that are not part of the collections framework.

Here are the Vector constructors: Vector() Vector(int size) Vector(int size, int incr) Vector(Collection c) The first form

creates a default vector, which has an initial size of 10.

The second form

creates a vector whose initial capacity is specified by size.

The third form

creates a vector whose initial capacity is specified by size and

whose increment is specified by incr. The increment

specifies the number of elements to allocate each time that a vector is resized upward.

The fourth form

creates a vector that contains the elements of collection c.

The vector class provides plenty of useful methods. The addElement() method enables us to append an element to a vector

object, while the insertElement() method helps to insert an element at a given

index position. Once we store a collection of objects in a vector, we can extract an object from a specific location in that

vector, by using elementAt(), firstElement() and lastElement() methods. It is also possible to search for an individual element

with the help of contains(), indexOf() and lastIndexOf() methods. The following program uses a vector to store various types

of numeric objects. It demonstrates several of the legacy methods defined by Vector. PROGRAM // Demonstrate various

Vector operations.

import java.util.*; class VectorDemo { public static void main(String args[]) { // initial size is 3, increment is 2 Vector v = new

Vector(3, 2); System.out.println("Initial size: " + v.size()); System.out.println("Initial capacity: " + v.capacity());

v.addElement(new Integer(1)); v.addElement(new Integer(2)); v.addElement(new Integer(3)); v.addElement(new Integer(4));

System.out.println("Capacity after four additions: " + v.capacity()); v.addElement(new Double(5.45));

System.out.println("Current capacity: " + v.capacity()); v.addElement(new Double(6.08)); v.addElement(new Integer(7));

System.out.println("Current capacity: " + v.capacity()); v.addElement(new Float(9.4)); v.addElement(new Integer(10));

System.out.println("Current capacity: " + v.capacity()); v.addElement(new Integer(11)); v.addElement(new Integer(12));

System.out.println("First element: " + (Integer)v.firstElement()); System.out.println("Last element: " + (Integer)v.lastElement());

if(v.contains(new Integer(3))) System.out.println("Vector contains 3.");

// enumerate the elements in the vector. Enumeration vEnum = v.elements(); System.out.println("\nElements in vector:");

while(vEnum.hasMoreElements()) System.out.print(vEnum.nextElement() + " "); System.out.println(); } } OUTPUT Initial size: 0

Initial capacity: 3 Capacity after four additions: 5 Current capacity: 5 Current capacity: 7 Current capacity: 9 First element: 1

Last element: 12 Vector contains 3. Elements in vector: 1 2 3 4 5.45 6.08 7 9.4 10 11 12 11.11 Stack Class Stack is a subclass of

Vector that implements a standard last-in, first-out stack. Stack only defines the default constructor, which creates an

empty stack. Stack includes all the methods defined by Vector, and adds several of its own.

To put an object on the top of the stack, call push(). To remove and return the top element, call pop(). An

EmptyStackException is thrown if you call pop() when the invoking stack is empty. You can use peek() to return, but not

remove, the top object. The empty() method returns true if nothing is on the stack. The search() method determines

whether an object exists on the stack, and returns the number of pops that are required to bring it to the top of the stack.

Here is an example that creates a stack, pushes several Integer objects onto it, and then pops them off again. PROGRAM //

Demonstrate the Stack class.

import java.util.*; class StackDemo { static void showpush(Stack st, int a) { st.push(new Integer(a)); System.out.println("push("

+ a + ")"); System.out.println("stack: " + st); } static void showpop(Stack st) { System.out.print("pop -< "); Integer a =

(Integer) st.pop(); System.out.println(a);

System.out.println("stack: " + st); } public static void main(String args[]) { Stack st = new Stack(); System.out.println("

stack: " +

st); showpush(st, 42); showpush(st, 66); showpush(st, 99); showpop(st); showpop(st); showpop(st); try { showpop(st); } catch

(EmptyStackException e) { System.out.println("empty stack"); } } } OUTPUT stack: [] push(42)

stack: [42] push(66) stack: [42, 66] push(99) stack: [42, 66, 99] pop -< 99 stack: [42, 66] pop -< 66 stack: [42] pop -<

42 stack: [] pop -< empty stack 11.12

Hashtable Class Hashtable was part of the original java.util and is a concrete implementation of a Dictionary.

Hashtable stores key/value pairs in a hash table. When using a Hashtable, specify an object that is used as a key, and the

value that

https://secure.urkund.com/view/158826330-304149-193235#/sources 54/139

is to be

linked to that key. The key is then hashed, and the resulting hash code is used as the index at which the value is stored

within the table.

A hash table can only store objects that override the hashCode() and equals() methods that are defined by Object. The

hashCode() method must compute and return the hash code for the object. Of course, equals() compares two objects. For

example, the most common type of Hashtable uses a String object as the key. String implements both hashCode() and

equals(). The Hashtable constructors are shown here: Hashtable() Hashtable(int size) Hashtable(int size, float fillRatio)

Hashtable(Map m) The first version is the default constructor. The second version

creates a hash table that has an initial size specified by size.

The third version

creates a hash table that has an initial size specified by size and a fill ratio specified by fillRatio. This ratio must be between

0.0 and 1.0, and it determines how full the hash table can be before it is resized upward.

Finally, the fourth version creates a hash table that is initialized with the elements in m. The capacity of the hash table is set

to twice the number of elements in m. Here is an example to demonstrate the Hashtable.

PROGRAM // Demonstrate a Hashtable

import java.util.*; class HTDemo { public static void main(String args[]) { Hashtable balance = new Hashtable(); Enumeration

names; String str; double bal; balance.put("John Doe", new Double(3434.34)); balance.put("Tom Smith", new

Double(123.22)); balance.put("Jane Baker", new Double(1378.00)); balance.put("Todd Hall", new Double(99.22));

balance.put("Ralph Smith", new Double(-19.08)); // Show all balances in hash table. names = balance.keys();

while(names.hasMoreElements()) { str = (String) names.nextElement(); System.out.println(str + ": " + balance.get(str)); }

System.out.println(); // Deposit 1,000 into John Doe's account bal = ((Double)balance.get("John Doe")).doubleValue();

balance.put("John Doe", new Double(bal+1000)); System.out.println("John Doe's new balance: " +balance.get("

John Doe")); } } OUTPUT Todd Hall: 99.22 Ralph Smith: -19.08 John Doe: 3434.34 Jane Baker: 1378.0 Tom Smith: 123.22

John Doe‘

s new balance: 4434.34 11.13 Properties Class Properties is a subclass of Hashtable. It is used to maintain lists of values in

which the key is a String and the value is also a String. The Properties class is used by many other Java classes.

Properties defines the following instance variable: Properties defaults;

This variable holds a default property list associated with a Properties object. Properties

defines these constructors: Properties() Properties(Properties propDefault) The first version creates a Properties object that

has no default values. The second

creates an object that uses propDefault for its default values. In both cases, the property list is empty.

One useful capability of the Properties class is that you can specify a default property that will be returned if no value is

associated with a certain key. For example, a default value can be specified along with the key in the getProperty() method

—such as getProperty(―name‖, ―default value‖). If the ―name‖ value is not found, then ―default value‖ is returned. The

following example demonstrates Properties. PROGRAM //Program to illustrate Properties

76% MATCHING BLOCK 150/221

class import java.util.Properties; class PropertiesDemo { public static void main(String args[]) {

Properties prop = new Properties(); prop.put(―CD Title‖, ―Enter the CD Title‖); prop.put(―Author‖, ―Enter the Author‖);
prop.put(―Price‖, ―Price not set‖); Properties cd = ne Properties(prop); cd.put(―CD Title‖, ―Java e-book‖);
cd.put(―Author‖, ―Herbert Schildt‖); System.out.println(―CD Title: ‖ + cd.getProperty(―CD Title‖));

https://secure.urkund.com/view/158826330-304149-193235#/sources 55/139

System.out.println(―Author: ‖ + cd.getProperty(―Author‖)); System.out.println(―Price: ‖ + cd.getProperty(―Price‖)); } }
OUTPUT CD Title: Java e-book Author: Herbert Schildt Price: Price not set 11.14 StringTokenizer Class The processing of

text often consists of parsing a formatted input string. Parsing is the division of text into a set of discrete parts, or tokens,

which in a certain sequence can convey a semantic meaning. The StringTokenizer class provides the first step in this parsing

process, often called the lexer (lexical analyzer) or scanner. StringTokenizer implements the Enumeration interface. To use

StringTokenizer, specify an input string and a string that contains delimiters. Delimiters are characters that separate tokens.

For example, the delimiters can be a comma, a semicolon, or a colon. The default set of delimiters consists of the

whitespace characters: space, tab, newline, and carriage return. The StringTokenizer constructors are shown here:

StringTokenizer(String str) StringTokenizer(String str, String delimiters) StringTokenizer(String str, String delimiters, boolean

delimAsToken) In all versions, str is the string that will be tokenized. In the first version, the default delimiters are used. In the

second and third versions, delimiters is a string that specifies the delimiters. In the third version, if delimAsToken is true, then

the delimiters are also returned as tokens when the string is parsed. Otherwise, the delimiters are not returned. Once a

StringTokenizer object is created, the nextToken() method is used to extract consecutive tokens. The hasMoreTokens()

method returns true while there are more tokens to be extracted. Since StringTokenizer implements Enumeration, the

hasMoreElements() and nextElement() methods are also implemented, and they act the same as hasMoreTokens() and

nextToken(),

respectively. Here is an example that creates a StringTokenizer to parse ―key=value‖ pairs. Consecutive sets of

―key=value‖ pairs are separated by a semicolon. PROGRAM // Demonstrate StringTokenizer. import

java.util.StringTokenizer; class STDemo { static String in = "title=Java: The Complete Reference;" + "author=Schildt;" +

"publisher=Osborne/McGraw-Hill;" + "copyright=2002";

public static void main(String args[]) { StringTokenizer st = new StringTokenizer(

in, "=;"); while(st.hasMoreTokens()) { String key = st.nextToken(); System.out.println(key + "\t" + val); } } } OUTPUT title Java:

The Complete Reference author Schildt publisher Osborne/McGraw-Hill copyright 2002 11.15 Date Class The Date

class encapsulates the current date and time. Date supports the following constructors: Date() Date(long millisec) The first

constructor initializes the object with the current date and time.

The second

constructor accepts one argument that equals the number of milliseconds that have elapsed since midnight, January 1,

1970.

The Date features do not allow you to obtain the individual components of the date or time.

The methods defined by Date are shown in Table 11.4. Method

Description

boolean after(Date date) Returns true if the invoking Date object contains a date that is later than the one specified by date.

Otherwise, it returns false. Boolean before(Date date) Returns true if the invoking Date object contains a date that is earlier

than the one specified by date. Otherwise, it returns false. Object clone() Duplicates the invoking Date object.

intcompareTo(Date date) Compares the value of the invoking object with that of date. Returns 0 if the values are equal.

Returns a negative value if the invoking object is earlier than date. Returns a positive value if the invoking object is later than

date. int compareTo(Object obj) Operates identically to compareTo(Date) if obj is of class Date. Otherwise, it throws a

ClassCastException. boolean equals(Object date) Returns true if the invoking Date object contains the same time and date

as the one specified by date. Otherwise, it returns false. long getTime() Returns the number of milliseconds that have

elapsed since January 1, 1970. int hashCode() Returns a hash code for the invoking object. void setTime(long time) Sets the

time and date as specified by time, which represents an elapsed time in milliseconds from midnight, January 1, 1970. String

toString() Converts the invoking Date object into a string and returns the result

As the following program demonstrates, you can only obtain the date and time in terms of milliseconds or in its default

string representation as returned by toString(). PROGRAM // Show date and time using only Date methods.

import java.util.Date;

class DateDemo { public static void main(String args[]) { // Instantiate a Date object Date date = new Date(); // display time

and date using toString() System.out.println(date); //

Display number of milliseconds since midnight, January 1, 1970 GMT long msec = date.getTime();

System.out.println("Milliseconds since Jan. 1, 1970 GMT = " + msec); } } OUTPUT Mon Apr 22 09:51:52 CDT 2002

Milliseconds since Jan. 1, 1970 GMT = 1019487112894 11.16 Unit Summary This Unit explained the Collections framework. It

briefly introduced the important interfaces such as List, Set, Map, Enumeration, Iterator interfaces and classes such as

ArrayList, LinkedList, Vector, Stack, Properties, HashTable, StringTokenizer, and Date. 11.17

Key Terms 1.

The Collection interface is the foundation upon which the collections framework is built. 2.

The List interface extends Collection and declares the behavior of a collection that stores a sequence of elements. 3.

The Set interface defines a set. It

extends Collection and declares the behavior of a collection that

does not allow duplicate elements. 4.

https://secure.urkund.com/view/158826330-304149-193235#/sources 56/139

A Map is an object that maps keys to values, or is a collection of attribute-value pairs. 5.

Enumeration is a simple interface that declares two methods, namely the hasMoreElements() method and the nextElement()

method. 6.

Iterator enables you to cycle through a collection, obtaining or removing elements. 7.

The ArrayList class extends AbstractList and implements the List interface.

8.

The LinkedList class extends AbstractSequentialList and implements the List interface. 9.

Vector implements a dynamic array. It is similar to ArrayList, but with two differences:

Vector is 10. synchronized,

and it

contains many legacy methods that are not part of the collections framework. 11.

Stack is a subclass of Vector that implements a standard last-in, first-out stack. Stack only defines the default constructor,

which creates an empty stack. 12.

Hashtable was part of the original java.util and is a concrete implementation of a Dictionary. 13.

Properties is a subclass of Hashtable. It is used to maintain lists of values in which the key is a String and the value is also a

String. 14.

The StringTokenizer class

provides the first step in this parsing process, often called the lexer (lexical analyzer) or scanner 15.

The Date class encapsulates the current date and time. Date supports the following constructors: Date(), Date(long millisec)

11.18

Check Your Progress 1. Write a note on the

Enumeration interface. 2. List any three unique features of Vector class. 3. Discuss the important methods of Stack class. 4.

Explain the salient features of

the StringTokenizer class. 5. Illustrate the Properties class with an example.

Unit 12: Files And I/Ostreams 12.0 Introduction 12.1 Unit Objective 12.2 File 12.2.1 Directories 12.2.2 Using FilenameFilter

12.2.3 The listFiles() Alternative 12.2.4 Creating Directories 12.3 The Stream Classes 12.3.1 The Byte Streams 12.3.2 The

Character Streams 12.4 Serialization 12.5 Unit Summary 12.6 Key Terms 12.7 Check Your Progress 12.0

Introduction A stream is a logical entity that either produces or consumes information. Data is retrieved from an input

source. The results of a program are sent to an output destination. In Java, these sources or destinations are defined very

broadly. For example, a network connection, memory buffer, or disk file can be manipulated by the Java I/O classes.

Although physically different, these devices are all handled by the same abstraction: the stream. A stream is linked to a

physical device by the Java I/O system. All streams behave in the same manner, even if the actual physical devices they are

linked to differ. Two fundamental types of streams are input streams and output streams. Figure 12.1 explains the working of

Java OutputStream and InputStream. While an output stream writes data into a file (or stream or program or device), an

input stream is used to read data from a file (or stream or program or device).

Fig 12.1 Working of Java OutputStream and InputStream The java.io package has plenty of Stream classes. This Lesson

discusses the various types of Stream classes and their usage in dealing with disk files. 12.1

Objectives This Unit

explores java.io, which provides support for I/O operations. It deals with • InputStream, Output Stream, FileInputStream,

FileOutputStream, PipedInputStream and PrintStream under the Byte Streams. • Reader, Writer, FileReader and FileWriter

under Character Streams. • Serialization 12.2

File Most of the classes defined by java.io operate on streams, but the File class does not. It deals directly with files and the

file system. That is, the File class does not specify how information is retrieved from or stored in files; it describes the

properties of a file itself. A File object is used to obtain or manipulate the information associated with a disk file, such as the

permissions, time, date, and directory path, and to navigate subdirectory hierarchies. The following constructors can be

used to create File objects: File(String directoryPath) File(String directoryPath, String filename) File(File dirObj, String

filename) File(URI uriObj) Here, directoryPath is the path name of the file, filename is the name of the file, dirObj is a File

object that specifies a directory, and uriObj is a URI object that describes a file.

File defines many methods that obtain the standard properties of a File object. For example, getName() returns the name of

the file, getParent() returns the name of the parent directory, and exists() returns true if the file exists, false if it does not.

The following example demonstrates several of the File methods: 12.2.1

Directories

85% MATCHING BLOCK 151/221

A directory is a File that contains a list of other files and directories.

https://secure.urkund.com/view/158826330-304149-193235#/sources 57/139

When a File object is created, it is a directory, the isDirectory() method will return true. When

the list()

method is called on that object, it extracts the list of other files and directories inside. It‘s general form is shown here: String[

] list()

The list of files is returned in an array of String objects. The program shown here illustrates how to use list() to examine the

contents of

a

directory: 12.2.2 Using FilenameFilter In order to list only those files that match a certain filename pattern, or filter, the

following form of list() method is used. String[] list(FilenameFilter FFObj) In this form, FFObj is an object of a class that

implements the FilenameFilter interface. FilenameFilter defines only a single method, accept(), which is called once for

each file in a list. Its general form is given here: boolean accept(File directory, String filename)

The accept() method returns true for files in the directory specified by directory that should be included in the list (that is,

those that match the filename argument), and returns false for those files that should be excluded. The OnlyExt class,

shown next, implements FilenameFilter. It will be used to modify the preceding program so that it restricts the visibility of

the filenames returned by list() to files with names that end in the file extension specified when the object is constructed.

The modified directory listing program is shown here. Now it will only display files that use the .html extension. 12.2.3

The listFiles() Alternative Java 2 added a variation to the list() method, called listFiles(). The signatures for listFiles() are

shown here: File[] listFiles() File[] listFiles(FilenameFilter FFObj) File[] listFiles(FileFilter FObj) These methods return the file

list as an array of File objects instead of strings. The first method returns all files, and the second returns those files that

satisfy the specified FilenameFilter. Aside

from returning an array of File objects, these two versions of listFiles() work like their equivalent list() methods. The third

version of listFiles() returns those files with path names that satisfy the specified FileFilter. FileFilter defines only a single

method, accept(), which is called once for each file in a list. Its general form is given here: boolean accept(File path) The

accept() method returns true for files that should be included in the list (that is, those that match the path argument), and

false for those that should be excluded. 12.2.4 Creating Directories Another two useful File utility methods are mkdir() and

mkdirs().

100% MATCHING BLOCK 152/221

The mkdir() method creates a directory, returning true on success and false on failure. Failure indicates that the path

specified in the File object already exists, or that the directory cannot be created because the entire path does not exist

yet.

To create a directory for which no path exists, the mkdirs() method is used. It

100% MATCHING BLOCK 153/221

creates both a directory and all the parents of the directory.

Figure 12.2 Java Stream Classes

12.3 The Stream Classes Java‘s stream-based I/O is built upon four abstract classes: InputStream, OutputStream, Reader,

and Writer. InputStream and OutputStream are designed for byte streams. Reader and Writer are designed for character

streams. The byte stream classes and the character stream classes form separate hierarchies. In general, the character

stream classes are used when working with characters or strings and the byte stream classes are used when working with

bytes or other binary objects. This is diagrammatically explained in Figure 12.2. 12.3.1 The Byte Streams The byte stream

classes provide a rich environment for handling byte-oriented I/O. A byte stream can be used with any type of object,

including binary data. InputStream InputStream is an abstract class that defines Java‘s model of streaming byte input. All of

the methods in this class will throw an IOException on error conditions. The methods in InputStream are listed in Table 12.1.

Method Description int available() Returns the number of bytes of input currently available for reading. void close() Closes

the input source. Further read attempts will generate an IOException. void mark(int numBytes) Places a mark at the current

point in the input stream that will remain valid until numBytes bytes are read. boolean markSupported() Returns true if mark(

)/reset() are supported by the invoking stream. int read() Returns an integer representation of the next available byte of

input. –1 is returned when the end of the file is encountered. int read(byte buffer[]) Attempts to read up to buffer.length

bytes into buffer and returns the actual number of bytes that were successfully read. –1 is returned when the end of the file

is encountered. int read(byte buffer[], int offset, int numBytes) Attempts to read up to numBytes bytes into buffer starting at

buffer[offset], returning the number of bytes successfully read. –

https://secure.urkund.com/view/158826330-304149-193235#/sources 58/139

1 is returned when the end of the file is encountered. void reset() Resets the input pointer to the previously set mark. long

skip(long numBytes) Ignores (that is, skips) numBytes bytes of input, returning the number of bytes actually ignored.

Table 12.1 The Methods Defined by InputStream

OutputStream OutputStream is an abstract class that defines streaming byte output. All of the methods in this class return a

void value and throw an IOException in the case of errors. Table 12-2 shows the methods in OutputStream. Method

Description void close() Closes the output stream. Further write attempts will generate an IOException. void flush()

Finalizes the output state so that any buffers are cleared. That is, it flushes the output buffers. void write(int b) Writes a single

byte to an output stream. Note that the parameter is an int, which allows you to call write() with expressions without having

to cast them back to byte. void write(byte buffer[]) Writes a complete array of bytes to an output stream. void write(byte

buffer[], int offset, int numBytes) Writes a subrange of numBytes bytes from the array buffer, beginning at buffer[offset].

Table 17.2. The

Methods Defined by OutputStream

FileInputStream The FileInputStream class creates an InputStream that can be use to read bytes from a file. Its two most

common constructors are shown here:

FileInputStream(String filepath) FileInputStream(File fileObj) Either can throw a FileNotFoundException. Here, filepath is the

full path name of a file, and fileObj is a File object that describes the file. In the following example, the read() method in the

FileInputStream class reads in a single byte at a time. This byte is stored as the value of the integer type variable c. If the

value of the variable c is equal to -1, we stop the reading operation and close the file Sample.dat

FileOutputStream FileOutputStream creates an OutputStream that can be used to write bytes to a file. The most commonly

used constructors are shown here: FileOutputStream(String filePath) FileOutputStream(File fileObj) FileOutputStream(String

filePath, boolean append) FileOutputStream(File fileObj, boolean append) They can throw a FileNotFoundException or a

SecurityException. Here, filePath is the full path name of a file, and fileObj is a File object that describes the file. If append is

true, the file is opened in append mode. FileOutputStream will create the file before opening it for output during the

creation of the object. When an attempt is made to open a read-only file, an IOException will be thrown. In

the following example, a string is converted into a byte array named b. Then, a data file named sample.dat is associated with

an object of FileOutputStream class. Then, each byte in the byte array b is written into the data file sample.dat and the file is

closed. //

Demonstrate FileOutputStream.

84% MATCHING BLOCK 154/221

import java.io.*; class FileOutputStreamDemo { public static void main(String args[]) throws IOException {

String str = ―Welcome‖; Byte b [] = str.getBytes(); FileOutputStream fos = new FileOutputStream(“sample.dat”); for (i =0;

i>b.length; i++) { fos.write(b[i]); } fos.close(); } } PipedInputStream and PipedOutputStream classes The PipedInputStream

and PipedOutputStream classes can be used to read and write data simultaneously. Both streams are connected with each

other using the connect() method of the PipedOutputStream class. This is explained through the following example. Here,

we have created two threads t1 and t2. The t1 thread writes the data using the PipedOutputStream object and the t2 thread

reads the data from that pipe using the PipedInputStream object. Both the piped stream object are connected with each

other. PROGRAM //

Demonstrate Pipedinputstream and Pipedoutputstream

import java.io.*; class PipedWR{ public static void main(String args[])

throws

Exception{

final PipedOutputStream pout=new PipedOutputStream(); final PipedInputStream pin=new PipedInputStream();

pout.connect(pin); //connecting the streams //creating one thread t1 which writes the data Thread t1=new

Thread(){ public void run(){ for(int i=65;i>=90;i++){ try{ pout.write(i); Thread.sleep(1000); }catch(Exception e){} } } }; //

creating another thread t2 which reads the data Thread t2=new

100% MATCHING BLOCK 155/221

Thread(){ public void run(){ try{ for(int i=65;i>=90;i++) System.out.println(

https://secure.urkund.com/view/158826330-304149-193235#/sources 59/139

pin.read()); }catch(Exception e){} } }; //starting both threads t1.start(); t2.start(); } } OUTPUT Captial A to Z will be displayed

PrintStream The PrintStream class provides all of the formatting capabilities. Here are two of its constructors:

PrintStream(OutputStream outputStream) PrintStream(OutputStream outputStream, boolean flushOnNewline) where

flushOnNewline controls whether Java flushes the output stream every time a newline (\n) character is output. If

flushOnNewline is true, flushing automatically takes place. If it is false, flushing

is not automatic. The first constructor does not automatically flush. Java‘s PrintStream objects support the print() and

println() methods for all types, including Object. If an argument is not a simple type, the PrintStream methods will call the

object‘s toString() method and then print the result. 12.3.2 The Character Streams The byte stream classes provide sufficient

functionality to handle any type of I/O operation, but they cannot work directly with Unicode characters. Since one of the

main purposes of Java is to support the ―write once, run anywhere‖ philosophy, it was necessary to include direct I/O

support for characters. The Reader and Writer abstract classes are the top most character stream classes in the hierarchies.

Reader Reader is an abstract class that defines Java‘s model of streaming character input. All of the methods in this class will

throw an IOException on error conditions. Table 12-3 provides a synopsis of the methods in Reader. Method Description

abstract void close() Closes the input source. Further read attempts will generate an IOException. void mark(int numChars)

Places a mark at the current point in the input stream that will remain valid until numChars characters are read. boolean

markSupported() Returns true if mark()/reset() are supported on this stream. int read() Returns an integer representation of

the next available character from the invoking input stream. –1 is returned when the end of the file is encountered. int

read(char buffer[]) Attempts to read up to buffer.length characters into buffer and returns the actual number of characters

that were successfully read. –1 is returned when the end of the file is encountered. abstract int read(char buffer[], int offset,

int numChars) Attempts to read up to numChars characters into buffer starting at buffer[offset], returning the number of

characters successfully read. –1 is returned when the end of the file is encountered.

boolean ready() Returns true if the next input request will not wait. Otherwise, it returns false. void reset() Resets the input

pointer to the previously set mark. long skip(long numChars) Skips over numChars characters of input, returning the

number of characters actually skipped.

Table 17-3 The Methods Defined by Reader

Writer Writer is an abstract class that defines streaming character output. All of the methods in this class return a void value

and throw an IOException in the case of errors. Table 12-4 shows a synopsis of the methods in Writer. Method Description

abstract void close() Closes the output stream. Further write attempts will generate an IOException. abstract void flush()

Finalizes the output state so that any buffers are cleared. That is, it flushes the output buffers. void write(int ch) Writes a

single character to the invoking output stream. Note that the parameter is an int, which allows you to call write with

expressions without having to cast them back to char. void write(char buffer[]) Writes a complete array of characters to the

invoking output stream. abstract void write(char buffer[], int offset, int numChars) Writes a subrange of numChars

characters from the array buffer, beginning at buffer[offset] to the invoking output stream. void write(String str) Writes str to

the invoking output stream. void write(String str, int offset, int numChars) Writes a subrange of numChars characters from

the array str, beginning at the specified offset. Table 12-4 The

Methods Defined by Writer

FileReader The FileReader class creates a Reader that can be used to read the contents of a file. The two most commonly

used constructors are shown here:

FileReader(String filePath) FileReader(File fileObj Either can throw a FileNotFoundException. Here, filePath is the full path

name of a file, and fileObj is a File object that describes the file. The following example shows how to read lines from a file

and print these to the standard output stream. It reads its own source file, which must be in the current directory.

PROGRAM // Demonstrate

FileReader.

import java.io.*; class FileReaderDemo { public static void main(String args[]) throws

Exception {

FileReader

fr = new FileReader("

FileReaderDemo.java"); BufferedReader br = new BufferedReader(

fr); String s; while((s = br.readLine()) != null) { System.out.println(

s); } fr.close(); } } FileWriter FileWriter creates a Writer that you can use to write to a file. Its most commonly used

constructors are shown here: FileWriter(String filePath) FileWriter(String filePath, boolean append) FileWriter(File fileObj)

FileWriter(File fileObj, boolean append)

They can throw an IOException. Here, filePath is the full path name of a file, and fileObj is a File object that describes the

file. If append is true, then output is appended to the end of the file. The fourth constructor was added by Java 2, version

1.4. PROGRAM //

Demonstrate FileWriter.

import java.io.*; class FileWriterDemo { public static void main(String args[]) throws

Exception {

https://secure.urkund.com/view/158826330-304149-193235#/sources 60/139

try { FileWriter fw = new FileWriter (―samp.dat‖); For (char i=65; i>91; i++) { Fw.write(i); } } catch (Exception e) {

System.out.println(―
Exceptin : +e); } } } OUTPUT ABCDEFGHIJKLMNOPQRSTUVWXYZ

12.4 Serialization Serialization is the process of writing the state of an object to a byte stream. This is useful when there is a

need to save the program to a persistent storage area, such as a file and later, these objects can be restored by using the

process of deserialization. Serialization is also needed to implement Remote Method Invocation (RMI). RMI allows a Java

object on one machine to invoke a method of a Java object on a different machine. An object may be supplied as an

argument to that remote method. The sending machine serializes the object and transmits it. The receiving machine

deserializes it. The interfaces and classes that support serialization are discussed here. Serializable Only an object that

implements the Serializable interface can be saved and restored by the serialization facilities. The Serializable interface

defines no members. It is simply used to indicate that a class may be serialized. If a class is serializable, all of its subclasses

are also serializable. Variables that are declared as transient are not saved by the serialization facilities. Also, static variables

are not saved. Externalizable The Java facilities for serialization and deserialization have been designed so that much of the

work to save and restore the state of an object occurs automatically. However, there are cases in which the programmer

may need to have control over these processes. For example, it may be desirable to use compression or encryption

techniques. The Externalizable interface is designed for these situations. The Externalizable interface defines these two

methods: void readExternal(ObjectInput inStream) throws IO Exception, ClassNotFoundException void

writeExternal(ObjectOutput outStream) throws IOException In these methods, inStream is the byte stream from which the

object is to be read, and outStream is the byte stream to which the object is to be written. ObjectOutput The ObjectOutput

interface extends the DataOutput interface and supports object serialization.

It defines the methods shown in Table 12.5. The writeObject() method is called to serialize an object. All of these methods

will throw an IOException on error conditions. Method Description void close() Closes the invoking stream. Further write

attempts will generate an IOException. void flush() Finalizes the output state so that any buffers are cleared. That is, it

flushes the output buffers. void write(byte buffer[]) Writes an array of bytes to the invoking stream. void write(byte buffer[],

int offset, int numBytes) Writes a subrange of numBytes bytes from the array buffer, beginning at buffer[offset]. void write(int

b) Writes a single byte to the invoking stream. The byte written is the low-order byte of b. void writeObject(Object obj)

Writes object obj to the invoking stream. Table 12.5 The

Methods Defined by ObjectOutput

ObjectOutputStream The ObjectOutputStream class extends the OutputStream class and implements the ObjectOutput

interface. It is responsible for writing objects to a stream. A constructor of this class is ObjectOutputStream(OutputStream

outStream) throws IOException The argument outStream is the output stream to which serialized objects will be written.

The most commonly used methods in this class are shown in Table 12.6. They will throw an IOException on error

conditions. Method Description void close() Closes the invoking stream. Further write attempts will generate an

IOException. void flush() Finalizes the output state so that any buffers are cleared. That is, it flushes the output buffers. void

write(byte buffer[]) Writes an array of bytes to the invoking stream. void write(byte buffer[], int offset, int numBytes) Writes a

subrange of numBytes bytes from the array buffer, beginning at buffer[offset]. void write(int b) Writes a single byte to the

invoking stream. The byte written is the low-order byte of b. void writeBoolean(boolean b) Writes a boolean to the invoking

stream.

void writeByte(int b) Writes a byte to the invoking stream. The byte written is the low- order byte of b. void writeBytes(String

str) Writes the bytes representing str to the invoking stream. void writeChar(int c) Writes a char to the invoking stream. void

writeChars(String str) Writes the characters in str to the invoking stream. void writeDouble(double d) void void Writes a

double to the invoking Stream writeFloat(float f) Writes a float to the invoking stream. writeInt(int i) Writes an int to the

invoking stream. void writeLong(long l) Writes a long to the invoking stream. final void writeObject(Object obj) Writes obj to

the invoking stream. void writeShort(int i) Writes a short to the invoking stream. Table 12.6. Commonly Used Methods

Defined by ObjectOutputStream ObjectInput The ObjectInput interface extends the DataInput interface and defines the

methods shown in Table 12.7. It supports object serialization. The readObject() method is called to deserialize an object. All

of these methods will throw an IOException on error conditions. Method Description int available() Returns the number of

bytes that are now available in the input buffer. void close() Closes the invoking stream. Further read attempts will generate

an IOException. int read() Returns an integer representation of the next available byte of input. –1 is returned when the end

of the file is encountered. int read(byte buffer[]) Attempts to read up to buffer.length bytes into buffer, returning the number

of bytes that were successfully read. – 1 is returned when the end of the file is encountered

https://secure.urkund.com/view/158826330-304149-193235#/sources 61/139

int read(byte buffer[], int offset, int numBytes) Attempts to read up to numBytes bytes into buffer starting at buffer[offset],

returning the number of bytes that were successfully read. –1 is returned when the end of the file is encountered. Object

readObject() Reads an object from the invoking stream. long skip(long numBytes) Ignores (that is, skips) numBytes bytes in

the invoking stream, returning the number of bytes actually ignored Table 12-7. The Methods Defined by ObjectInput

ObjectInputStream The ObjectInputStream class extends the InputStream class and implements the ObjectInput interface.

ObjectInputStream is responsible for reading objects from a stream. A constructor of this class is

ObjectInputStream(InputStream inStream) throws IOException, StreamCorruptedException The argument inStream is the

input stream from which serialized objects should be read. The most commonly used methods in this class are shown in

Table 12-8. They will throw an IOException on error conditions. Method Description int available() Returns the number of

bytes that are now available in the input buffer. void close() Closes the invoking stream. Further read attempts will generate

an IOException. int read() Returns an integer representation of the next available byte of input. –1 is returned when the end

of the file is encountered. int read(byte buffer[], int offset, int numBytes) Attempts to read up to numBytes bytes into buffer

starting at buffer[offset], returning the number of bytes successfully read. –1 is returned when the end of the file is

encountered. boolean readBoolean() Reads and returns a boolean from the invoking stream. byte readByte() Reads and

returns a byte from the invoking stream. char readChar() Reads and returns a char from the invoking stream. double

readDouble() Reads and returns a double from the invoking stream.

float readFloat() Reads and returns a float from the invoking stream. void readFully(byte buffer[]) Reads buffer.length bytes

into buffer. Returns only when all bytes have been read. void readFully(byte buffer[], int offset, int numBytes) Reads

numBytes bytes into buffer starting at buffer[offset]. Returns only when numBytes have been read. int readInt() Reads and

returns an int from the invoking stream. long readLong() Reads and returns a long from the invoking stream. final Object

readObject() Reads and returns an object from the invoking stream. short readShort() Reads and returns a short from the

invoking stream. int readUnsignedByte() Reads and returns an unsigned byte from the invoking stream. int

readUnsignedShort() Reads an unsigned short from the invoking stream. Table 12.8 Commonly Used Methods Defined by

ObjectInputStream Serialization Example The following program illustrates how to use object serialization and

deserialization. It begins by instantiating an object of class MyClass. This object has three instance variables that are of types

String, int, and double. This is the information we want to save and restore. A FileOutputStream is created that refers to a file

named ―serial,‖ and an ObjectOutputStream is created for that file stream. The writeObject() method of

ObjectOutputStream is then used to serialize our object. The object output stream is flushed and closed. A FileInputStream

is then created that refers to the file named ―serial,‖ and an ObjectInputStream is created for that file stream. The

readObject() method of ObjectInputStream is then used to deserialize our object. The object input stream is then closed.

The class MyClass is defined to implement the Serializable interface. If this is not done, a NotSerializableException is thrown.

Declare some of the MyClass instance variables to be transient and it can be observed that the corresponding data is not

saved during serialization. PROGRAM // Demonstration of Serialization

87% MATCHING BLOCK 156/221

import java.io.*; public class SerializationDemo { public static void main(String args[]) { //

Object serialization try { MyClass object1 = new MyClass("Hello", -7, 2.7e10); System.out.println("object1: " + object1);

FileOutputStream fos = new FileOutputStream("serial"); ObjectOutputStream oos = new ObjectOutputStream(fos);

oos.writeObject(object1); oos.flush(); oos.close(); } catch(Exception e) { System.out.println("Exception during serialization: "

+ e); System.exit(0); } // Object deserialization try { MyClass object2; FileInputStream fis = new FileInputStream("serial");

ObjectInputStream ois = new ObjectInputStream(fis); object2 = (MyClass)ois.readObject(); ois.close();

System.out.println("object2: " + object2); } catch(Exception e) { System.out.println("Exception during deserialization: " + e);

System.exit(0); } } } class MyClass implements Serializable { String s; int i; double d; public MyClass(String s, int i, double d) {

this.s = s; this.i = i; this.d = d; } public String toString() { return "s=" + s + "; i=" + i + "; d=" + d;

} } OUTPUT This program demonstrates that the instance variables of object1 and object2 are identical. The output is shown

here: object1: s=Hello; i=-7; d=2.7E10 object2: s=Hello; i=-7; d=2.7E10 12.5 Unit Summary This Unit described the high-

level InputStream, OutputStream, Reader, and Writer classes. This model works very well

with

the network and socket streams. Finally, serialization of objects is expected to play an increasingly important role in Java

programming. Java‘s serialization I/O classes provide a portable solution to this sometimes tricky task. 12.6

Key Terms •

A File object is used to obtain or manipulate the information associated with a disk file, such as the permissions, time, date,

and directory path, and to navigate subdirectory hierarchies. •

https://secure.urkund.com/view/158826330-304149-193235#/sources 62/139

85% MATCHING BLOCK 157/221

A directory is a File that contains a list of other files and directories. •

The

byte stream classes provide a rich environment for handling byte-oriented I/O. A byte stream can be used with any type of

object, including binary data. 12.7

Check Your Progress 1. Name some important input and output stream classes. 2. Write a

note on File class. 3. Briefly explain FileInputStream. 4. Explain FileReader and FileWriter classes. 5. What is object

serialization? Explain its purpose.

Module V: Networking, Images, Applet class and Swing

Unit 13: Networking 13.0 Introduction 13.1 Unit Objective 13.2 Networking 13.3 The Networking Classes and Interfaces 13.3.1

InetAddress 13.3.2 TCP/IP Client Sockets 13.3.3 TCP/IP Server Sockets 13.3.4 URL and URLConnection classes 13.3.5

Datagrams 13.4 Unit Summary 13.5 Key Terms 13.6 Check Your Progress 13.0

Introduction A Network is a collection of computers and other devices that can send data and receive data from one

another in real time. Each machine on a network is called a node. Most nodes are computers, but dumb terminals and

printers can also be treated as nodes. The nodes that are fully functional computers are also known as Host. Computers

running on the Internet communicate to each other using either the Transmission Control Protocol (TCP) or the User

Datagram Protocol (UDP). Java was the first programming language designed from the ground up for network applications.

The classes in the java.net package provide system- independent network communication. 13.1

Objectives The aim of this Lesson is to introduce the Networking classes and interfaces. This Lesson give the overview of

InetAddress class, TCP/IP Client, Server sockets, Datagrams, URL and URLConnection classes. 13.2 Networking A Network is

a collection of computers and other devices that can send data and receive data from one another in real time. Each

machine on a network is called a node. Most nodes are computers, but dumb terminals and printers can also be treated as

nodes. The nodes that are fully functional computers are also known as Host. Computers running on the Internet

communicate to each other using either the Transmission Control Protocol (TCP) or the User Datagram Protocol (UDP).

Java

was the first programming language designed from the ground up for network applications. The classes in the java.net

package provide system- independent network communication. Socket Overview A network socket is a lot like an electrical

socket. Various plugs around the network have a standard way of delivering their payload. Anything that understands the

standard protocol can ―plug in‖ to the socket and communicate.

A protocol is a set of rules basically that is followed for communication.

Internet Protocol (IP) is a low-level routing protocol that breaks data into small packets and sends them to an address

across a network, which does not guarantee to deliver said packets to the destination. Transmission Control Protocol (TCP)

is a higher-level protocol that manages to robustly string together these packets, sorting and retransmitting them as

necessary to reliably transmit your data. A third protocol, User Datagram Protocol (UDP), sits next to TCP and can be used

directly to support fast, connectionless, unreliable transport of packets. Client/Server A server is anything that has some

resource that can be shared. There are compute servers, which provide computing power; print servers, which manage a

collection of printers; disk servers, which provide networked disk space; and web servers, which store web pages. A client is

simply any other entity that wants to gain access to a particular server. The server is a permanently available resource, while

the client is free to ―unplug‖ after it is has been served. In Berkeley sockets, the notion of a socket allows a single computer

to serve many different clients at once, as well as serving many different types of information. This is managed by the

introduction of a port, which is a numbered socket on a particular machine. A server process is said to ―listen‖ to a port

until a client connects to it. A server is allowed to accept multiple clients connected to the same port number, although

each session is unique. To manage multiple client connections, a server process must be multithreaded or have some other

means of multiplexing the simultaneous I/O. Reserved Sockets Once connected, a higher-level protocol ensues, which is

dependent on which port you are using. TCP/IP reserves the lower 1,024 ports for specific protocols.

Port number 21 is for FTP, 23 is for Telnet, 25 is for e- mail, 79

is for finger, 80 is for HTTP, 119 is for netnews—and the list goes on. It is up to each protocol to determine how a client

should interact with the port. For example, HTTP

is the protocol that web browsers and servers use to transfer hypertext pages and images. It is quite a simple protocol for a

basic page- browsing web server. Here‘s an example of a client requesting a single file, /index.html, and the server replying

that it has successfully found the file and is sending it to the client.

https://secure.urkund.com/view/158826330-304149-193235#/sources 63/139

Proxy Servers A proxy server speaks the client side of a protocol to another server. This is often required when clients have

certain restrictions on which servers they can connect to. Thus, a client would connect to a proxy server, which did not

have such restrictions, and the proxy server would in turn communicate for the client. A proxy server has the additional

ability to filter certain requests or cache the results of those requests for future use. A caching proxy HTTP server can help

reduce the bandwidth demands on a local network‘s connection to the Internet. When a popular web site is being hit by

hundreds of users, a proxy server can get the contents of the web server‘s popular pages at once, saving expensive

internetwork transfers while providing faster access to those pages to the clients. Internet Addressing Every computer on

the Internet has an address. An Internet address is a number that uniquely identifies each computer on the Net. Originally,

all Internet addresses consisted of 32-bit values. This address type was specified by IPv4 (Internet Protocol, version 4).

However, a new addressing scheme, called IPv6 (Internet Protocol, version 6) has come into play. IPv6 uses a 128-bit value

to represent an address, that supports larger address space than IPv4. Fortunately, IPv6 is downwardly compatible with IPv4.

There are 32 bits in an IPv4 IP address, and we often refer to them as a sequence of four numbers between 0 and 255

separated by dots (.). This makes them easier to remember, because they are not

randomly assigned—they are hierarchically assigned. The first few bits define which class of network, lettered A, B, C, D, or

E, the address represents. Most Internet users are on a class C network, since there are over two million networks in class C.

The first byte of a class C network is between 192 and 224, with the last byte actually identifying an individual computer

among the 256 allowed on a single class C network. This scheme allows for half a billion devices to live on class C

networks. Domain Naming Service (DNS) A DNS server is a computer server that contains a database of public IP addresses

and their associated hostnames, and in most cases, serves to resolve, or translate, those common names to IP addresses as

requested. Just as the four numbers of an IP address describe a network hierarchy from left to right, the name of an Internet

address, called its domain name, describes a machine‘s location in a name space, from right to left. For example,

www.osborne.com is in the COM domain (reserved for U.S. commercial sites), it is called osborne (after the company

name),

and www is the name of the specific computer that is Osborne‘s web server.

www corresponds to the rightmost number in the equivalent IP address. 13.3 The Networking Classes and Interfaces Java

supports TCP/IP both by extending the already established stream I/O interface and by adding the features required to build

I/O objects across the network. Java supports both the TCP and UDP protocol families. TCP is used for reliable stream-

based I/O across the network. UDP supports a simpler, hence faster, point-to-point datagram-oriented model. 13.3.1

InetAddress The InetAddress class is used to encapsulate both the

numerical IP address and the domain name for that address.

You interact with this class by using the name of an IP host, which is more convenient and understandable than its IP

address. The InetAddress class hides the number inside. Here the IP address format is assumed as IPv4. Factory Methods

constructors. To create an InetAddress object, use one of the available factory methods. Factory methods are merely a

convention whereby static methods in a class return an instance of that class. Three commonly used InetAddress factory

methods are shown here.

static InetAddress getLocalHost() throws UnknownHostException static InetAddress getByName(String hostName)

throws UnknownHostException static InetAddress[] getAllByName(String hostName) throws UnknownHostException

The getLocalHost() method simply returns the InetAddress object that represents the local host. The getByName() method

returns an InetAddress for a host name passed to it. If these methods are unable to resolve the host name, they throw an

UnknownHostException. The getAllByName() factory method returns an array of InetAddresses that represent all of the

addresses that a particular name resolves to. It will also throw an UnknownHostException if it can‘t resolve the name to at

least one address. The following example prints the addresses and names of the local machine and two well- known

Internet web sites:

Instance Methods The InetAddress class also has several other methods. Here are some of the most commonly used.

Method Description boolean equals(Object other) Returns true if this object has the same Internet address as other. byte[]

getAddress() Returns a byte array that represents the object‘s Internet address in network byte order.

https://secure.urkund.com/view/158826330-304149-193235#/sources 64/139

Internet addresses are looked up in a series of hierarchically cached servers. That means that your local computer might

know a particular name-to-IP-address mapping automatically, such as for itself and nearby servers. For other names, it may

ask a local DNS server for IP address information. If that server doesn‘t have a particular address, it can go to a remote site

and ask for it. This can continue all the way up to the root server, called InterNIC (internic.net). This process might take a

long time, so it is wise to structure your code so that you cache IP address information locally rather than look it up

repeatedly. 13.3.2 TCP/IP Client Sockets TCP/IP sockets are used to implement reliable, bidirectional, persistent, point-to-

point, stream- based connections between hosts on the Internet. A socket can be used to connect Java‘s I/O system to

other programs that may reside either on the local machine or on any other machine on the Internet. There are two kinds

of TCP sockets in Java. One is for servers, and the other is for clients. The ServerSocket class is designed to be a ―listener,‖
which waits for clients to connect before doing anything. The Socket class is designed to connect to server sockets and

initiate protocol exchanges. The creation of a Socket object implicitly establishes a connection between the client and

server. There are no methods or constructors that explicitly expose the details of establishing that connection. Here are two

constructors used to create client sockets: Socket(String hostName, int port) Creates a socket connecting the localhost to

the named host and port; can throw an UnknownHostException or an IOException.

String getHostAddress() Returns a string that represents the host address associated with the InetAddress object. String

getHostName() Returns a string that represents the host name associated with the InetAddress object. boolean

isMulticastAddress() Returns true if this Internet address is a multicast address. Otherwise, it returns false. String toString()

Returns a string that lists the host name and the IP address for convenience.

Socket(InetAddress ipAddress, int port) Creates a socket using a preexisting InetAddress object and a port; can throw an

IOException. A socket can be examined at any time for the address and port information associated with it, by use of the

following methods: InetAddress getInetAddress() Returns the InetAddress associated with the Socket object. int getPort()

Returns the

remote port to which this Socket object is connected. int getLocalPort() Returns the local port to which this Socket object

is connected.

Once the Socket object has been created, it can also be examined to gain access to the input and output streams

associated with it. Each of these methods can throw an IOException if the sockets have been invalidated by a loss of

connection on the Net. These streams are used exactly like the I/O streams to send and receive data. InputStream

getInputStream() Returns the InputStream associated with the invoking socket. OutputStream getOutputStream() Returns

the OutputStream associated with the invoking socket. The very simple example that follows opens a connection to a

―whois‖ port on the InterNIC server, sends the command-line argument down the socket, and then prints the data that is

returned. InterNIC will try to look up the argument as a registered Internet domain name, then send back the IP address and

contact information for that site. PROGRAM //Demonstrate Sockets.

import

java.net.*;

import java.io.*; class Whois { public static void main(String args[])

throws

Exception {

int c; Socket s = new Socket("

internic.net", 43);

InputStream in = s.getInputStream(); OutputStream out = s.getOutputStream(); String str = (args.length == 0 ?

"osborne.com" : args[0]) + "\n"; byte buf[] = str.getBytes(); out.write(buf); while ((c = in.read()) != -1) { System.out.print((char)

c); } s.close(); } } OUTPUT Whois Server Version 1.3 Domain names in the .com, .net, and .org domains can now be

registered with many different competing registrars. Go to http://www.internic.net for detailed information. Domain Name:

OSBORNE.COM Registrar: NETWORK SOLUTIONS, INC. Whois Server: whois.networksolutions.com Referral URL:

http://www.networksolutions.com Name Server: NS1.EPPG.COM Name Server: NS2.EPPG.COM Updated Date: 16-jan-

2002 13.3.3

TCP/IP Server Sockets The ServerSocket class is used to create servers that listen for either local or remote client programs

to connect to them on published ports. ServerSockets are quite different from normal Sockets. When a ServerSocket is

created, it will register itself with the system as having an interest in client connections. The constructors for ServerSocket

reflect the port number that you wish to accept connections on and, optionally, how long you want the queue for said port

to be. The queue length tells the system how many client connections it can leave pending before it should simply refuse

connections. The default is 50. The constructors might throw an IOException under adverse conditions. Here are the

constructors: ServerSocket(int port) Creates server socket on the specified port with a queue length of 50.

https://secure.urkund.com/view/158826330-304149-193235#/sources 65/139

ServerSocket(int port, int maxQueue) Creates a server socket on the specified port with a maximum queue length of

maxQueue. ServerSocket(int port, int maxQueue,InetAddress localAddress) Creates a server socket on the specified port

with a maximum queue length of maxQueue. On a multihomed host, localAddress specifies the IP address to which this

socket binds. ServerSocket has a method called accept(), which is a blocking call that will wait for a client to initiate

communications, and then return with a normal Socket that is then used for communication with the client PROGRAM // to

send a number from

the server to the client

import java.net.*;

import java.io.*; class ServerDemo { public static void main(String args[])

throws

Exception {

try { int port = Integer.parseInt(args[0]);

ServerSocket ss = new ServerSocket(

port); Socket s = ss.accept(); OutputStream os = s.getOutputStream(); DataOutputStream dos = new DataOutputStream(os);

dos.writeInt(2742809); s.close(); } catch (Exception e) { System.out.println(―Exception :‖ + e); } } }. //program to receive a

number from the server

import

java.net.*;

import java.io.*; class ClientDemo { public static void main(String args[])

throws

Exception {

try {

String server = args[0]; int port = Integer.parseInt(args[1]); Socket s = new Socket(server, port); InputStream is =

s.getInputStream(); DataInputStream dis = new DataInputStream(is); int i = dis.readInt(); System.out.println(i); s.close(); }

catch (Exception e) { System.out.println(―Exception :‖ + e); } } } OUTPUT • Compile both the ServerDemo.java and

ClientDemo.java programs • Start the server program in a command shell by entering java ServerDemo 4321 • Start the

client program in another command shell by entering java ClientDemo 127.0.0.1 4321 • 127.0.0.1 is the IP address of the

local machine. The output phone number will be displayed. 2742809 13.3.4 URL and URLConnection classes

URL stands for Uniform Resource Locator and represents a resource on the World Wide Web, such as a Web page or FTP

directory.

A URL can be broken down into parts, as follows: protocol://host:port/path?query#ref Examples of protocols include HTTP,

HTTPS, FTP, and File. The path is also referred to as the filename, and the host is also called the authority. The following is a

URL to a Web page whose protocol is HTTP: http://www.amrood.com/index.htm?language=en#j2se

Java‘s URL class has several constructors, and each can throw aMalformedURLException. One commonly used form

specifies the URL with a string that is identical to the one that is displayed in a browser: URL(String urlSpecifier) The next two

forms of the constructor allow to break up the URL into its component parts: URL(String protocolName, String hostName,

intport, String path) URL(String protocolName, String hostName, String path)

Another frequently used constructor that allows using an existing URL as a reference context and then creating a new URL

from that context. URL(URL urlObj, String urlSpecifier) In the following example, we create a URL to Osborne‘s download

page and

then examine its properties:

The port is –1; this means that one was not explicitly set. Create a URL object, to retrieve the data associated with it. To

access the actual bits or content information of a URL, create a URLConnection object from it, using its openConnection()

method. The general forms are: URL url =new URL(http://java.sun.com/index.html); URLConnection urlConnection =

url.openConnection(); In the following example, a URLConnection using the openConnection() method of a URL object is

created and then it is used to examine the document‘s properties and content:

0

13.3.5

Datagrams TCP/IP-style networking provides a serialized, predictable, reliable stream of packet data. TCP includes many

complicated algorithms for dealing with congestion control on crowded networks, as well as pessimistic expectations

about packet loss. This leads to a somewhat inefficient way to transport data. Datagrams provide

an alternative. Datagrams are bundles of information passed between machines. Once the datagram has been released to

its intended target, there is no assurance that it will arrive. Likewise, when the datagram is received, there is no assurance

that it hasn‘t been damaged in transit or that whoever sent it is still there to receive a response.

TCP is like a Telephone conversation while Datagrams approach is like the postal system. While TCP is preferable in some

situations, Datagrams are preferable in the kinds of applications in which raw speed is more important than getting every bit

right. For example, Datagrams are preferable for sending real-time audio and video data.

Java implements datagrams on top of the UDP protocol by using two classes:

https://secure.urkund.com/view/158826330-304149-193235#/sources 66/139

The

DatagramPacket object is the data container, while the DatagramSocket is the mechanism used to send or receive the

DatagramPackets. DatagramPacket DatagramPacket defines several constructors. Four are described here.

The first constructor

specifies a buffer that will receive data, and the size of a packet. It is used for receiving data over a DatagramSocket.

The second form

allows you to specify an offset into the buffer at which data will be stored.

The third form

specifies a target address and port, which are used by a DatagramSocket to determine where the data in the packet will be

sent.

The fourth form

transmits packets beginning at the specified offset into the data. Think of the first two forms as building an ―in box,‖ and

the second two forms as stuffing and addressing an envelope.

Here are the four constructors: DatagramPacket(byte data[], int size) DatagramPacket(byte data[], int offset, int size)

DatagramPacket(byte data[], int size, InetAddress ip Address, int port)

DatagramPacket(byte data[], int offset, int size, InetAddress ipAddress, int port)

There are several methods for accessing the internal state of a DatagramPacket. They give complete access to the

destination

address and port number of a packet, as well as the raw data and its length.

Here are some of the most commonly used: InetAddress getAddress() Returns the destination InetAddress, typically used

for sending. int getPort() Returns the port number.

byte[] getData() Returns the byte array of data contained in the datagram. Mostly used to retrieve data from the datagram

after it has been received. int getLength() Returns the length of the valid data contained in the byte array that would be

returned from the getData() method. This typically does not equal the length of the whole byte array.

Datagram Server and Client The following example implements a very simple networked communications client and server.

Messages are typed into the window at the server and written across the network to the client side, where they are

displayed.

13.4

Unit Summary

This Unit explored the java.net package, which provides support for networking. It also walks around the communication

between two devices

on

the internet using the various important classes such as InetAddress class, TCP/IP Client, Server sockets, Datagrams, URL

and URLConnection. 13.5

Key Terms

The InetAddress class is used to encapsulate both the

numerical IP address and the domain name for that address.

TCP/IP sockets are used to implement reliable, bidirectional, persistent, point-to- point, stream- based connections

between hosts on the Internet.

URL stands for Uniform Resource Locator and represents a resource on the World Wide Web, such as a Web page or FTP

directory. 13.6

Check Your Progress 1.

What is a socket? How is it used in networking? 2. Write note on ServerSocket class. 3. Elaborate on InetAddress. 4. Write a

simple program to demonstrate the Client / Server concept using TCP/IP sockets. 5. Enumerate the Datagram methods

used for communication.

Unit 14: Applet 14.0 Introduction 14.1 Unit Objective 14.2 The Applet Class 14.3 Applet Architecture 14.4 The HTML APPLET

tag 14.4.1 Passing Parameters to Applets 14.5 Unit Summary 14.6 Key Terms 14.7 Check Your Progress 14.0

Introduction

https://secure.urkund.com/view/158826330-304149-193235#/sources 67/139

100% MATCHING BLOCK 169/221
139E1120, 151E1120,155E1140-Advanced Java Prog ...

(D165246352)

An applet is a Java program that runs in a Web browser. An applet can be a fully functional Java application because it has

the entire Java API at its disposal. There are some important differences between an applet and a standalone Java

application, including the following: • An applet is a Java class that extends the java.applet.Applet class. • A main() method

is not invoked on an applet, and an applet class will not define main(). • Applets are designed to be embedded within an

HTML page. • When a user views an HTML page that contains an applet, the code for the applet is downloaded to the

user's machine. • A JVM is required to view an applet. The JVM can be either a plug-in of the Web browser or a separate

runtime environment. • The JVM on the user's machine creates an instance of the applet class and invokes various

methods during the applet's lifetime. • Applets have strict security rules that are enforced by the Web browser. The

security of an applet is often referred to as sandbox security, comparing the applet to a child playing in a sandbox with

various rules that must be followed. • Other classes that the applet needs can be downloaded in a single Java Archive

(JAR) file. 14.1

Unit Objective

This lesson introduces the new concept ―Applet‖ and discusses the necessary classes and methods for applet

programming. It also discusses the HTML APPLET tag and the usage of the tag in java programming.

14.2

The Applet Class The Applet class defines the methods shown in Table 14.1.

Applet provides all necessary support for applet execution, such as starting and stopping. It also provides methods that load

and display images, and methods that load and play audio clips. Applet

extends the AWT class Panel. In turn, Panel extends Container, which extends Component. These classes provide support

for Java‘s window-based, graphical interface. Thus, Applet provides all of the necessary support for window- based

activities. Method Description void destroy() Called by the browser just before an applet is terminated. Your applet will

override this method if it needs to perform any cleanup prior to its destruction. AccessibleContext getAccessibleContext()

Returns the accessibilty contextfor the invoking object. AppletContext getAppletContext() Returns the context associated

with the applet. String getAppletInfo() Returns a string that describes the applet.

void init() Called when an applet begins execution. It is the first method called for any applet. boolean isActive() Returns

true if the applet has been started. It returns false if the applet has been stopped. static final AudioClip newAudioClip(URL

url) Returns an AudioClip object that encapsulates the audio clip found at the location specified by url. This method is

similar to getAudioClip() except that it is static and can be executed without the need for an Applet object. void play(URL

url) If an audio clip is found at the location specified by url, the clip is played. void play(URL url, String clipName) If an audio

clip is found at the location specified by url with the name specified by clipName, the clip is played. void resize(Dimension

dim) Resizes the applet according to the dimensions specified by dim. Dimension is a class stored inside java.awt. It contains

two integer fields: width and height. void resize(int width, int height) Resizes the applet according to the dimensions

specified by width and height. final void Makes stubObj the stub for the applet. This method is used by

setStub(AppletStub stubObj)

the run-time system and is not usually called by your applet. A stub is a small piece of code that provides the linkage

between your applet and the browser. void showStatus(String str) Displays str in the status window of the browser or applet

viewer. If the browser does not support a status window, then no action takes place. void start() Called by the browser

when an applet should start (or resume) execution. It is automatically called after init() when an applet first begins. void stop(

) Called by the browser to suspend execution of the applet. Once stopped, an applet is restarted when the browser calls

start().

Table 14.1. The Methods Defined by Applet 14.3

Applet Architecture An applet is a window-based program. Applets are event driven.

100% MATCHING BLOCK 158/221

All but the most trivial applets override a set of methods that provides the basic mechanism by which the browser or

applet viewer interfaces to the applet and controls its execution. Four of these methods—init(), start(), stop(), and

destroy()—are defined by Applet. Another, paint(), is defined by the AWT Component class.

100% MATCHING BLOCK 159/221

Applet Initialization and Termination When an applet begins, the AWT calls the following methods, in this sequence: 1. init(

) 2. start() 3. paint() 4.

https://secure.urkund.com/view/158826330-304149-193235#/sources 68/139

repaint()

84% MATCHING BLOCK 160/221

When an applet is terminated, the following sequence of method calls takes place: 1. stop() 2. destroy() init(): The init()

method is the first method to be called.

The variables are initialized in this method.

100% MATCHING BLOCK 161/221

This method is called only once during the run time of

the

100% MATCHING BLOCK 162/221

applet. start() The start() method is called after init(). It is also called to restart an applet after it has been stopped.

Whereas init() is called once—the first time an applet is loaded—start() is called each time an applet‘s HTML document is

displayed onscreen. So, if a user leaves a web page and comes back, the applet resumes execution at start(). paint() The

paint() method is called each time

the

100% MATCHING BLOCK 163/221

applet‘s output must be redrawn. This situation can occur for several reasons. For example, the window in which the

applet is running may be overwritten by another window and then uncovered. Or the applet

begins execution.

93% MATCHING BLOCK 164/221

The paint() method has one parameter of type Graphics. This parameter will contain the graphics context, which

describes the graphics environment in which the applet is running. This context is used whenever output to the applet is

required. repaint() The repaint() method is

100% MATCHING BLOCK 165/221

defined by the AWT. It causes the AWT run-time system to execute a call to

the

100% MATCHING BLOCK 166/221

applet‘s update() method, which, in its default implementation, calls paint().

Thus, for another part of he applet to output to its window, simply store the output and then call repaint(). The AWT will

then execute a call to paint(), which can display the stored information.

95% MATCHING BLOCK 167/221

stop() The stop() method is called when a web browser leaves the HTML document containing the applet, and when it

goes to another page. For example, When stop() is called, the applet is probably running.

https://secure.urkund.com/view/158826330-304149-193235#/sources 69/139

The stop() is used

86% MATCHING BLOCK 168/221

to suspend threads that don‘t need to run when the applet is not visible. It can be restarted, when start() is called if the

user returns to the page. destroy() The destroy() method is called when the environment determines that the applet

needs to be removed completely from memory. At this point, any resources the applet may be using

should be freed up. The stop() method is always called before destroy(). A Simple Banner Applet To demonstrate

the

applet and repaint() method, a simple banner applet is developed. This applet scrolls a message, from right to left, across

the applet‘s window. Since the scrolling of the message is a repetitive task, it is performed by a separate thread, created by

the applet when it is initialized. The banner applet is shown here:

97% MATCHING BLOCK 170/221

PROGRAM /* A simple banner applet. This applet creates a thread that scrolls the message contained in msg right to left

across the applet's window. */ import java.awt.*; import java.applet.*; /* >applet code="SimpleBanner" width=300

height=50< >/applet< */ public class SimpleBanner extends Applet implements Runnable { String msg = " A Simple

Moving Banner."; Thread t = null; int state; boolean stopFlag; // Set colors and initialize thread. public void init() {

setBackground(Color.cyan); setForeground(Color.red); } // Start thread public void start() { t = new Thread(this); stopFlag =

false; t.start(); } // Entry point for the thread that runs the banner. public void run() { char ch; // Display banner for(; ;) { try

{ repaint(); Thread.sleep(250); ch = msg.charAt(0); msg = msg.substring(1, msg.length()); msg += ch; if(stopFlag) break; }

catch(InterruptedException e) {} } } / Pause the banner. public void stop() { stopFlag = true; t = null; } // Display the banner.

public void paint(Graphics g) { g.drawString(msg, 50, 30); } }

OUTPUT 14.4 The HTML

APPLET tag The APPLET tag is used to start an applet from both an HTML document

and from an applet viewer. An applet viewer will execute each APPLET tag that it finds in a separate window, while web

browsers like Netscape Navigator, Internet Explorer, and HotJava will allow many applets on a single page.

100% MATCHING BLOCK 171/221

The syntax for the standard APPLET tag is shown here. Bracketed items are optional. [

97% MATCHING BLOCK 172/221

HTML Displayed in the absence of Java] >/APPLET< CODEBASE CODEBASE is an optional attribute that specifies the

base URL of the applet code, which is the directory that will be searched for the applet‘s executable class file (specified by

the CODE tag). The HTML document‘s URL directory is used as the CODEBASE if this attribute is not specified. The

CODEBASE does not have to be on the host from which the HTML document was read. CODE CODE is a required

attribute that gives the name of the file containing your applet‘s compiled .class file. This file is relative to the code base

URL of the applet, which is the directory that the HTML file was in or the directory indicated by CODEBASE if set. ALT The

ALT tag is an optional attribute used to specify a short text message that should be displayed if the browser understands

the APPLET tag but can‘t currently run Java applets.

https://secure.urkund.com/view/158826330-304149-193235#/sources 70/139

98% MATCHING BLOCK 173/221

applets. NAME NAME is an optional attribute used to specify a name for the applet instance. Applets must be named in

order for other applets on the same page to find them by name and communicate with them. To obtain an applet by

name, use getApplet(), which is defined by the AppletContext interface. WIDTH AND HEIGHT WIDTH and HEIGHT are

required attributes that give the size (in pixels) of the applet display area. ALIGN ALIGN is an optional attribute that

specifies the alignment of the applet. This attribute is treated the same as the HTML IMG tag with these possible values:

LEFT, RIGHT, TOP, BOTTOM, MIDDLE, BASELINE, TEXTTOP, ABSMIDDLE, and ABSBOTTOM. VSPACE AND HSPACE These

attributes are optional. VSPACE specifies the space, in pixels, above and below the applet. HSPACE specifies the space, in

pixels, on each side of the applet. They‘re treated the same as the IMG tag‘s VSPACE and HSPACE attributes. PARAM

NAME AND VALUE The PARAM tag allows you to specify applet specific arguments in an HTML page. Applets access their

attributes with the getParameter() method. HANDLING OLDER BROWSERS Some very old web browsers can‘t execute

applets and don‘t recognize the APPLET tag. Although these browsers are now nearly extinct (having been replaced by

Java-compatible ones), you may need to deal with them occasionally. The best way to design your HTML page to deal

with such browsers is to include HTML text and markup within your >applet<>/applet< tags. If the applet tags

are not recognized by your browser, you will see the alternate markup. If Java is available, it will consume all of the

markup between the >applet<>/applet< tags and disregard the alternate markup. Here‘s the HTML to start an

applet called SampleApplet in Java and to display a message in older browsers: 14.4.1

92% MATCHING BLOCK 174/221

Passing Parameters to Applets The APPLET tag in HTML allows to pass parameters to

the

93% MATCHING BLOCK 175/221

applet. To retrieve a parameter, use the getParameter() method. It returns the value of the specified parameter in the form

of a String object. Thus, for numeric and Boolean values, convert their string representations into their internal formats.

Here is an example that demonstrates passing parameters:

14.5

Unit Summary

This Lesson enlightens the readers about the Applet architecture and the way an applet is executed. It also describes the

HTML APPLET tag with various options and their purposes. Thus this lesson will be useful in developing a simple applet

program in Java. 14.6 Check Your Progress 1. Distinguish between applets and applications. 2. Write

a

note on Applet architecture. 3. Write a program using applets to display a simple banner. 4. Explain the HTML APPLET tag. 5.

Explain the parameter passing in the applet through an example.

Unit 15: Event Handling 15.0 Introduction 15.1 Unit Objective 15.2 The Delegation Event Model 15.3 Event Classes 15.4 Event

Listener Interfaces 15.5 Unit Summary 15.6 Key Terms 15.7 Check Your Progress 15.0

Introduction This Unit examines an important aspect of Java that relates to applets: events.

96% MATCHING BLOCK 176/221

The event handling is at the core of successful applet programming. Most events to which

the

100% MATCHING BLOCK 177/221

applet will respond are generated by the user. These events are passed to

the

https://secure.urkund.com/view/158826330-304149-193235#/sources 71/139

92% MATCHING BLOCK 178/221

applet in a variety of ways, with the specific method depending upon the actual event. There are several types of events.

The most commonly handled events are those generated by the mouse, the keyboard, and various controls, such as a

push button. Events are supported by the java.awt.event package. 15.1

Unit Objective

This Unit concentrates on the Event handling mechanism used in Java for easy development of the • GUI applications

through • Delegate Event model • Event classes • Event Listener Interfaces 15.2

100% MATCHING BLOCK 179/221

The Delegation Event Model The modern approach to handling events is based on the delegation event model, which

defines standard and consistent mechanisms to generate and process events. Its

concept is

100% MATCHING BLOCK 180/221

quite simple: a source generates an event and sends it to one or more listeners. In

this scheme,

96% MATCHING BLOCK 181/221

the listener simply waits until it receives an event. Once received, the listener processes the event and then returns. The

advantage of this design is that the application logic that processes events is cleanly separated from the user interface

logic that generates those events. A user interface element is able to ―delegate‖ the processing of an event to a separate

piece of code. In the delegation event model, listeners must register with a source in order to receive an event

notification. This provides an important benefit: notifications are sent only to listeners that want to receive them.

100% MATCHING BLOCK 182/221

Events In the delegation model, an event is an object that describes a state change in a source. It can be generated as a

consequence of a person interacting with the elements in a graphical user interface. Some of the activities that cause

events to be generated are pressing a button, entering a character via the keyboard, selecting an item in a list, and clicking

the mouse. Many other user operations could also be cited as examples. Events may also occur that are not directly

caused by interactions with a user interface. For example, an event may be generated when a timer expires, a counter

exceeds a value, a software or hardware failure occurs, or an operation is completed.

https://secure.urkund.com/view/158826330-304149-193235#/sources 72/139

98% MATCHING BLOCK 183/221

Event Sources A source is an object that generates an event. This occurs when the internal state of that object changes in

some way. Sources may generate more than one type of event. A source must register listeners in order for the listeners

to receive notifications about a specific type of event. Each type of event has its own registration method. Here is the

general form: public void addTypeListener(TypeListener el) Here, Type is the name of the event and el is a reference to the

event listener. For example, the method that registers a keyboard event listener is called addKeyListener(). The method

that registers a mouse motion listener is called addMouseMotionListener(). When an event occurs, all registered listeners

are notified and receive a copy of the event object. This is known as multicasting the event. In all cases, notifications are

sent only to listeners that register to receive them. Some sources may allow only one listener to register. The general form

of such a method is this: public void addTypeListener(TypeListener el) throws java.util.TooManyListenersException Here,

Type is the name of the event and el is a reference to the event listener. When such an event occurs, the registered

listener is notified. This is known as unicasting the event. A source must also provide a method that allows a listener to

unregister an interest in a specific type of event. The general form of such a method is this: public void

removeTypeListener(TypeListener el) Here, Type is the name of the event and el is a reference to the event listener. For

example, to remove a keyboard listener, you would call removeKeyListener(). The methods that add or remove listeners

are provided by the source that generates events. For example, the Component class provides methods to add and

remove keyboard and mouse event listeners. Event

100% MATCHING BLOCK 184/221

Event Listeners A listener is an object that is notified when an event occurs. It has two major requirements. First, it must

have been registered with one or more sources to receive notifications about specific types of events. Second, it must

implement methods to receive and process these notifications. The methods that receive and process events are defined

in a set of interfaces found in java.awt.event. For example, the MouseMotionListener interface defines two methods to

receive notifications when the mouse is dragged or moved. Any object may receive and process one or both of these

events if it provides an implementation of this interface. 15.3

Event Classes

100% MATCHING BLOCK 185/221

At the root of the Java event class hierarchy is EventObject, which is in java.util. It is the superclass for all events.

It has one constructor as

100% MATCHING BLOCK 186/221

shown here: EventObject(Object src) Here, src is the object that generates this event. EventObject contains two methods:

getSource() and toString(). The getSource() method returns the source of the event. Its general form is shown here:

Object getSource()

The

100% MATCHING BLOCK 187/221

toString() returns the string equivalent of the event. The class AWTEvent, defined within the java.awt package, is a

subclass

of EventObject.

100% MATCHING BLOCK 188/221

It is the superclass (either directly or indirectly) of all AWT- based events used by the delegation event model. Its getID()

method can be used to determine the type of the event. The signature of this method is shown here: int getID()

https://secure.urkund.com/view/158826330-304149-193235#/sources 73/139

100% MATCHING BLOCK 189/221

The package java.awt.event defines several types of events that are generated by various user interface elements. Table

15-1 enumerates the most important of these event classes and provides a brief description of when they are generated.

Event Class Description ActionEvent Generated when a button is pressed, a list item isdouble-clicked, or a menu item is

selected. AdjustmentEvent Generated when a scroll bar is manipulated. ComponentEvent Generated when a component is

hidden, moved, resized,or becomes visible. ContainerEvent Generated when a component is added to or removed from a

container. FocusEvent Generated when a component gains or loses keyboard focus. InputEvent Abstract super class for all

component input event classes. ItemEvent Generated when a check box or list item is clicked; also occurs when a choice

selection is made or a checkable menu item is selected or des KeyEvent Generated when input is received from the

keyboard. MouseEvent Generated when the mouse is dragged, moved, clicked, pressed, or released; also generated when

the mouse enters or exits a component. MouseWheelEvent Generated when the mouse wheel is moved. TextEvent

Generated when the value of a text area or text field is changed. WindowEvent Generated when a window is activated,

closed, deactivated, deiconified, iconified, opened, or quit.

Table 15.1. Main Event Classes in java.awt.event 15.4

Event Listener Interfaces Listeners are created by implementing one or more of the interfaces defined by the java.awt.event

package. When an event occurs, the event source invokes the appropriate method defined by the listener and provides an

event object as its argument. Table 15-2, lists commonly used listener interfaces and provides a brief description of the

methods that they define. Table 15.2 Commonly Used Event Listener Interfaces Interface Description ActionListener Defines

one method to receive action events. AdjustmentListener Defines one method to receive adjustment events.

ComponentListener Defines four methods to recognize when a component is hidden, moved, resized, or shown.

ContainerListener Defines two methods to recognize when a component is added to or removed from a container.

FocusListener Defines two methods to recognize when a component gains or loses keyboard focus. ItemListener Defines

one method to recognize when the state of an item changes. KeyListener Defines three methods to recognize when a key

is pressed, released, or typed. MouseListener Defines five methods to recognize when the mouse is clicked, enters a

component, exits a component, is pressed, or is released.

80% MATCHING BLOCK 190/221

MouseMotionListener Defines two methods to recognize when the mouse is dragged or moved.

MouseWheelListener Defines one method to recognize when the mouse wheel is moved. TextListener Defines one method

to recognize when a text value changes. WindowFocusListener Defines two methods to recognize when a window gains or

loses input focus. WindowListener Defines seven methods to recognize when a window is activated, closed, deactivated,

deiconified, iconified, opened, or quit. Example The following program demonstrates keyboard input. It echoes keystrokes

to the applet window and shows the pressed/released status of each key in the status window. PROGRAM //

95% MATCHING BLOCK 191/221

Demonstrate the key event handlers. import java.awt.*; import java.awt.event.*; import java.applet.*; /*>applet

code="SimpleKey" width=300 height=100< >/applet< */ public class SimpleKey extends Applet implements

KeyListener { String msg = ""; int X = 10, Y = 20; // output coordinates public void init() { addKeyListener(this);

requestFocus(); // request input focus } public void keyPressed(KeyEvent ke) { showStatus("Key Down"); } public void

keyReleased(KeyEvent ke) { showStatus("Key Up"); } public void keyTyped(KeyEvent ke) { msg += ke.getKeyChar(); repaint();

} // Display keystrokes. public void paint(Graphics g) { g.drawString(msg, X, Y); } }

OUTPUT

15.5 Unit Summary This Unit clarifies the event sources, event listeners and various methods that can be used in the Event

handling mechanism for easy development of the GUI applications. It also describes the Delegate Event model, Event

classes and the Event Listener Interfaces. 15.6

Key Terms

https://secure.urkund.com/view/158826330-304149-193235#/sources 74/139

100% MATCHING BLOCK 192/221

Events: In the delegation model, an event is an object that describes a state change in a source. It can be generated as a

consequence of a person interacting with the elements in a graphical user interface.

100% MATCHING BLOCK 193/221

Event Sources: A source is an object that generates an event. This occurs when the internal state of that object changes in

some way. Sources may generate more than one type of event 15.7

Check Your Progress 1.

Briefly explain the Delegation Event model. 2. List the various methods defined in the Applet class. 3. Give the description of

various methods provided by Event Listener Interface. 4. Write a program that demonstrates the keyboard events using

applets.

Unit 16: Working with Graphics 16.0

Introduction 16.1 Unit Objective 16.2 Working with Graphics 16.3 Working with Color 16.4 Working with Fonts 16.5

Understanding Layout Manager 16.6. Unit Summary 16.7 Key Terms 16.8 Check Your Progress 16.0

Introduction The Abstract Window Toolkit (AWT) contains numerous classes and methods that allow you to create and

manage windows. The main purpose of the AWT is to support applet windows, but it can also be used to create

stand-alone windows that run in a GUI environment, such as Windows. 16.1

Unit Objective

The objective of this lesson is to introduce the Abstract Window Toolkit for better programming using the following classes:

• Line, Circle, Rectangle, Ellipse and Polygon classes • Color classes • Font classes • Layout manager 16.2

Working with Graphics The AWT supports a rich assortment of graphics methods. All graphics are drawn relative to a

window. This can be the main window of an applet, a child window of an applet, or a stand-alone application window. The

origin of each window is at the top-left corner and is 0,0. Coordinates are specified in pixels. All output to a window takes

place through a graphics context. A graphics context is encapsulated by the Graphics class and is obtained in two ways:

It is passed to an applet when one of its various methods, such as paint() or update(), is called. It is returned by the

getGraphics() method of

Component. The Graphics class defines a number of drawing functions. Each shape can be drawn edge-only or filled.

Objects are drawn and filled in the currently selected graphics color, which is black by default. When a graphics object is

drawn that exceeds the dimensions of the window, output is automatically clipped. Drawing

Lines Lines are drawn by means of the drawLine() method, shown here:

void drawLine(int startX, int startY, int endX, int endY) drawLine() displays a line in the current drawing color that begins at

startX,startY and ends at endX,endY.

The following applet draws several lines: PROGRAM // Draw lines

import java.awt.*;

import java.applet.*; /* >applet code="Lines" width=300 height=200< >/

applet< */ public class Lines extends

Applet { public void

paint(Graphics g) {

g.

drawLine(0, 0, 100, 100); g.drawLine(0, 100, 100, 0); g.

drawLine(40, 25, 250, 180); g.drawLine(75, 90, 400, 400); g.drawLine(20, 150, 400, 40); g.drawLine(5, 290, 80, 19); } }

OUTPUT Drawing Rectangles The drawRect() and fillRect() methods display an outlined and filled rectangle, respectively.

They are shown here: void drawRect(int top, int left, int width, int height)

32% MATCHING BLOCK 194/221

void fillRect(int top, int left, int width, int height) The upper-left corner of the rectangle is at top,left. The dimensions of the

rectangle are specified by width and height.

To draw a rounded rectangle, use drawRoundRect() or fillRoundRect(), both shown here:

void drawRoundRect(int top, int left, int width, int height, int xDiam, int yDiam) void fillRoundRect(int top, int left, int width,

int height, int xDiam, int

https://secure.urkund.com/view/158826330-304149-193235#/sources 75/139

yDiam) A rounded rectangle has rounded corners. The upper-left corner of the rectangle is at top,left. The dimensions of

the rectangle are specified by width and height. The diameter of the rounding arc along the X axis is specified by xDiam. The

diameter of the rounding arc along the Y axis is specified by yDiam. The following applet draws several rectangles:

Drawing Ellipses and Circles The drawOval() and fillOval() methods are used to draw oval. These methods are shown here:

void drawOval(int top, int left, int width, int height) void fillOval(int top, int left, int width, int height) The ellipse is drawn

within a bounding rectangle whose upper-left corner is specified by top, left and whose width and height are specified by

width and height. To draw a circle, specify a square as the bounding rectangle. The following program draws several

ellipses:

Drawing Arcs Arcs can be drawn with drawArc() and fillArc(), shown here:

void drawArc(int top, int left, int width, int height, int startAngle, int

sweepAngle)

void fillArc(int top, int left, int width, int height, int startAngle, int

sweepAngle) The

arc is bounded by the rectangle whose upper-left corner is specified by top, left and whose width and height are specified

by width and height. The arc is drawn from startAngle through the angular distance specified by sweepAngle. Angles are

specified in degrees. Zero degrees is on the horizontal, at the three o‘clock position. The arc is drawn counterclockwise if

sweepAngle is positive, and clockwise if sweepAngle is negative. Therefore, to draw an arc from twelve o‘clock to six

o‘clock, the start angle would be 90 and the sweep angle 180. The following applet draws several arcs:

Drawing Polygons It is possible to draw arbitrarily shaped figures using drawPolygon() and fillPolygon(), shown here: void

drawPolygon(int x[], int y[], int numPoints) void fillPolygon(int x[], int y[], int numPoints) The polygon‘s endpoints are

specified by the coordinate pairs contained within the x and y arrays. The number of points defined by x and y is specified by

numPoints. There are alternative forms of these methods in which the polygon is specified by a Polygon object. The

following applet draws an hourglass shape:

16.3

Working with Color Java supports color in a portable, device-independent fashion. The AWT color system allows to specify

any color we want. It then finds the best match for that color, given the limits of the display hardware currently executing

your program or applet. Color is encapsulated by the Color class. Color defines several constants (for example, Color.black)

to specify a number of common colors. We can also create our own colors, using one of the color constructors. The most

commonly used forms are shown here: Color(int red, int green, int blue) Color(int rgbValue) Color(float red, float green,

float blue) The first constructor takes three integers that specify the color as a mix of red, green, and blue. These values

must be between 0 and 255, as in this example: new Color(255, 100, 100); // light red.

The second color constructor takes a single integer that contains the mix of red, green, and blue packed into an integer.

The integer is organized with red in bits 16 to 23, green in bits 8 to 15, and blue in bits 0 to 7. Here is an example of this

constructor: int newRed = (0xff000000 | (0xc0 >> 16) | (0x00 >> 8) | 0x00); Color darkRed = new

Color(newRed); The final constructor, Color(float, float, float), takes three float values (between 0.0 and 1.0) that specify the

relative mix of red, green, and blue. Once the color is created, it can be used to set the foreground and/or background color

by using the setForeground() and setBackground() methods. Color Methods The Color class defines several methods that

help manipulate colors. They are examined here. Using Hue, Saturation, and Brightness The hue-saturation-brightness

(HSB) color model is an alternative to red-green-blue (RGB) for specifying particular colors. Figuratively, hue is a wheel of

color. The hue is specified with a number between 0.0 and 1.0 (the colors are approximately: red, orange, yellow, green,

blue, indigo, and violet). Saturation is another scale ranging from 0.0 to 1.0, representing light pastels to intense hues.

Brightness values also range from 0.0 to 1.0, where 1 is bright white and 0 is black. Color supplies two methods that are

used to convert between RGB and HSB. They are shown here: static int HSBtoRGB(float hue, float saturation, float

brightness) static float[] RGBtoHSB(int red, int green, int blue, float values[]) HSBtoRGB() returns a packed RGB value

compatible with the Color(int) constructor. RGBtoHSB() returns a float array of HSB values corresponding to RGB integers. If

values is not null, then this array is given the HSB values and returned. Otherwise, a new array is created and the HSB values

are returned in it. In either case, the array contains the hue at index 0, saturation at index 1, and brightness at index 2.

getRed(), getGreen(), getBlue() The red, green, and blue components of a color can be obtained independently using

getRed(), getGreen(), and getBlue(), shown here: int getRed() int getGreen()

int getBlue() Each of these methods returns the RGB color component found in the invoking Color object in the lower 8 bits

of an integer. To obtain a packed, RGB representation of a color, getRGB() method can be used as shown here: int getRGB()

Setting the Current Graphics Color By default, graphics objects are drawn in the current foreground color. This color can be

changed by calling the Graphics method setColor(): void setColor(Color newColor) Here, newColor specifies the new

drawing color. The current color can be obtained by calling getColor(), shown here: Color getColor() A Color

Demonstration Applet The following applet constructs several colors and draws various objects using these colors:

PROGRAM // Demonstrate color.

https://secure.urkund.com/view/158826330-304149-193235#/sources 76/139

71% MATCHING BLOCK 195/221

import java.awt.*; import java.applet.*; /* >applet code="ColorDemo" width=300 height=200< >/applet< */

public class ColorDemo extends Applet { // draw lines public void

paint(Graphics g) { Color c1 = new Color(255, 100, 100); Color c2 = new Color(100, 255, 100); Color c3 = new Color(100,

100, 255); g.setColor(c1); g.drawLine(0, 0, 100, 100); g.drawLine(0, 100, 100, 0);

g.setColor(c2); g.drawLine(40, 25, 250, 180); g.drawLine(75, 90, 400, 400);

g.setColor(c3); g.drawLine(20, 150, 400, 40); g.drawLine(5, 290, 80, 19); g.setColor(Color.red); g.drawOval(10, 10, 50, 50);

g.fillOval(70, 90, 140, 100); g.setColor(Color.blue); g.drawOval(190, 10, 90, 30); g.drawRect(10, 10, 60, 50);

g.setColor(Color.cyan); g.fillRect(100, 10, 60, 50);

g.drawRoundRect(190, 10, 60, 50, 15, 15); } } 16.4 Working with Fonts The AWT supports multiple type fonts. Fonts have

emerged from the domain of traditional typesetting to become an important part of computer-generated documents and

displays. The AWT provides flexibility by abstracting font-manipulation operations and allowing for dynamic selection of

fonts. The fonts have a family name, a logical font name, and a face name. The family name is the general name of the font,

such as Courier. The logical name specifies a category of font, such as Monospaced. The face name specifies a specific

font, such as Courier Italic. Fonts are encapsulated by the Font class. Several of the methods defined by Font are listed in

Table 16-1. Method Description static Font decode(String str) Returns a font given its name.

boolean equals(Object FontObj) Returns true if the invoking object contains the same font as that specified by FontObj.

Otherwise, it returns false.

String getFamily() Returns the name of

the font family to which the invoking font belongs. static Font getFont(String property) Returns the font associated with the

system property specified by property. null is returned if property does not exist.

static Font getFont(String property, Font defaultFont) Returns the font associated with the system property specified by

property. The font specified by defaultFont is returned if property does not exist. String getFontName() Returns the face

name of the invoking font. String getName() Returns the logical name of the invoking font. int getSize() Returns the size, in

points, of the invoking font. int getStyle() Returns the style values of the invoking font.

int hashCode() Returns the hash code associated with the invoking object. boolean isBold() Returns true if

the

font includes the BOLD style value. Otherwise, false is returned. boolean isItalic() Returns true if the font includes the ITALIC

style value. Otherwise, false is returned. boolean isPlain() Returns true if the font includes the PLAIN style value. Otherwise,

false is returned. String toString() Returns the string equivalent of the invoking font. Table 16-1 Some Methods Defined by

Font The Font class defines these variables: Variable Meaning String name Name of the font float pointSize Size of the font

in points int size Size of the font in points int style Font style Determining the Available Fonts When working with fonts, to

obtain the currently available font information, the getAvailableFontFamilyNames() method can be defined by the

GraphicsEnvironment class. It is shown here: String[] getAvailableFontFamilyNames() This method returns an array of

strings that contains the names of the available font families. In addition, the getAllFonts() method is defined by the

GraphicsEnvironment class. It is shown here:

Font[] getAllFonts() This method returns an array of Font objects for all of the available fonts. Since these methods are

members of GraphicsEnvironment, a GraphicsEnvironment reference has to be called. This is obtained by using the

getLocalGraphicsEnvironment() static method, which is defined by GraphicsEnvironment. It is shown here: static

GraphicsEnvironment getLocalGraphicsEnvironment() Here is an applet that shows how to obtain the names of the

available font families: PROGRAM // Display Fonts /* >

applet code="ShowFonts" width=550 height=60< >/

applet< */

import java.applet.*;

import java.awt.*; public class ShowFonts extends Applet {

public void paint(Graphics g) {

String

msg = ""; String FontList[]; GraphicsEnvironment ge = GraphicsEnvironment.getLocalGraphicsEnvironment(); FontList =

ge.getAvailableFontFamilyNames(); for(int i = 0; i > FontList.length; i++) msg += FontList[i] + " "; g.drawString(msg, 4, 16);

} } OUTPUT

https://secure.urkund.com/view/158826330-304149-193235#/sources 77/139

Creating and Selecting a Font: To select a new font, first construct a Font object that describes that font. One Font

constructor has this general form: Font(String fontName, int fontStyle, int pointSize) Here, fontName specifies the name of

the desired font. The name can be specified using either the logical or face name. All Java environments will support the

following fonts: Dialog, DialogInput, Sans Serif, Serif, Monospaced, and Symbol. The style of the font is specified by

fontStyle. It may consist of one or more of these three constants: Font.PLAIN, Font.BOLD, and Font.ITALIC. To combine

styles, OR them together. For example, Font.BOLD | Font.ITALIC specifies a bold, italics style. The size, in points, of the font

is specified by pointSize. To use a font that is created, select it using setFont(), which is defined by Component. It has this

general form: void setFont(Font fontObj) Here, fontObj is the object that contains the desired font. The following program

outputs a sample of each standard font. Each time when the mouse is clicked within its window, a new font is selected and

its name is displayed. PROGRAM // Show fonts.

import java.applet.*;

import java.awt.*; import java.awt.event.*; /* >

applet code="SampleFonts" width=200 height=100< >/applet< */ public class SampleFonts extends

Applet {

int next = 0; Font f; String msg;

public void init() { f = new Font("Dialog", Font.

PLAIN, 12); msg = "Dialog"; setFont(f); addMouseListener(new MyMouseAdapter(this)); } public void paint(Graphics g) {

g.drawString(msg, 4, 20); } } class MyMouseAdapter extends MouseAdapter { SampleFonts sampleFonts; public

MyMouseAdapter(SampleFonts sampleFonts) { this.sampleFonts = sampleFonts; } public void mousePressed(MouseEvent

me) { // Switch fonts with each mouse click. sampleFonts.next++; switch(sampleFonts.next) { case 0: sampleFonts.f =new

Font("Dialog", Font.PLAIN, 12); sampleFonts.msg = "Dialog"; break; case 1: sampleFonts.f =new Font("DialogInput",

Font.PLAIN, 12); sampleFonts.msg = "DialogInput"; break; case 2: sampleFonts.f =new Font("SansSerif", Font.PLAIN, 12);

sampleFonts.msg = "SansSerif"; break; case 3: sampleFonts.f = new Font("Serif", Font.PLAIN, 12); sampleFonts.msg = "Serif";

break; case 4: sampleFonts.f = new Font("Monospaced", Font.PLAIN, 12); sampleFonts.msg = "Monospaced"; break; }

if(sampleFonts.next == 4) sampleFonts.next = -1; sampleFonts.setFont(sampleFonts.f); sampleFonts.repaint(); } } OUTPUT

Obtaining Font Information To obtain information about the currently selected font, first get the current font by calling

getFont(). This method is defined by the Graphics class, as shown here: Font getFont() Once the currently selected font is

obtained, we can retrieve information about it using various methods defined by Font. For example, this applet displays the

name, family, size, and style of the currently selected font: PROGRAM // Display font info.

81% MATCHING BLOCK 196/221

import java.applet.*; import java.awt.*; /* >applet code="FontInfo" width=350 height=60< >/applet< */ public

class FontInfo extends Applet { public void

paint(Graphics g) {

Font f = g.getFont(); String fontName = f.getName(); String fontFamily = f.getFamily(); int fontSize = f.getSize(); int fontStyle

= f.getStyle(); String msg = "Family: " + fontName; msg += ", Font: " + fontFamily; msg += ", Size: " + fontSize + ", Style: ";

if((fontStyle & Font.BOLD) == Font.BOLD) msg += "Bold "; if((fontStyle & Font.ITALIC) == Font.ITALIC) msg += "Italic ";

if((fontStyle & Font.PLAIN) == Font.PLAIN) msg += "Plain "; g.drawString(msg, 4, 16); } } 16.5 Understanding Layout Manager

Controls are components that allow a user to interact with your application in various ways—for example, a commonly

used control is the push button. A layout manager automatically positions components within a container. Thus, the

appearance of a window is determined by a combination of the controls that it contains and the layout manager used to

position them. In addition to the controls, a frame window can also include a standard-style menu bar. Each

Container object has a layout manager associated with it. A

layout manager is an instance of any class that implements the LayoutManager interface.

The layout manager is set by the setLayout() method. If no call to setLayout() is made, then the default layout manager is

used. Whenever a container is resized (or sized for the first time), the layout manager is used to position each of the

components within it. The setLayout() method has the following general form: void setLayout(LayoutManager layoutObj)

Here, layoutObj is a reference to the desired layout manager. To disable the layout manager and to position the

components manually, pass null for layoutObj. In this case, there is a need to determine the shape and position of each

component manually, using the setBounds() method defined by Component. Each layout manager keeps track of a list of

components that are stored by their names. The layout manager is notified each time a component is added to a container.

https://secure.urkund.com/view/158826330-304149-193235#/sources 78/139

Layout Whenever the container needs to be resized, the manager is consulted via its minimumLayoutSize() and

preferredLayoutSize() methods. Each component that is being managed by a layout manager contains the

getPreferredSize() and getMinimumSize() methods. These return the preferred and minimum size required to display each

component. The layout manager will honor these requests if at all possible, while maintaining the integrity of the layout

policy.

FlowLayout FlowLayout is the default layout manager. FlowLayout implements a simple layout style, which is similar to how

words flow in a text editor. Components are laid out from the upper-left corner, left to right and top to bottom. When no

more components fit on a line, the next one appears on the next line. A small space is left between each component, above

and below, as well as left and right. Here are the constructors for FlowLayout: FlowLayout() FlowLayout(int how)

FlowLayout(int how, int horz, int vert) The first form creates the default layout, which centers components and leaves five

pixels of space between each component. The second form lets you specify how each line is aligned. Valid values for how

are as follows: FlowLayout.LEFT FlowLayout.CENTER FlowLayout.RIGHT

These values specify left, center, and right alignment, respectively.

The third form allows you to specify the horizontal and vertical space left between components in horz and vert,

respectively.

Here is the CheckboxDemo applet that uses left-aligned flow layout. PROGRAM // Use left-aligned flow layout.

63% MATCHING BLOCK 197/221

import java.awt.*; import java.awt.event.*; import java.applet.*; /* >applet code="FlowLayoutDemo" width=250

height=200< >/applet< */ public class FlowLayoutDemo extends Applet implements ItemListener { String msg = "";

Checkbox Win98, winNT, solaris, mac; public void init() { //

set left-aligned flow layout setLayout(new FlowLayout(FlowLayout.LEFT));

Win98 = new Checkbox("Windows 98/XP", null, true); winNT = new Checkbox("Windows NT/2000"); solaris = new

Checkbox("Solaris"); mac = new Checkbox("MacOS"); add(Win98); add(winNT); add(solaris); add(mac); //

register to receive item events

Win98.addItemListener(this); winNT.addItemListener(this); solaris.addItemListener(this); mac.addItemListener(this); } //

Repaint when status of a check box changes.

public void itemStateChanged(ItemEvent ie) { repaint(); } // Display current state of the check boxes.

public void paint(Graphics g) { msg = "Current state: "; g.drawString(msg, 6, 80); msg = " Windows 98/XP: " +

Win98.getState(); g.drawString(msg, 6, 100);

msg = " Windows NT/2000: " + winNT.getState(); g.drawString(msg, 6, 120); msg = " Solaris: " + solaris.getState();

g.drawString(msg, 6, 140); msg = " Mac: " + mac.getState(); g.drawString(msg, 6, 160); } }

OUTPUT

BorderLayout The BorderLayout class implements a common layout style for top-level windows. It has four narrow, fixed-

width components at the edges and one large area in the center. The four sides are referred to as north, south, east, and

west. The middle area is called the center. Here are the constructors defined by BorderLayout: BorderLayout()

BorderLayout(

int horz, int vert) The first form creates a default border layout. The second

allows you to specify the horizontal and vertical space left between components in horz and vert, respectively.

BorderLayout defines the following constants that specify the regions: BorderLayout.CENTER BorderLayout.SOUTH

BorderLayout.EAST BorderLayout.WEST BorderLayout.NORTH

When adding components, these constants can be used with the following form of add(), which is defined by Container:

void add(Component compObj, Object region); Here, compObj is the component to be added, and

the

region specifies where the component will be added. Here is an example of a BorderLayout with a component in each

layout area: PROGRAM //

Demonstrate BorderLayout.

68% MATCHING BLOCK 198/221

import java.awt.*; import java.applet.*; import java.util.*; /* >applet code="BorderLayoutDemo" width=400

height=200< >/applet< */ public class BorderLayoutDemo extends Applet { public void init() { setLayout(new

https://secure.urkund.com/view/158826330-304149-193235#/sources 79/139

BorderLayout()); add(new Button("This is across the top."), BorderLayout.NORTH); add(new Label("The footer message

might go here."), BorderLayout.SOUTH); add(new Button("Right"), BorderLayout.EAST); add(new Button("Left"),

BorderLayout.WEST); String msg = "The reasonable man adapts " + "himself to the world;\n" + "the unreasonable one

persists in " + "trying to adapt the world to himself.\n" + "Therefore all progress depends " + "on the unreasonable man.\n\n"

+ " - George Bernard Shaw\n\n"; add(new TextArea(msg), BorderLayout.CENTER); } }

OUTPUT Using Insets Sometimes, there is a need to leave a small amount of space between the container that holds the

components and the window that contains it. To do this, override the getInsets() method that is defined by Container. This

function returns an Insets object that contains the top, bottom, left, and right inset to be used when the container is

displayed. These values are used by the layout manager to inset the components when it lays out the window. The

constructor for Insets is shown here: Insets(int top, int left, int bottom, int right) The values passed in top, left, bottom, and

right specify the amount of space between the container and its enclosing window. The getInsets() method has this general

form: Insets getInsets() When overriding one of these methods, a new Insets object that contains the desired inset spacing

must be returned. Here is the preceding BorderLayout example modified so that it insets its components ten pixels from

each border. The background color has been set to cyan to help make the insets more visible.

GridLayout GridLayout lays out components in a two-dimensional grid.

The constructors supported by GridLayout are shown here: GridLayout()

GridLayout(int numRows, int numColumns) GridLayout(int numRows, int numColumns, int horz, int vert) The first form

creates a single-column grid layout. The second form creates a grid layout with the specified number of rows and columns.

The third form allows to specify the horizontal and vertical space left between components in horz and vert, respectively.

Either numRows or numColumns can be zero. Specifying numRows as zero allows for unlimited-length columns.

Specifying numColumns as zero allows for unlimited- length rows.

Here is a sample program that creates a 4×4 grid and fills it in with 15 buttons, each labeled with its index:

CardLayout: The CardLayout class is unique among the other layout managers in that it stores several different layouts.

Each layout can be thought of as being on a separate index card in a deck that can be shuffled so that any card is on top at

a given time. This can be useful for user interfaces with optional components that can be dynamically enabled and disabled

upon user input. Different layouts can be prepared and have them hidden, ready to be activated when needed. CardLayout

provides these two constructors: CardLayout() CardLayout(int horz, int vert) The first form creates a default card layout.

The second form allows you to specify the horizontal and vertical space left between components in horz and vert,

respectively.

Use of a card layout requires a bit more work than the other layouts. The cards are typically held in an object of type Panel.

This panel must have CardLayout selected as its layout manager. The cards that form the deck are also typically objects of

type Panel. Thus, create a panel that contains the deck and a panel for each card in the deck. Next, add to the appropriate

panel the components that form each card. Then add these panels to the panel for which CardLayout is the layout

manager. Finally, add this panel to the main applet panel. Once these steps are complete, provide some way for the user to

select between cards. One common approach is to include one push button for each card in the deck. When card panels

are added to a panel, they are usually given a name. Thus, most of the time, add() is used when adding cards to a panel: void

add(Component panelObj, Object name); Here, name is a string that specifies the name of the card whose panel is

specified by panelObj. After the deck is created, the program activates a card by calling one of the following methods

defined by CardLayout: void first(Container deck void last(Container deck) void next(Container deck) void

previous(Container deck) void show(Container deck, String cardName)

Here, deck is a reference to the container (usually a panel) that holds the cards, and cardName is the name of a card. Calling

first () causes the first card in the deck to be shown. To show the last card, call last (). To show the next card, call next (). To

show the previous card, call previous (). Both next () and previous() automatically cycle back to the top or bottom of the

deck, respectively. The show() method displays the card whose name is passed in cardName. The following example creates

a two-level card deck that allows the user to select an operating system. Windows-based operating systems are displayed in

one card. Macintosh and Solaris are displayed

in the other card. PROGRAM // Demonstrate CardLayout.

86% MATCHING BLOCK 199/221

import java.awt.*; import java.awt.event.*; import java.applet.*; /* >applet code="CardLayoutDemo" width=300

height=100< >/applet< */ public class CardLayoutDemo extends Applet implements

ActionListener,

MouseListener { Checkbox Win98, winNT, solaris, mac;

Panel osCards; CardLayout cardLO; Button Win, Other; public void init() { Win = new Button("Windows"); Other = new

Button("Other"); add(Win); add(Other); cardLO = new CardLayout(); osCards = new Panel();

https://secure.urkund.com/view/158826330-304149-193235#/sources 80/139

osCards.setLayout(cardLO); // set panel layout to card layout

Win98 = new Checkbox("Windows 98/XP", null, true); winNT = new Checkbox("Windows NT/2000"); solaris = new

Checkbox("Solaris"); mac = new Checkbox("MacOS"); // add

Windows check boxes to a panel Panel winPan = new Panel(); winPan.add(Win98); winPan.add(winNT); // Add other OS

check boxes to a panel Panel otherPan = new Panel(); otherPan.add(solaris); otherPan.add(mac); // add panels to card deck

panel osCards.add(winPan, "Windows"); osCards.add(otherPan, "Other"); // add cards to main applet panel add(osCards); //

register to receive action events Win.addActionListener(this); Other.addActionListener(this); // register mouse events

addMouseListener(this); } // Cycle through panels. public void mousePressed(MouseEvent me) { cardLO.next(osCards); } //

Provide empty implementations for the other MouseListener

methods.

public void mouseClicked(MouseEvent me) { } public void mouseEntered(MouseEvent me) { } public void

mouseExited(MouseEvent me) { } public void mouseReleased(MouseEvent

me) {

} public void

actionPerformed(ActionEvent ae) { if(ae.getSource() == Win) { cardLO.show(osCards, "Windows"); } else {

cardLO.show(osCards, "Other"); } } } OUTPUT 16.6 Unit Summary This Lesson elaborates the components needed for GUI

Applications. It explains the various classes used for drawing line, circle, ellipse and polygons. The various font and color

classes used to achieve the desired appearance in the application were also discussed. To have a beautiful appearance of a

window the controls that it contained in them must be arranged. This is achieved by using the layout manager. This lesson

concludes by describing various layout management used in Java. 16.7

Key Terms

The Color class defines several methods that help manipulate colors.

16.8

Check Your Progress 1.

Write applets to draw a. Cone b. Cylinder c. Cube 2. Describe the three ways of drawing the polygon 3. Explain the way by

which the Color class is used to manipulate the colors. 4. Write a note on the various methods of the Font class. 5. Brief on

Layout management.

Unit 17: Swing Component Classes 17.0

Introduction 17.1 Unit Objective 17.2 JApplet 17.3 JFrame and JDialog 17.4 JText Fields 17.5 JButtons 17.6 JCombo Boxes 17.7

JList 17.8 JTabbed Panes 17.9 JScroll Panes 17.10 Unit Summary 17.11 Key Terms 17.12 Check Your Progress 17.0

Introduction Swing

is a set of classes that provides more powerful and flexible components

than are possible with the AWT.

In addition to the familiar components, such as buttons, check boxes, and labels, Swing

supplies several exciting additions, including tabbed panes, scroll panes, trees, and tables.

Even familiar

components

such as buttons have more capabilities in Swing. For example, a

button may have both an image and a text string associated with it.

Also,

the image can be changed as the state of the button changes.

100% MATCHING BLOCK 200/221

The Swing-related classes are contained in javax.swing and its subpackages, such as javax.swing.tree. Many other Swing-

related classes and interfaces

also exist. 17.1

Objectives This Unit gives the overview of Swing for the development of window based applications through Java. It

provides a simple introduction to the more sophisticated set of GUI components, such as, JApplet, JFrame, JDialog, Text

Fields, Buttons, Combo boxes, List ,Tabbled and Scroll Panes. 17.2

100% MATCHING BLOCK 201/221

JApplet Fundamental to Swing is the JApplet class, which extends Applet. Applets that

use Swing

https://secure.urkund.com/view/158826330-304149-193235#/sources 81/139

100% MATCHING BLOCK 202/221

must be subclasses of JApplet. JApplet is rich with functionality that is

not found

100% MATCHING BLOCK 203/221

in Applet. For example, JApplet supports various ―panes,‖ such as the content pane, the glass pane, and the root pane.

There is one difference between Applet and JApplet.

96% MATCHING BLOCK 204/221

When adding a component to an instance of JApplet, do not invoke the add() method of the applet. Instead, call add()

for the content pane of the JApplet object. The content pane can be obtained via the method shown here: Container

getContentPane() The add() method of Container can be used to add a component to a content pane. Its form is shown

here: void add(comp) Here, comp is the component to be added to the content pane. 17.3 JFrame and JDialog In

general, Swing components are derived from the JComponent class. JComponent provides the functionality that is

common to all components. For example, JComponent supports the pluggable look and feel. JComponent inherits the

AWT classes Container and Component. Thus, a Swing component is built on and compatible with an AWT component. All

of Swing‘s components are represented by classes defined within the package javax.swing. Swing defines two types of

containers. The first are top-level containers: JFrame, JApplet, JWindow, and JDialog. These containers do not inherit

JComponent. They do, however, inherit the AWT classes Component and Container. Unlike Swing‘s other components,

which are lightweight, the top- level containers are heavyweight. This makes the top-level containers a special case in the

Swing component library. As the name implies, a top-level container must be at the top of a containment hierarchy. A top-

level container is not contained within any other container. Furthermore, every containment hierarchy must begin with a

top-level container. The one most commonly used for applications is JFrame. The one used for applets is JApplet. JFrame

The

following program demonstrates several key features of Swing. It uses two Swing components: JFrame and JLabel. JFrame

is the top-level container that is commonly used for Swing applications. JLabel is the Swing component that creates a label,

which is a component that displays information. The label is Swing‘s simplest component because it is passive. That is, a

label does not respond to user input. It just displays output.

The program uses a JFrame container to hold an instance of a JLabel. The label displays a short text message.

PROGRAM //

A simple Swing application. import javax.swing.*; class SwingDemo { SwingDemo() { // Create a new JFrame container.

JFrame jfrm = new JFrame("A Simple Swing Application"); //

Give the frame an initial size.

jfrm.setSize(275, 100); // Terminate the program when the user closes the application.

jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); // Create a text-based label. JLabel jlab = new JLabel(" Swing

means powerful GUIs."); // Add the label to the content pane. jfrm.add(jlab); // Display the frame. jfrm.setVisible(true); }

public static void main(String args[]) { // Create the frame on the event dispatching thread. SwingUtilities.invokeLater(new

Runnable() { public void run() { new SwingDemo(); } }); } }

OUTPUT

JDialog

The JDialog control represents a top-level window with a border and a title used to take some form of input from the user.

It inherits the Dialog class.

Unlike JFrame, it doesn't have maximize and minimize buttons.

The commonly used constructors of JDialog are given below:

Constructor Description

JDialog() It is used to create a modeless dialog without a title and without a specified Frame JDialog(Frame owner) It is used

to create a modeless dialog with specified Frame as its owner and an empty title. Jdialog (Frame owner, String title, boolean

modal) It is used to create a dialog with the specified title, owner Frame and modality.

The following program illustrates the JDialog control: PROGRAM

import javax.swing.*;

https://secure.urkund.com/view/158826330-304149-193235#/sources 82/139

import java.awt.*; import java.awt.event.*;

public class DialogExample { private static JDialog d; DialogExample() { JFrame f= new JFrame(); d = new JDialog(f , "Dialog

Example", true); d.setLayout(new FlowLayout()); JButton b = new JButton ("OK"); b.addActionListener (new

ActionListener() { public void actionPerformed(ActionEvent e) { DialogExample.d.setVisible(false);

} }); d.add(new JLabel ("Click button to continue.")); d.

add(b); d.setSize(300,300); d.setVisible(true); } public static void main(String args[]) { new

DialogExample(); } }

OUTPUT 17.4

JText

97% MATCHING BLOCK 205/221

Fields The Swing text field is encapsulated by the JTextComponent class, which extends JComponent. It provides

functionality that is common to Swing text components. One of its subclasses is JTextField, which allows you to edit one

line of text. Some of its constructors are shown here: JTextField() JTextField(int cols) JTextField(String s, int cols)

JTextField(String s) Here, s is the string to be presented, and cols is the number of columns in the text field. The following

example illustrates how to create a text field. The applet begins by getting its content pane, and then a flow layout is

assigned as its layout manager. Next, a JTextField object is created and is added to the content pane. PROGRAM import

java.awt.*; import javax.swing.*; /* >applet code="JTextFieldDemo" width=300 height=50< >/applet< */ public

class JTextFieldDemo extends JApplet { JTextField jtf; public void init() { // Get content pane Container contentPane =

getContentPane(); contentPane.setLayout(new FlowLayout()); // Add text field to content pane jtf = new JTextField(15);

contentPane.add(jtf); } } OUTPUT 17.5

JButtons

97% MATCHING BLOCK 206/221

Swing buttons are subclasses of the AbstractButton class, which extends JComponent. AbstractButton contains many

methods that allow you to control the behavior of buttons, check boxes, and radio buttons. For example, you can define

different icons that are displayed for the component when it is disabled, pressed, or selected. Another icon can be used as

a rollover icon, which is displayed when the mouse is positioned over that component. The following are the methods

that control this behavior: void setDisabledIcon(Icon di) void setPressedIcon(Icon pi) void setSelectedIcon(Icon si) void

setRolloverIcon(Icon ri) Here, di, pi, si, and ri are the icons to be used for these different conditions. The text associated

with a button can be read and written via the following methods: String getText() void setText(String s) Here, s is the text

to be associated with the button. Concrete subclasses of AbstractButton generate action events when they are pressed.

Listeners register and unregister for these events via the methods shown here: void addActionListener(ActionListener al)

void removeActionListener(ActionListener al) Here, al is the action listener. AbstractButton is a superclass for push

buttons, check boxes, and radio buttons. The JButton Class The JButton class provides the functionality of a push button.

JButton allows an icon, a string, or both to be associated with the push button. Some of its constructors are shown here:

JButton(Icon i) JButton(String s) JButton(String s, Icon i) Here, s and i are the string and icon used for the button.

The

following example displays four push buttons and a text field. Each button displays an icon that represents the flag of a

country. When a button is pressed, the name of that country is displayed in the

100% MATCHING BLOCK 207/221

text field. The applet begins by getting its content pane and

setting the layout manager of that pane. Four image buttons are created and

added to the content pane. Next, the applet is registered to receive action events that are generated by the buttons. A text

field is then created and added to the applet. Finally, a handler for action events displays the command string that is

associated with the button. The text field is used to present this string. PROGRAM

https://secure.urkund.com/view/158826330-304149-193235#/sources 83/139

82% MATCHING BLOCK 208/221

import java.awt.*; import java.awt.event.*; import javax.swing.*; /* >applet code="JButtonDemo" width=250

height=300< >/applet< */ public class JButtonDemo extends JApplet implements ActionListener { JTextField jtf;

public void init() { // Get content pane Container contentPane = getContentPane(); contentPane.setLayout(new

FlowLayout()); //

Add buttons to content pane

ImageIcon france = new ImageIcon("france.gif"); JButton jb = new JButton(france); jb.setActionCommand("France");

jb.addActionListener(this); contentPane.add(jb); ImageIcon germany = new ImageIcon("germany.gif"); jb = new

JButton(germany); jb.setActionCommand("Germany"); jb.addActionListener(this); contentPane.add(jb); ImageIcon italy =

new ImageIcon("italy.gif"); jb = new JButton(italy); jb.setActionCommand("Italy"); jb.addActionListener(this);

contentPane.add(jb); ImageIcon japan = new ImageIcon("japan.gif");

jb = new JButton(japan); jb.setActionCommand("Japan"); jb.addActionListener(

88% MATCHING BLOCK 209/221

this); contentPane.add(jb); // Add text field to content pane jtf = new JTextField(15); contentPane.add(jtf); } public void

actionPerformed(ActionEvent ae) { jtf.setText(ae.getActionCommand()); } }

OUTPUT 17.6 JCombo

97% MATCHING BLOCK 210/221

Boxes Swing provides a combo box (a combination of a text field and a drop-down list) through the JComboBox class,

which extends JComponent. A combo box normally displays one entry. However, it can also display a drop-down list that

allows a user to select a different entry. Selection can

be made by typing

96% MATCHING BLOCK 211/221

into the text field. Two of JComboBox‘s constructors are shown here: JComboBox() JComboBox(Vector v) Here, v is a

vector that initializes the combo box. Items are added to the list of choices via the addItem() method, whose signature is

shown here: void addItem(Object obj) Here, obj is the object to be added to the combo box. The following example

contains a combo box and a label. The label displays an icon. The combo box contains entries for ―France‖, ―Germany‖,
―Italy‖, and ―Japan‖. When a country is selected, the label is updated to display the flag for that country. PROGRAM

import java.awt.*; import java.awt.event.*; import javax.swing.*; /* >applet code="JComboBoxDemo" width=300

height=100< >/applet< */ public class JComboBoxDemo extends JApplet implements ItemListener { JLabel jl;

ImageIcon france, germany, italy, japan; public void init() { // Get content pane Container contentPane =

getContentPane(); contentPane.setLayout(new FlowLayout()); // Create a combo box and add it // to the panel

JComboBox jc = new JComboBox(); jc.addItem("France"); jc.addItem("Germany"); jc.addItem("Italy"); jc.addItem("Japan");

jc.addItemListener(this); contentPane.add(jc); // Create label jl = new JLabel(new ImageIcon("france.gif"));

contentPane.add(jl); } public void itemStateChanged(ItemEvent ie) { String s = (String)ie.getItem(); jl.setIcon(new

ImageIcon(s + ".gif")); } } OUTPUT 17.7

JList In Swing, the basic list class is called JList. It supports the selection of one or more items from a list.

JList is declared as follows: class JList>E< Here, E represents the type of the items in the list.

JList provides several constructors. The one used here is JList(E[] items) This creates a JList that contains the items in the

array specified by items. JList is based on two models. The first is ListModel. This interface defines how access to the list

data is achieved. The second model is the ListSelectionModel interface, which defines methods that determine what list

item or items are selected.

A JList allows the user to select multiple ranges of items within the list, but that can be changed by calling

setSelectionMode(), which is defined by JList. It is shown here: void setSelectionMode(int mode) Here, mode specifies the

selection mode. It must be one of these values defined by ListSelectionModel:

SINGLE_SELECTION SINGLE_INTERVAL_SELECTION MULTIPLE_INTERVAL_SELECTION

https://secure.urkund.com/view/158826330-304149-193235#/sources 84/139

The default, multiple-interval selection, lets the user select multiple ranges of items within a list. With single-interval

selection, the user can select one range of items. With single selection, the user can select only a single item. Tthe index of

the first item selected can be obtained, which will also be the index of the only selected item when using single-selection

mode, by calling getSelectedIndex(), shown here: int getSelectedIndex() Indexing begins at zero. So, if the first item is

selected, this method will return 0. If no item is selected, –1 is returned. The following applet demonstrates a simple JList,

which holds a list of cities. Each time a city is selected in the list, a ListSelectionEvent is generated, which is handled by the

valueChanged() method defined by ListSelectionListener. It responds by obtaining the index of the selected item and

displaying the name of the selected city in a label. PROGRAM //

Demonstrate JList. import javax.swing.*; import javax.swing.event.*;

75% MATCHING BLOCK 212/221

import java.awt.*; import java.awt.event.*; /* >applet code="JListDemo" width=200 height=120< >/applet< */

public class JListDemo extends JApplet {

JList>

String<

jlst; JLabel jlab; JScrollPane jscrlp; // Create an array of cities. String Cities[] = { "New York", "Chicago", "Houston", "Denver",

"Los Angeles", "Seattle",

"London", "Paris", "New Delhi", "Hong Kong", "Tokyo", "Sydney" };

public void init() { try { SwingUtilities.invokeAndWait(new Runnable() { public void run() { makeGUI(); } }); } catch (Exception

exc) { System.out.println("Can't create because of " + exc); } }

private void makeGUI() { //

Change to flow layout.

setLayout(new FlowLayout()); // Create a JList. jlst = new JList>String<(Cities); // Set the list selection mode to single

selection. jlst.setSelectionMode(ListSelectionModel.SINGLE_SELECTION); // Add the list to a scroll pane. jscrlp = new

JScrollPane(jlst); // Set the preferred size of the scroll pane. jscrlp.setPreferredSize(new Dimension(120, 90)); // Make a label

that displays the selection. jlab = new JLabel("Choose a City"); // Add selection listener for the list.

jlst.addListSelectionListener(new ListSelectionListener() { public void valueChanged(ListSelectionEvent le) { // Get the index

of the changed item. int idx = jlst.getSelectedIndex();

// Display selection, if item was selected. if(idx != -1) jlab.setText("Current selection: " + Cities[idx]); else // Otherwise,

reprompt. jlab.setText("Choose a City"); } }); // Add the list and label to the content pane. add(jscrlp); add(jlab); } } OUTPUT

17.8

JTabbed

100% MATCHING BLOCK 213/221

Panes A tabbed pane is a component that appears as a group of folders in a file cabinet. Each folder has a title. When

the

97% MATCHING BLOCK 214/221

user selects a folder, its contents become visible. Only one of the folders may be selected at a time. Tabbed panes are

commonly used for setting configuration options. Tabbed panes are encapsulated by the JTabbedPane class, which

extends JComponent. We will use its default constructor. Tabs are defined via the following method: void addTab(String

str, Component comp) Here, str is the title for the tab, and comp is the component that should be added to the tab.

Typically, a JPanel or a subclass of it is added. The general procedure to use a tabbed pane in an applet is outlined here: 1.

Create a JTabbedPane object. 2. Call addTab() to add a tab to the pane. (The arguments to this method define the title of

the tab and the component it contains.) 3. Repeat step 2 for each tab. 4. Add the tabbed pane to the content pane of the

applet.

The following example illustrates how to create a tabbed pane. The first tab is titled Cities and contains four buttons. Each

button displays the name of a city. The second tab is titled Colors and contains three check boxes. Each check box displays

the name of a color. The third tab is titled Flavors and contains one combo box. This enables the user to select one of three

flavors. PROGRAM

https://secure.urkund.com/view/158826330-304149-193235#/sources 85/139

82% MATCHING BLOCK 215/221

import javax.swing.*; /* >applet code="JTabbedPaneDemo" width=400 height=100< >/applet< */ public class

JTabbedPaneDemo extends JApplet { public void init() {

JTabbedPane jtp = new JTabbedPane(); jtp.addTab("Cities", new CitiesPanel()); jtp.addTab("Colors", new ColorsPanel());

jtp.addTab("Flavors", new FlavorsPanel()); getContentPane().add(jtp); } }

class CitiesPanel extends JPanel { public CitiesPanel() {

JButton b1 = new JButton("New York"); add(b1);

JButton b2 = new JButton("London"); add(b2); JButton b3 = new JButton("Hong Kong"); add(b3); JButton b4 = new

JButton("

Tokyo"); add(b4); } }

class ColorsPanel extends JPanel { public ColorsPanel() { JCheckBox cb1 = new JCheckBox("Red"); add(cb1); JCheckBox

cb2 = new JCheckBox("Green"); add(cb2); JCheckBox cb3 = new JCheckBox("Blue"); add(cb3); } } class FlavorsPanel

extends JPanel { public FlavorsPanel() { JComboBox jcb = new JComboBox(); jcb.addItem("Vanilla");

jcb.addItem("Chocolate"); jcb.addItem("Strawberry"); add(jcb); } } OUTPUT

17.9

JScroll

100% MATCHING BLOCK 216/221

Panes A scroll pane is a component that presents a rectangular area in which a

component may

95% MATCHING BLOCK 217/221

be viewed. Horizontal and/or vertical scroll bars may be provided if necessary. Scroll panes are implemented in Swing by

the JScrollPane class, which extends JComponent. Some of its constructors are shown here: JScrollPane(Component

comp) JScrollPane(int vsb, int hsb) JScrollPane(Component comp, int vsb, int hsb) Here, comp is the component to be

added to the scroll pane. vsb and hsb are

int constants

86% MATCHING BLOCK 218/221

that define when vertical and horizontal scroll bars for this scroll pane are shown. These constants are defined by the

ScrollPaneConstants interface. Some examples of these constants are described as follows: Constant Description

HORIZONTAL_SCROLLBAR_ALW AYS Always provide horizontal scroll bar HORIZONTAL_SCROLLBAR_AS_

N EEDED

96% MATCHING BLOCK 219/221

Provide horizontal scroll bar, if needed VERTICAL_SCROLLBAR_ALWAYS Always provide vertical scroll bar

VERTICAL_SCROLLBAR_AS_NEE Provide vertical scroll bar, if needed DED Here are the steps that you should follow to

use a scroll pane in an applet: 1. Create a JComponent object. 2. Create a JScrollPane object. (The arguments to the

constructor specify the component and the policies for vertical and horizontal scroll bars.) 3. Add the scroll pane to the

content pane of the applet. The following example illustrates a scroll pane. First, the content pane of the JApplet object is

obtained and a border layout is assigned as its layout manager. Next, a JPanel object is created and four hundred buttons

are added to it, arranged into twenty columns. The panel is then added to a scroll pane, and the scroll pane is added to

the content pane. This causes vertical and horizontal scroll bars to appear. the scroll bars

can be used

https://secure.urkund.com/view/158826330-304149-193235#/sources 86/139

94% MATCHING BLOCK 220/221

to scroll the buttons into view. PROGRAM import java.awt.*; import javax.swing.*; /* >applet code="JScrollPaneDemo"

width=300 height=250< >/applet< */ public class JScrollPaneDemo extends JApplet { public void init() { // Get

content pane Container contentPane = getContentPane(); contentPane.setLayout(new BorderLayout()); // Add 400

buttons to a panel JPanel jp = new JPanel(); jp.setLayout(new GridLayout(20, 20)); int b = 0; for(int i = 0; i > 20; i++) {

for(int j = 0; j > 20; j++) { jp.add(new JButton("Button " + b)); ++b; } } // Add panel to a scroll pane int v =

ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED; int h = ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_

NEEDE D;

92% MATCHING BLOCK 221/221

JScrollPane jsp = new JScrollPane(jp, v, h); // Add scroll pane to the content pane contentPane.add(jsp,

BorderLayout.CENTER); } }

OUTPUT

17.10 Unit Summary This Unit discussed the important controls used in the window based applications. It elaborated the

JApplet, JFrame, JDialog, Text Fields, Buttons, Combo boxes, List, Tabbled and Scroll Panes. 17.11

Key Terms •

JComponent provides the functionality that is common to all components. •

JFrame is the top-level container that is commonly used for Swing applications. • JLabel is the Swing component that

creates a label, which is a component that displays information. 17.12

Check Your Progress 1.

Explain how layout management is done with the help of JFrame and JDialog in Swing. 2. Write a simple Swing application

to demonstrate the Text Fields, Buttons and Combo boxes. 3. Write

a

note on List control. 4. Explain Tabbed Panes with an example. 5. Demonstrate Scroll Panes through an example.

Hit and source - focused comparison, Side by Side

Submitted text As student entered the text in the submitted document.

Matching text As the text appears in the source.

1/221 SUBMITTED TEXT 11 WORDS

All computer programs consist of two elements: code and

data.

100% MATCHING TEXT 11 WORDS

all computer programs consist of two elements: code and

data.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

2/221 SUBMITTED TEXT 19 WORDS

This is a simple Java program. Call this file "Example.java".

*/

100% MATCHING TEXT 19 WORDS

This is a simple Java program. Call this file "Example.java".

*/

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 87/139

3/221 SUBMITTED TEXT 40 WORDS

PROGRAM /* This is a simple Java program. Call this file

"Example.java". */ class Example { // Your program begins

with a call to main(). public static void main(String args[]) {

System.out.println("This is a simple Java program."); } }

100% MATCHING TEXT 40 WORDS

PROGRAM /* This is a simple Java program. Call this file

"Example.java". */ class Example { // Your program begins

with a call to main(). public static void main(String args[]) {

System.out.println("This is a simple Java program."); } }

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

4/221 SUBMITTED TEXT 12 WORDS

Java is designed for the distributed environment of the

internet. ●

100% MATCHING TEXT 12 WORDS

Java is designed for the distributed environment of the

Internet,

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

5/221 SUBMITTED TEXT 93 WORDS

Types Java defines eight simple (or elemental) types of

data: byte, short, int, long, char, float, double, and boolean.

These can be put in four groups: ● Integers: This group

includes byte, short, int, and long, which are for whole

valued signed numbers. ● Floating-point numbers: This

group includes float and double, which represent numbers

with fractional precision. ● Characters: This group includes

char, which represents symbols in a character set, like

letters and numbers. ● Boolean: This group includes

boolean, which is a special type for representing true/false

values.

100% MATCHING TEXT 93 WORDS

TYPES Java defines eight simple (or elemental) types of

data: byte, short, int, long, char, float,double, and boolean.

These can be put in four groups: ¾ Integers This group

includes byte, short, int, and long, which are for whole

valued signed numbers. ¾ Floating-point numbers This

group includes float and double, which represent numbers

with fractional precision. ¾ Characters This group includes

char, which represents symbols in a character set, like

letters and numbers. ¾ Boolean This group includes

boolean, which is a special type for representing true/false

values.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

6/221 SUBMITTED TEXT 45 WORDS

Variables The variable is the basic unit of storage in a Java

program. A variable is defined by the combination of an

identifier, a type, and an optional initializer. In addition, all

variables have a scope, which defines their visibility, and a

lifetime.

100% MATCHING TEXT 45 WORDS

Variables The variable is the basic unit of storage in a Java

program. A variable is defined by the combination of an

identifier, a type, and an optional initializer. In addition, all

variables have a scope, which defines their visibility, and a

lifetime.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 88/139

7/221 SUBMITTED TEXT 61 WORDS

Declaring a Variable In Java, all variables must be declared

before they can be used. The basic form of a variable

declaration is shown here: type identifier [= value][,

identifier [= value] ...] ; The type is one of Java‘s atomic

types, or the name of a class or interface. The identifier is

the name of the variable.

89% MATCHING TEXT 61 WORDS

Declaring a Variable In Java, all variables must be declared

before they can be used. The basic form of a variable

declaration is shown here: type identifier [= value][,

identifier [= value] ...] ; The type is one of Java’s atomic

types, or the name of a class or interface. (Class and

interface types are discussed later in Part I of this book.)

The identifier is the name of the variable.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

8/221 SUBMITTED TEXT 25 WORDS

int d = 3, e, f = 5; // declares three more ints, initializing d

and f. byte z = 22; // initializes z.

100% MATCHING TEXT 25 WORDS

int d = 3, e, f = 5; // declares three more ints, initializing //

d and f. byte z = 22; // initializes z.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

9/221 SUBMITTED TEXT 22 WORDS

A scope determines what objects are visible to other parts

of your program. It also determines the lifetime of those

objects.

100% MATCHING TEXT 22 WORDS

a scope determines what objects are visible to other parts

of your program. It also determines the lifetime of those

objects.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

10/221 SUBMITTED TEXT 33 WORDS

Object-oriented programming organizes a program

around its data (that is, objects) and a set of well-defined

interfaces to that data. An object-oriented program can be

characterized as data controlling access to code.

100% MATCHING TEXT 33 WORDS

Object-oriented programming organizes a program

around its data (that is, objects) and a set of well-defined

interfaces to that data. An object-oriented program can be

characterized as data controlling access to code.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

11/221 SUBMITTED TEXT 17 WORDS

It is common to assign a value of one type to a variable of

another type.

96% MATCHING TEXT 17 WORDS

it is fairly common to assign a value of one type to a

variable of another type.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 89/139

12/221 SUBMITTED TEXT 77 WORDS

When one type of data is assigned to another type of

variable, an automatic type conversion will take place if the

following two conditions are met: ● The two types are

compatible. ● The destination type is larger than the

source type. When these two conditions are met, a

widening conversion takes place. For example, the int type

is always large enough to hold all valid byte values, so no

explicit cast statement is required.

100% MATCHING TEXT 77 WORDS

When one type of data is assigned to another type of

variable, an automatic type conversion will take place if the

following two conditions are met: ■ The two types are

compatible. ■ The destination type is larger than the

source type. When these two conditions are met, a

widening conversion takes place. For example, the int type

is always large enough to hold all valid byte values, so no

explicit cast statement is required.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

13/221 SUBMITTED TEXT 71 WORDS

It has this general form: (target-type) value Here, target-

type specifies the desired type to convert the specified

value to. For example, the following fragment casts an int

to a byte. If the integer‘s value is larger than the range of a

byte, it will be reduced modulo (the remainder of an

integer division by the) byte‘s range. For example, int a;

byte b; // ... b = (byte) a; 1.3.4

95% MATCHING TEXT 71 WORDS

It has this general form: (target-type) value Here, target-

type specifies the desired type to convert the specified

value to. For example, the following fragment casts an int

to a byte. If the integer’s value is larger than the range of a

byte, it will be reduced modulo (the remainder of an

integer division by the) byte’s range. int a; byte b; // ... b =

(byte) a;

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

14/221 SUBMITTED TEXT 74 WORDS

Arrays An array is a group of like-typed variables that are

referred to by a common name. Arrays of any type can be

created and may have one or more dimensions. A specific

element in an array is accessed by its index. Arrays offer a

convenient means of grouping related information. One-

Dimensional Arrays A one-dimensional array is, essentially,

a list of like-typed variables. To create an array variable of

the desired type

92% MATCHING TEXT 74 WORDS

Arrays An array is a group of like-typed variables that are

referred to by a common name. Arrays of any type can be

created and may have one or more dimensions. A specific

elementin an array is accessed by its index. Arrays offer a

convenient means of grouping related information. One-

Dimensional Arrays A one-dimensional array is, essentially,

a list of like-typed variables. To create an array, you first

must create an array variable of the desired type.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

15/221 SUBMITTED TEXT 12 WORDS

Multidimensional Arrays In Java, multidimensional arrays

are actually arrays of arrays.

100% MATCHING TEXT 12 WORDS

Multidimensional Arrays In Java, multidimensional arrays

are actually arrays of arrays.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 90/139

16/221 SUBMITTED TEXT 61 WORDS

To declare a multidimensional array variable, specify each

additional index using another set of square brackets. For

example, the following declares a two-dimensional array

variable called twoD. int twoD[] [] = new int[4][5]; This

allocates a 4 by 5 array and assigns it to twoD. Internally

this matrix is implemented as an array of arrays of int.

100% MATCHING TEXT 61 WORDS

To declare a multidimensional array variable,specify each

additional index using another set of square brackets. For

example, the following declares a two-dimensional array

variable called twoD. int twoD[][] = new int[4][5]; This

allocates a 4 by 5 array and assigns it to twoD. Internally

this matrix is implemented as an array of arrays of int. //

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

17/221 SUBMITTED TEXT 11 WORDS

All computer programs consist of two elements: code and

data.

100% MATCHING TEXT 11 WORDS

all computer programs consist of two elements: code and

data.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

18/221 SUBMITTED TEXT 34 WORDS

Object-oriented programming organizes a program

around its data (that is, objects) and a set of well-defined

interfaces to that data. An object oriented program can be

characterized as data controlling access to code.

100% MATCHING TEXT 34 WORDS

Object-oriented programming organizes a program

around its data (that is, objects) and a set of well-defined

interfaces to that data. An object-oriented program can be

characterized as data controlling access to code.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

19/221 SUBMITTED TEXT 12 WORDS

Java is designed for the distributed environment of the

internet. ●

100% MATCHING TEXT 12 WORDS

Java is designed for the distributed environment of the

Internet,

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

20/221 SUBMITTED TEXT 22 WORDS

Operators: Arithmetic operators are used in mathematical

expressions in the same way that they are used in algebra.

The following table (

100% MATCHING TEXT 22 WORDS

OPERATORS Arithmetic operators are used in

mathematical expressions in the same way that they are

used in algebra. The following table

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

21/221 SUBMITTED TEXT 23 WORDS

The Bitwise Operators Java defines several bitwise

operators, which can be applied to the integer types, long,

int, short, char, and byte.

100% MATCHING TEXT 23 WORDS

The Bitwise Operators Java defines several bitwise

operators which can be applied to the integer types, long,

int, short, char, and byte.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 91/139

22/221 SUBMITTED TEXT 20 WORDS

Arithmetic operators are used in mathematical expressions

in the same way that they are used in algebra. •

100% MATCHING TEXT 20 WORDS

Arithmetic operators are used in mathematical expressions

in the same way that they are used in algebra.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

23/221 SUBMITTED TEXT 20 WORDS

Java defines several bitwise operators, which can be

applied to the integer types, long, int, short, char, and byte.

100% MATCHING TEXT 20 WORDS

Java defines several bitwise operators which can be

applied to the integer types, long, int, short, char, and byte.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

24/221 SUBMITTED TEXT 71 WORDS

The if statement is Java‘s conditional branch statement. It

can be used to route program execution through two

different paths. Here is the general form of the if

statement: if (condition) statement1; else statement2; Here,

each statement may be a single statement or a compound

statement enclosed in curly braces (that is, a block). The

condition is any expression that returns a boolean value.

The else clause is optional.

100% MATCHING TEXT 71 WORDS

The if statement is Java’s conditional branch statement. It

can be used to route program execution through two

different paths. Here is the general form of the if

statement: if (condition) statement1; else statement2; Here,

each statement may be a single statement or a compound

statement enclosed in curly braces (that is, a block). The

condition is any expression that returns a boolean value.

The else clause is optional.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

25/221 SUBMITTED TEXT 18 WORDS

A common programming construct that is based upon a

sequence of nested ifs is the if-else-if ladder.

100% MATCHING TEXT 18 WORDS

A common programming construct that is based upon a

sequence of nested ifs is the if-else-if ladder.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

26/221 SUBMITTED TEXT 15 WORDS

if(condition) statement; else if(condition) statement; else

if(condition) statement; ... else statement; The

96% MATCHING TEXT 15 WORDS

if(condition) statement; else if(condition) statement; else

if(condition) statement; ... else statement; switch The

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

27/221 SUBMITTED TEXT 27 WORDS

else statement will be executed. Switch The switch

statement is Java‘s multiway branch statement. It provides

an easy way to dispatch execution to different parts of

83% MATCHING TEXT 27 WORDS

else statement; switch The switch statement is Java’s

multiway branch statement. It provides an easy way to

dispatch execution to different parts of

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 92/139

28/221 SUBMITTED TEXT 84 WORDS

switch (expression) { case value1: // statement sequence

break; case value2: // statement sequence break; ... case

valueN: // statement sequence break; default: // default

statement sequence } The expression must be of type byte,

short, int, or char; each of the values specified in the case

statements must be of a type compatible with the

expression. Each case value must be a unique literal (that

is, it must be a constant, not a variable). Duplicate case

values are not allowed.

94% MATCHING TEXT 84 WORDS

switch (expression) { case value1: // statement sequence

Smartzworld.com Smartworld.asia jntuworldupdates.org

Specworld.in break; case value2: // statement sequence

break; ... case valueN: // statement sequence break;

default: // default statement sequence } The expression

must be of type byte, short, int, or char; each of the values

specified in the case statements must be of a type

compatible with the expression. Each case value must be a

unique literal (that is, it must be a constant, not a variable).

Duplicate case values are not allowed

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

29/221 SUBMITTED TEXT 13 WORDS

Iteration Statements Java‘s iteration statements are for,

while, and do-while. These statements

100% MATCHING TEXT 13 WORDS

Iteration Statements Java’s iteration statements are for,

while, and do-while. These statements

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

30/221 SUBMITTED TEXT 19 WORDS

commonly call loops. A loop repeatedly executes the same

set of instructions until a termination condition is met.

88% MATCHING TEXT 19 WORDS

commonly call loops. As you probably know, a loop

repeatedly executes the same set of instructions until a

termination condition is met.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

31/221 SUBMITTED TEXT 26 WORDS

While The while loop is Java‘s most fundamental looping

statement. It repeats a statement or block while its

controlling expression is true. Its general form

96% MATCHING TEXT 26 WORDS

While The while loop is Java’s most fundamental looping

statement. It repeats a statement or block while its

controlling expression is true. Here is its general form:

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

32/221 SUBMITTED TEXT 32 WORDS

while(condition) { // body of loop } The condition can be

any Boolean expression. The body of the loop will be

executed as long as the conditional expression is true.

When

100% MATCHING TEXT 32 WORDS

While (condition) { // body of loop } The condition can be

any Boolean expression. The body of the loop will be

executed as long as the conditional expression is true.

When

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 93/139

33/221 SUBMITTED TEXT 29 WORDS

condition becomes false, control passes to the next line of

code immediately following the loop. The curly braces are

unnecessary if only a single statement is being repeated.

100% MATCHING TEXT 29 WORDS

condition becomes false, control passes to the next line of

code immediately following the loop. The curly braces are

unnecessary if only a single statement is being repeated.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

34/221 SUBMITTED TEXT 42 WORDS

do { // body of loop } while (condition); Each iteration of

the do-while loop first executes the body of the loop and

then evaluates the conditional expression. If this expression

is true, the loop will repeat. Otherwise, the loop terminates.

100% MATCHING TEXT 42 WORDS

do { // body of loop } while (condition); Each iteration of

the do-while loop first executes the body of the loop and

then evaluates the conditional expression. If this expression

is true, the loop will repeat. Otherwise, the loop terminates.

//

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

35/221 SUBMITTED TEXT 78 WORDS

is a powerful and versatile construct. Here is the general

form of the for statement: for(initialization; condition;

iteration) { // body } If only one statement is being

repeated, there is no need for the curly braces. The for

loop operates as follows. When the loop first starts, the

initialization portion of the loop is executed and it sets the

value of the loop control variable, which acts as a counter

that controls the loop. Next,

89% MATCHING TEXT 78 WORDS

is a powerful and versatile construct. Here is the general

form of the for statement: for(initialization; condition;

iteration) { // body } If only one statement is being

repeated, there is no need for the curly braces. The for

loop operates as follows. When the loop first starts, the

initialization portion of the loop is executed. Generally, this

is an expression that sets the value of the loopcontrol

variable, which acts as a counter that controls the loop..

Next,

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

36/221 SUBMITTED TEXT 65 WORDS

condition is evaluated. This must be a Boolean expression.

It usually tests the loop control variable against a target

value. If this expression is true, then the body of the loop is

executed. If it is false, the loop terminates. Next, the

iteration portion of the loop is executed. This is usually an

expression that increments or decrements the loop control

variable. The loop

97% MATCHING TEXT 65 WORDS

condition is evaluated. This must be a Boolean expression.

It usually tests the loop control variable against a target

value. If this expression is true, then the body of the loop is

executed. If it is false, the loop terminates. Next, the

iteration portion of the loop is executed. This is usually an

expression that increments or decrements the loop control

variable. GUAGE // Demonstrate the for loop.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

37/221 SUBMITTED TEXT 44 WORDS

In Java, the break statement has three uses. First, as you

have seen, it terminates a statement sequence in a switch

statement. Second, it can be used to exit a loop. Third, it

can be used as a ―civilized‖ form of goto.

100% MATCHING TEXT 44 WORDS

In Java, the break statement has three uses. First, as you

have seen, it terminates a statement sequence in a switch

statement. Second, it can be used to exit a loop. Third, it

can be used as a ―civilized‖ form of goto.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 94/139

38/221 SUBMITTED TEXT 28 WORDS

Thus, a class is a template for an object, and an object is an

instance of a class. The two words object and instance are

used interchangeably

70% MATCHING TEXT 28 WORDS

Thus, a class is a template for an object, and an object is an

instance of a class. Because an object is an instance of a

class, you will often see the two words object and instance

used interchangeably.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

39/221 SUBMITTED TEXT 12 WORDS

A class is declared by use of the class keyword. The

100% MATCHING TEXT 12 WORDS

A class is declared by use of the class keyword. The

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

40/221 SUBMITTED TEXT 95 WORDS

The general form of a class definition is shown here:

100% MATCHING TEXT 95 WORDS

The general form of a class definition is shown here:

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

41/221 SUBMITTED TEXT 66 WORDS

The data, or variables, defined within a class are called

instance variables. The code is contained within methods.

Collectively, the methods and variables defined within a

class are called members of the class. In most classes, the

instance variables are acted upon and accessed by the

methods defined for that class. Thus, it is the methods that

determine how a class‘ data can be used.

100% MATCHING TEXT 66 WORDS

The data, or variables, defined within a class are called

instance variables. The code is contained within methods.

Collectively, the methods and variables defined within a

class are called members of the class. In most classes, the

instance variables are acted upon and accessed by the

methods defined for that class. Thus, it is the methods that

determine how a class’ data can be used.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

42/221 SUBMITTED TEXT 99 WORDS

objects of a class is done in a two-step process. First,

declare a variable of the class type. This variable does not

define an object. Instead, it is simply a variable that can

refer to an object. Second, acquire an actual, physical copy

of the object and assign it to that variable. This is achieved

by using the new operator. The new operator dynamically

allocates (that is, allocates at run time) memory for an

object and returns a reference to it. This reference is, more

or less, the address in memory of the object allocated by

new.

88% MATCHING TEXT 99 WORDS

objects of a class is a two-step process. First, you must

declare a variable of the class type. This variable does not

define an object. Instead, it is simply a variable that can

refer to an object. Second, you must acquire an actual,

physical copy of the object and assign it to that variable.

You can do this using the new operator. The new operator

dynamically allocates (that is, allocates at run time)

memory for an object and returns a reference to it. This

reference is, more or less, the address in memory of the

object allocated by new.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 95/139

43/221 SUBMITTED TEXT 18 WORDS

This is the general form of a method: type

name(parameter-list) { // body of method } Here,

68% MATCHING TEXT 18 WORDS

This is the general form of a method declaration that

includes a throws clause: type method-name(parameter-

list) throws exception-list { // body of method } Here,

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

44/221 SUBMITTED TEXT 26 WORDS

Box { double width; double height; double depth; //

compute and return volume double volume() { return

width * height * depth; } //

76% MATCHING TEXT 26 WORDS

Box(double len) { width = height = depth = len; } //

compute and return volume double volume() { return

width * height * depth; } } //

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

45/221 SUBMITTED TEXT 19 WORDS

double w, double h, double d) { width = w; height = h;

depth = d; } }

100% MATCHING TEXT 19 WORDS

double w, double h, double d) { width = w; height = h;

depth = d; } //

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

46/221 SUBMITTED TEXT 47 WORDS

class Box { double width; double height; double depth; //

This is the constructor for Box. Box() {

System.out.println("Constructing Box"); width = 10; height

= 10; depth = 10; } // compute and return volume double

volume() { return width * height * depth; } }

71% MATCHING TEXT 47 WORDS

class Box { double width; double height; double depth; //

This is the constructor for Box. Box(double w, double h,

double d) { width = w; height = h; depth = d; } // compute

and return volume double volume() { return width * height

* depth; } }

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

47/221 SUBMITTED TEXT 50 WORDS

class Box { double width; double height; double depth; //

This is the constructor for Box. Box(double w, double h,

double d) { width = w; height = h; depth = d; } // compute

and return volume double volume() { return width * height

* depth; } }

100% MATCHING TEXT 50 WORDS

class Box { double width; double height; double depth; //

This is the constructor for Box. Box(double w, double h,

double d) { width = w; height = h; depth = d; } // compute

and return volume double volume() { return width * height

* depth; } }

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

48/221 SUBMITTED TEXT 13 WORDS

can be used inside any method to refer to the current

object.

100% MATCHING TEXT 13 WORDS

can be used inside any method to refer to the current

object.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 96/139

49/221 SUBMITTED TEXT 50 WORDS

consider the following version of Box(): // A redundant use

of this. Box(double w, double h, double d) { this.width = w;

this.height = h; this.depth = d; } The use of this is

redundant, but perfectly correct. Inside Box(), this will

always refer to the invoking object.

89% MATCHING TEXT 50 WORDS

consider the following version of Box(): // A redundant use

of this. Box(double w, double h, double d) { this.width = w;

this.height = h; this.depth = This version of Box() operates

exactly like the earlier version. The use of this is redundant,

but perfectly correct. Inside Box(), this will always refer to

the invoking object.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

50/221 SUBMITTED TEXT 22 WORDS

However, when a local variable has the same name as an

instance variable, the local variable hides the instance

variable. This

97% MATCHING TEXT 22 WORDS

However, when a local variable has the same name as an

instance variable, the local variable hides the instance

variable. // Use this

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

51/221 SUBMITTED TEXT 24 WORDS

Garbage Collection Objects are dynamically allocated by

using the new operator, how such objects are destroyed,

and their memory released for later reallocation

89% MATCHING TEXT 24 WORDS

Garbage Collection Since objects are dynamically

allocated by using the new operator, you might be

wondering how such objects are destroyed and their

memory released for later reallocation.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

52/221 SUBMITTED TEXT 43 WORDS

handles deallocation automatically. The technique that

accomplishes this is called garbage collection. It works like

this: when no references to an object exist, that object is

assumed to be no longer needed, and the memory

occupied by the object can be reclaimed.

97% MATCHING TEXT 43 WORDS

handles deallocation you automatically. The technique that

accomplishes this is Called garbage collection. It works like

this: when no references to an object exist, that object is

assumed to be no longer needed, and the memory

occupied by the object can be reclaimed.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

53/221 SUBMITTED TEXT 24 WORDS

Garbage Collection: Objects are dynamically allocated by

using the new operator, how such objects are destroyed,

and their memory released for later reallocation

89% MATCHING TEXT 24 WORDS

Garbage Collection Since objects are dynamically

allocated by using the new operator, you might be

wondering how such objects are destroyed and their

memory released for later reallocation.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 97/139

54/221 SUBMITTED TEXT 70 WORDS

methods In Java it is possible to define two or more

methods within the same class that share the same name,

as long as their parameter declarations are different. When

this is the case, the methods are said to be overloaded, and

the process is referred to as method overloading. Here is a

simple example that illustrates method overloading:

PROGRAM // Demonstrate method overloading. class

OverloadDemo { void

80% MATCHING TEXT 70 WORDS

Methods In Java it is possible to define two or more

methods within the same class that share the same name,

as long as their parameter declarations are different. When

this is the case, the methods are said to be overloaded, and

the process is referred to as method overloading. Method

overloading is one of the ways that Java implements

polymorphism. // Demonstrate overloading. class void

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

55/221 SUBMITTED TEXT 106 WORDS

void test() { System.out.println("No parameters"); } //

Overload test for two integer parameters. void test(int a, int

b) { System.out.println("a and b: " + a + " " + b); } // overload

test for a double parameter double test(double a) {

System.out.println("double a: " + a); return a*a; } } class

Overload { public static void main(String args[]) {

OverloadDemo ob = new OverloadDemo(); double result;

// call all versions of test() ob.test(); ob.test(10, 20); result =

ob.test(123.25); System.out.println("Result of

ob.test(123.25): " + result); } } OUTPUT No parameters a

and b: 10 20, double a: 123.25 Result of ob.test(123.25):

15190.5625

87% MATCHING TEXT 106 WORDS

void test(a) { System.out.println("a: " + a); } // Overload test

for two integer parameters. void test(int a, int b) {

System.out.println("a and b: " + a + " " + b); } // overload

test for a double parameter double test(double a) {

System.out.println("double a: " + a); a*a; Smartzworld.com

Smartworld.asia jntuworldupdates.org Specworld.in } }

class Overload { public static void main(String args[]) {

OverloadDemo ob = new OverloadDemo(); double result;

// call all versions of test() ob.test(); ob.test(10); ob.test(10,

20); result = ob.test(123.25); System.out.println("Result of

ob.test(123.25): " + result); } } This program generates the

following output: No parameters a: 10 a and b: 10 20

double a: 123.25 Result of ob.test(123.25): 15190.5625

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

56/221 SUBMITTED TEXT 12 WORDS

Method overloading is one of the ways that Java

implements polymorphism.

100% MATCHING TEXT 12 WORDS

Method overloading is one of the ways that Java

implements polymorphism. //

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

57/221 SUBMITTED TEXT 22 WORDS

class Overload { public static void main(String args[]) {

OverloadDemo ob = new OverloadDemo(); int i = 88;

ob.test(); ob.test(10, 20); ob.test(

76% MATCHING TEXT 22 WORDS

class Overload { public static void main(String args[]) {

OverloadDemo ob = new OverloadDemo(); double result;

// call all versions of test() ob.test(); ob.test(10); ob.test(10,

20);

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 98/139

58/221 SUBMITTED TEXT 91 WORDS

depth; // constructor used when all dimensions specified

Box(double w, double h, double d) { width = w; height = h;

depth = d; } // constructor used when no dimensions

specified Box() { width = -1; // use -1 to indicate height =

-1; // an uninitialized depth = -1; // box } // constructor

used when cube is created Box(double len) { width =

height = depth = len; } // compute and return volume

double volume() { return width * height * depth; } }

100% MATCHING TEXT 91 WORDS

depth; } // constructor used when all dimensions specified

Box(double w, double h, double d) { width = w; height = h;

depth = d; } // constructor used when no dimensions

specified Box() { width = -1; // use -1 to indicate height =

-1; // an uninitialized depth = -1; // box } // constructor

used when cube is created Box(double len) { width =

height = depth = len; } // compute and return volume

double volume() { return width * height * depth; } } //

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

59/221 SUBMITTED TEXT 62 WORDS

vol = mybox1.volume(); System.out.println("Volume of

mybox1 is " + vol); // get volume of second box vol =

mybox2.volume(); System.out.println("Volume of mybox2 is

" + vol); // get volume of cube vol = mycube.volume();

System.out.println("Volume of mycube is " + vol); } }

OUTPUT Volume of mybox1 is 3000.0 Volume of mybox2

is -1.0 Volume of mycube is 343.0

42% MATCHING TEXT 62 WORDS

vol = mybox3.volume(); System.out.println("Volume of

mybox3 is " + vol); System.out.println("Weight of mybox3 is

" + vol = myclone.volume(); System.out.println("Volume of

myclone is " + vol); System.out.println("Weight of myclone

is " + myclone.weight); System.out.println(); vol =

mycube.volume(); System.out.println("Volume mycube is "

+ System.out.println("Weight of mycube is " +

mycube.weight); System.out.println(); } } Output: Volume

of mybox1 is 3000.0 Weight of mybox1 is 34.3 Volume of

mybox2 is 24.0

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

60/221 SUBMITTED TEXT 16 WORDS

class PassOb { public static void main(String args[]) { Test

ob1 = new Test(100, 22);

87% MATCHING TEXT 16 WORDS

class CallByValue { public static void main(String args[]) {

Test ob = new Test();

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

61/221 SUBMITTED TEXT 120 WORDS

In general, there are two ways that a computer language

can pass an argument to a subroutine. The first way is call-

by-value. This method copies the value of an argument

into the formal parameter of the subroutine. Therefore,

changes made to the parameter of the subroutine have no

effect on the argument. The second way an argument can

be passed is call-by-reference. In this method, a reference

to an argument (not the value of the argument) is passed

to the parameter. Inside the subroutine, this reference is

used to access the actual argument specified in the call.

This means that changes made to the parameter will affect

the argument used to call the subroutine. Java uses both

approaches.

98% MATCHING TEXT 120 WORDS

In general, there are two ways that a computer language

can pass an argument to a subroutine. The first way is call-

by-value. This method copies the value of an argument

into the formal parameter of the subroutine. Therefore,

changes made to the parameter of the subroutine have no

effect on the argument. The second way an argument can

be passed is call-by-reference. In this method, a reference

to an argument (not the value of the argument) is passed

to the parameter. Inside the subroutine, this reference is

used to access the actual argument specified in the call.

This means that changes made to the parameter will affect

the argument used to call the subroutine. As you will see,

Java uses both approaches,

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 99/139

62/221 SUBMITTED TEXT 103 WORDS

For example, consider the following program: PROGRAM

// Simple types are passed by value. class Test { void meth

(int i, int j) { i *= 2; j /= 2; } } class CallByValue { public static

void main (String args[]) { Test ob = new Test (); int a = 15, b

= 20; System.out.println("a and b before call: " + a + " " +

b); ob.meth(a, b); System.out.println("a and b after call: " +

a + " " + b); } } OUTPUT a and b before call: 15 20 a and b

after call: 15 20

93% MATCHING TEXT 103 WORDS

For example, consider the following program: // Simple

types are passed by value. class Test { void meth(int i, int j) {

i *= 2; j /= 2; } } class CallByValue { public static void

main(String args[]) { Test ob = new Test(); int a = 15, b = 20;

System.out.println("a and b before call: " + a + " " + b);

ob.meth(a, b); System.out.println("a and after call: " + a + " "

+ b); } } The output here: a and b before call: 15 20 a and b

after call: 15 20

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

63/221 SUBMITTED TEXT 32 WORDS

class CallByRef { public static void main(String args[]) { Test

ob = new Test(15, 20); System.out.println("ob.a and ob.b

before call: " + ob.a + " " + ob.b); ob.meth(ob);

System.out.println("ob.a and

57% MATCHING TEXT 32 WORDS

class public static void main(String args[]) { Test ob = new

Test(); int println("a and b before call: " + a + " " + b);

ob.meth(a, b); System.out.println("a and

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

64/221 SUBMITTED TEXT 27 WORDS

class RetOb { public static void main(String args[]) { Test

ob1 = new Test(2); Test ob2; ob2 = ob1.incrByTen();

System.out.println("ob1.a: " + ob1.a);

System.out.println("ob2.a: " +

46% MATCHING TEXT 27 WORDS

class CallByValue { public static void main(String args[]) {

Test ob = new Test(); int a = 15, System.out.println("a and b

before call: " + a + " " + b); ob.meth(a, b);

System.out.println(" a

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

65/221 SUBMITTED TEXT 75 WORDS

Recursion Java supports recursion. Recursion is the

process of defining something in terms of itself. As it

relates to Java programming, recursion is the attribute that

allows a method to call itself. A method that calls itself is

said to be recursive. The classic example of recursion is the

computation of the factorial of a number. The factorial of a

number N is the product of all the whole numbers

between 1 and N.

100% MATCHING TEXT 75 WORDS

Recursion Java supports recursion. Recursion is the

process of defining something in terms of itself. As it

relates to Java programming, recursion is the attribute that

allows a method to call itself. A method that calls itself is

said to be recursive.The classic example of recursion is the

computation of the factorial of a number. The factorial of a

number N is the product of all the whole numbers

between 1 and N.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 100/139

66/221 SUBMITTED TEXT 72 WORDS

A simple example of recursion. class Factorial { // this is a

recursive function int fact(int n) { int result; if(n==1) return

1; result = fact(n-1) * n; return result; } } class Recursion {

public static void main(String args[]) { Factorial f = new

Factorial(); System.out.println("Factorial of 4 is " + f.fact(4));

} } OUTPUT Factorial of 4 is 24 When fact()

91% MATCHING TEXT 72 WORDS

A simple example of recursion(factorial). class Factorial { //

this is a recursive function int fact(int n) { int result; if(n==1)

return 1; result = fact(n-1) * n; return result; } } class

Recursion { public static void main(String args[]) { Factorial f

= new Factorial(); System.out.println("Factorial of 3 is " +

f.fact(3)); System.out.println("Factorial of 4 is " + f.fact(4));

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

67/221 SUBMITTED TEXT 40 WORDS

Java supplies a rich set of access specifiers. Some aspects

of access control are related mostly to inheritance or

packages. (A package is, essentially, a grouping of classes.)

These parts of Java‘s access control mechanism will be

discussed later.

100% MATCHING TEXT 40 WORDS

Java supplies a rich set of access specifiers. Some aspects

of access control are related mostly to inheritance or

packages. (A package is, essentially, a grouping of classes.)

These parts of Java’s access control mechanism will be

discussed later.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

68/221 SUBMITTED TEXT 18 WORDS

How a member can be accessed is determined by the

access specifier that modifies its declaration. Java‘

100% MATCHING TEXT 18 WORDS

How a member can be accessed is determined by the

access specifier that modifies its declaration. Java

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

69/221 SUBMITTED TEXT 23 WORDS

Java‘s access specifiers are public, private, and protected.

Java also defines a default access level. protected applies

only when inheritance is involved.

100% MATCHING TEXT 23 WORDS

Java’s access specifiers are public, private, and protected.

Java also defines a default access level. protected applies

only when inheritance is involved.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

70/221 SUBMITTED TEXT 46 WORDS

When a member of a class is modified by the public

specifier, then that member can be accessed by any other

code. When a member of a class is specified as private,

then that member can only be accessed by other

members of its class.

93% MATCHING TEXT 46 WORDS

When a member of a class is modified by the public

specifier, then that member can be accessed by any other

code. When a member of a class is specified as private,

then that member can only be accessed byother members

of its class.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 101/139

71/221 SUBMITTED TEXT 29 WORDS

When no access specifier is used, then by default the

member of a class is public within its own package but

cannot be accessed outside of its package.

100% MATCHING TEXT 29 WORDS

When no access specifier is used, then by default the

member of a class is public within its own package, but

cannot be accessed outside of its package.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

72/221 SUBMITTED TEXT 16 WORDS

class AccessTest { public static void main(String args[]) {

Test ob = new Test(); //

87% MATCHING TEXT 16 WORDS

class CallByValue { public static void main(String args[]) {

Test ob = new Test();

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

73/221 SUBMITTED TEXT 11 WORDS

It has access to all of the variables and methods

100% MATCHING TEXT 11 WORDS

it has access to all of the variables and methods

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

74/221 SUBMITTED TEXT 39 WORDS

Recursion is the process of defining something in terms of

itself. As it relates to Java programming, recursion is the

attribute that allows a method to call itself. A method that

calls itself is said to be recursive.

100% MATCHING TEXT 39 WORDS

Recursion is the process of defining something in terms of

itself. As it relates to Java programming, recursion is the

attribute that allows a method to call itself. A method that

calls itself is said to be recursive.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

75/221 SUBMITTED TEXT 124 WORDS

class Box { double width; double height; double depth; //

construct clone of an object Box(Box ob) { // pass object

to constructor width = ob.width; height = ob.height; depth

= ob.depth; } // constructor used when all dimensions

specified Box(double w, double h, double d) { width = w;

height = h; depth = d; } // constructor used when no

dimensions specified Box() { width = -1; // use -1 to

indicate height = -1; // an uninitialized depth = -1; // box }

// constructor used when cube is created Box(double len) {

width = height = depth = len; } // compute and return

volume double volume() { return width * height * depth; } }

//

98% MATCHING TEXT 124 WORDS

class Box { private double width; private double height;

private double depth; // construct clone of an object

Box(Box ob) { // pass object to constructor width =

ob.width; height = ob.height; depth = ob.depth; } //

constructor used when all dimensions specified

Box(double w, double h, double d) { width = w; height = h;

depth = d; } // constructor used when no dimensions

specified Box() { width = -1; // use -1 to indicate height =

-1; // an uninitialized depth = -1; // box } // constructor

used when cube is created Box(double len) { width =

height = depth = len; } // compute and return volume

double volume() { return width * height * depth; } } //

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 102/139

76/221 SUBMITTED TEXT 22 WORDS

constructor for BoxWeight BoxWeight(double w, double h,

double d, double m) { width = w; height = h; depth = d;

66% MATCHING TEXT 22 WORDS

constructor for Box. Box(double w, double h, double d) {

width = w; height = h; depth = d; } //

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

77/221 SUBMITTED TEXT 95 WORDS

weight = m; } } class DemoBoxWeight { public static void

main(String args[]) { BoxWeight mybox1 = new

BoxWeight(10, 20, 15, 34.3); BoxWeight mybox2 = new

BoxWeight(2, 3, 4, 0.076); double vol; vol =

mybox1.volume(); System.out.println("Volume of mybox1 is

" + vol); System.out.println("Weight of mybox1 is " +

mybox1.weight); System.out.println(); vol =

mybox2.volume(); System.out.println("Volume of mybox2 is

" + vol); System.out.println("Weight of mybox2 is " +

mybox2.weight); } } OUTPUT Volume of mybox1 is 3000.0

Weight of mybox1 is 34.3 Volume of mybox2 is 24.0

Weight of mybox2 is 0.076

71% MATCHING TEXT 95 WORDS

weight = m; } } class DemoSuper { public static void

main(String args[]) { BoxWeight mybox1 = new

BoxWeight(10, 20, 15, 34.3); BoxWeight mybox2 = new

BoxWeight(2, 3, 4, 0.076); BoxWeight mybox3 = new

BoxWeight(); // default BoxWeight mycube = new

BoxWeight(3, 2); BoxWeight myclone = new

BoxWeight(mybox1); double vol; vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

System.out.println("Weight of mybox1 is " +

mybox1.weight); System.out.println(); vol =

mybox2.volume(); System.out.println("Volume of mybox2 is

" + vol); System.out.println("Weight of mybox2 is " +

mybox2.weight); System.out.println(); vol = mybox3.

volume(); System.out.println("Volume of mybox3 is " + vol);

System.out.Weight of is " +

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

78/221 SUBMITTED TEXT 18 WORDS

needs to refer to its immediate superclass can use the

keyword super. super has two general forms.

58% MATCHING TEXT 18 WORDS

needs to refer to its immediate super class, it can do so by

use of the key word super. o Super has two general forms:

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

79/221 SUBMITTED TEXT 57 WORDS

used to access a member of the superclass that has been

hidden by a member of a subclass. Using super to Call

Superclass Constructors A subclass can call a constructor

method defined by its superclass by use of the following

form of super: super(parameter-list); Here, parameter-list

specifies any parameters needed by the constructor in the

73% MATCHING TEXT 57 WORDS

Used to access a member of the super class that has been

hidden by a member of a sub class Using super to call

super class constructor o A sub class can call a constructor

defined by its super class by use of the following form of

super: o super (parameter-list); o Parameter list specifies

parameters needed by the constructor in the

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 103/139

80/221 SUBMITTED TEXT 415 WORDS

A complete implementation of BoxWeight. class Box {

private double width; private double height; private double

depth; // construct clone of an object Box(Box ob) { // pass

object to constructor width = ob.width; height =

ob.height; depth = ob.depth; } // constructor used when

all dimensions specified Box(double w, double h, double d)

{ width = w; height = h; depth = d; } // constructor used

when no dimensions specified Box() { width = -1; // use -1

to indicate height = -1; // an uninitialized depth = -1; // box

} // constructor used when cube is created Box(double len)

{ width = height = depth = len; } // compute and return

volume double volume() { return width * height * depth; } }

// BoxWeight now fully implements all constructors. class

BoxWeight extends Box { double weight; // weight of box

// construct clone of an object BoxWeight(BoxWeight ob) {

// pass object to constructor super(ob); weight =

ob.weight; } // constructor when all parameters are

specified BoxWeight(double w, double h, double d, double

m) { super(w, h, d); // call superclass constructor weight =

m; } // default constructor BoxWeight() { super(); weight =

-1; } // constructor used when cube is created

BoxWeight(double len, double m) { super(len); weight = m;

} } class DemoSuper { public static void main(String args[]) {

BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);

BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);

BoxWeight mybox3 = new BoxWeight(); // default

BoxWeight mycube = new BoxWeight(3, 2); BoxWeight

myclone = new BoxWeight(mybox1); double vol; vol =

mybox1.volume(); System.out.println("Volume of mybox1 is

" + vol); System.out.println("Weight of mybox1 is " +

mybox1.weight); System.out.println(); vol =

mybox2.volume(); System.out.println("Volume of mybox2 is

" + vol); System.out.println("Weight of mybox2 is " +

mybox2.weight); System.out.println(); vol =

mybox3.volume(); System.out.println("Volume of mybox3 is

" + vol); System.out.println("Weight of mybox3 is " +

mybox3.weight); System.out.println(); vol =

myclone.volume(); System.out.println("Volume of myclone

is " + vol); System.out.println("Weight of myclone is " +

myclone.weight); System.out.println(); vol =

mycube.volume(); System.out.println("Volume of mycube is

" + vol); System.out.println("Weight of mycube is " +

mycube.weight); System.out.println(); } } OUTPUT Volume

of mybox1 is 3000.0 Weight of mybox1 is 34.3 Volume of

mybox2 is 24.0 Weight of mybox2 is 0.076 Volume of

mybox3 is -1.0 Weight of mybox3 is -1.0 Volume of

myclone is 3000.0 Weight of myclone is 34.3 Volume of

mycube is 27.0 Weight of mycube is 2.0

97% MATCHING TEXT 415 WORDS

A complete implementation of BoxWeight. class Box {

private double width; private double height; private double

depth; // construct clone of an object Box(Box ob) { // pass

object to constructor width = ob.width; height =

ob.height; depth = ob.depth; } // constructor used when

all dimensions specified Box(double w, double h, double d)

{ width = w; height = h; depth = d; } // constructor used

when no dimensions specified Box() { width = -1; // use -1

to indicate height = -1; // an uninitialized depth = -1; // box

} // constructor used when cube is created Box(double len)

{ width = height = depth = len; } // compute and return

volume double volume() { return width * height * depth; } }

// BoxWeight now fully implements all constructors. class

BoxWeight extends Box { double weight; // weight of box

// construct clone of an object BoxWeight(BoxWeight ob) {

// pass object to constructor super(ob); weight =

ob.weight; } // constructor when all parameters are

specified BoxWeight(double w, double h, double d, double

m) { super(w, h, d); // call superclass constructor weight =

m; } // default constructor Smartzworld.com

Smartworld.asia jntuworldupdates.org Specworld.in

BoxWeight() { super(); weight = -1; } // constructor used

when cube is created BoxWeight(double len, double m) {

super(len); weight = m; } } class DemoSuper { public static

void main(String args[]) { BoxWeight mybox1 = new

BoxWeight(10, 20, 15, 34.3); BoxWeight mybox2 = new

BoxWeight(2, 3, 4, 0.076); BoxWeight mybox3 = new

BoxWeight(); // default BoxWeight mycube = new

BoxWeight(3, 2); BoxWeight myclone = new

BoxWeight(mybox1); double vol; vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

System.out.println("Weight of mybox1 is " +

mybox1.weight); System.out.println(); vol =

mybox2.volume(); System.out.println("Volume of mybox2 is

" + vol); System.out.println("Weight of mybox2 is " +

mybox2.weight); System.out.println(); vol =

mybox3.volume(); System.out.println("Volume of mybox3 is

" + vol); System.out.println("Weight of mybox3 is " +

mybox3.weight); System.out.println(); vol =

myclone.volume(); System.out.println("Volume of myclone

is " + vol); System.out.println("Weight of myclone is " +

myclone.weight); System.out.println(); vol =

mycube.volume(); System.out.println("Volume of mycube is

" + vol); System.out.println("Weight of mycube is " +

mycube.weight); System.out.println(); } } Output: Volume

of mybox1 is 3000.0 Weight of mybox1 is 34.3 Volume of

mybox2 is 24.0 Weight of mybox2 is 0.076 Volume of

mybox3 is -1.0 Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in Weight of mybox3 is

-1.0 Volume of myclone is 3000.0 Weight of myclone is

34.3 Volume of mycube is 27.0 Weight of mycube is 2.0

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 104/139

81/221 SUBMITTED TEXT 38 WORDS

The second form of super acts somewhat like this, except

that it always refers to the superclass of the subclass in

which it is used. This usage has the following general form:

super.member Here, member can be

55% MATCHING TEXT 38 WORDS

The second form of super acts somewhat like this

keyword, except that it always refers to the super class of

the sub class in which it is used. o The syntax is: o

Super.member ; o Member can either be

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

82/221 SUBMITTED TEXT 103 WORDS

Using super to overcome name hiding. class A { int i; } //

Create a subclass by extending class A. class B extends A {

int i; // this i hides the i in A B(int a, int b) { super.i = a; // i in

A i = b; // i in B } void show() { System.out.println("i in

superclass: " + super.i); System.out.println("i in subclass: " +

i); } } class UseSuper { public static void main(String args[]) {

B subOb = new B(1, 2); subOb.show(); } } OUTPUT i in

superclass: 1 i in subclass: 2 Although the

97% MATCHING TEXT 103 WORDS

Using super to overcome name hiding. class A { int i; } //

Create a subclass by extending class A. class B extends A {

int i; // this i hides the i in A B(int a, int b) { super.i = a; // i in

A i = b; // i in B } void show() { System.out.println("i in

superclass: " + super.i); System.out.println("i in subclass: " +

i); } } class UseSuper { public static void main(String args[]) {

B subOb = new B(1, 2); subOb.show(); } } Output: i in

superclass: 1 i in subclass: 2 When the

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

83/221 SUBMITTED TEXT 214 WORDS

class Box { private double width; private double height;

private double depth; // construct clone of an object

Box(Box ob) { // pass object to constructor width =

ob.width; height = ob.height; depth = ob.depth; } //

constructor used when all dimensions specified

Box(double w, double h, double d) { width = w; height = h;

depth = d; } // constructor used when no dimensions

specified Box() { width = -1; // use -1 to indicate height =

-1; // an uninitialized depth = -1; // box } // constructor

used when cube is created Box(double len) { width =

height = depth = len; } // compute and return volume

double volume() { return width * height * depth; } } // Add

weight. class BoxWeight extends Box { double weight; //

weight of box // construct clone of an object

BoxWeight(BoxWeight ob) { // pass object to constructor

super(ob); weight = ob.weight; } // constructor when all

parameters are specified BoxWeight(double w, double h,

double d, double m) { super(w, h, d); // call superclass

constructor weight = m; } // default constructor

BoxWeight() { super(); weight = -1; } // constructor used

when cube is created BoxWeight(double len, double m) {

super(len); weight = m; } } //

94% MATCHING TEXT 214 WORDS

class Box { private double width; private double height;

private double depth; // construct clone of an object

Box(Box ob) { // pass object to constructor width =

ob.width; height = ob.height; depth = ob.depth; } //

constructor used when all dimensions specified

Box(double w, double h, double d) { width = w; height = h;

depth = d; } // constructor used when no dimensions

specified Box() { width = -1; // use -1 to indicate height =

-1; // an uninitialized depth = -1; // box } // constructor

used when cube is created Box(double len) { width =

height = depth = len; } // compute and return volume

double volume() { return width * height * depth; } } //

BoxWeight now fully implements all constructors. class

BoxWeight extends Box { double weight; // weight of box

// construct clone of an object BoxWeight(BoxWeight ob) {

// pass object to constructor super(ob); weight =

ob.weight; } // constructor when all parameters are

specified BoxWeight(double w, double h, double d, double

m) { super(w, h, d); // call superclass constructor weight =

m; } // default constructor Smartzworld.com

Smartworld.asia jntuworldupdates.org Specworld.in

BoxWeight() { super(); weight = -1; } // constructor used

when cube is created BoxWeight(double len, double m) {

super(len); weight = m; } }

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 105/139

84/221 SUBMITTED TEXT 76 WORDS

construct clone of an object Shipment(Shipment ob) { //

pass object to constructor super(ob); cost = ob.cost; } //

constructor when all parameters are specified

Shipment(double w, double h, double d, double m, double

c) { super(w, h, d, m); // call superclass constructor cost =

c; } // default constructor Shipment() { super(); cost = -1; }

// constructor used when cube is created Shipment(double

len, double m, double c) { super(len, m);

58% MATCHING TEXT 76 WORDS

construct clone of an object BoxWeight(BoxWeight ob) { //

pass object to constructor super(ob); weight = ob.weight; }

// constructor when all parameters are specified

BoxWeight(double w, double h, double d, double m) {

super(w, h, d); // call superclass constructor weight = m; }

// default constructor Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in BoxWeight() { super();

weight = -1; } // constructor used when cube is created

BoxWeight(double len, double m) { super(len); weight = m;

} }

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

85/221 SUBMITTED TEXT 74 WORDS

vol = shipment1.volume(); System.out.println("Volume of

shipment1 is " + vol); System.out.println("Weight of

shipment1 is " + shipment1.weight);

System.out.println("Shipping cost: $" + shipment1.cost);

System.out.println(); vol = shipment2.volume();

System.out.println("Volume of shipment2 is " + vol);

System.out.println("Weight of shipment2 is " +

shipment2.weight); System.out.println("Shipping cost: $" +

shipment2.cost); } } OUTPUT Volume of shipment1 is

3000.0 Weight of shipment1 is 10.0 Shipping cost: $3.41

Volume of shipment2 is 24.0 Weight of shipment2 is 0.76

50% MATCHING TEXT 74 WORDS

vol = myclone.volume(); System.out.println("Volume of

myclone is " + vol); System.out.println("Weight of myclone

is " + myclone.weight); System.out.println(); vol =

mycube.volume(); System.out.println("Volume of mycube is

" + vol); System.out.println("Weight of mycube is " +

mycube.weight); System.out.println(); } } Output: Volume

of mybox1 is 3000.0 Weight of mybox1 is 34.3 Volume of

mybox2 is 24.0 Weight of mybox2 is 0.076

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

86/221 SUBMITTED TEXT 64 WORDS

Method Overriding In a class hierarchy, when a method in

a subclass has the same name and type signature as a

method in its superclass, then the method in the subclass

is said to override the method in the superclass. When an

overridden method is called from within a subclass, it will

always refer to the version of that method defined by the

79% MATCHING TEXT 64 WORDS

Method overriding: x In a class hierarchy, when a method

in a sub class has the same name and type signature as a

method in its super class, then the method in the sub class

is said to be override the method in the sub x When an

overridden method is called from within a sub class, it will

always refers to the version of that method defined by the

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 106/139

87/221 SUBMITTED TEXT 111 WORDS

Method overriding. class A { int i, j; A(int a, int b) { i = a; j =

b; } // display i and j void show() { System.out.println("i and

j: " + i + " " + j); } } class B extends A { int k; B(int a, int b, int

c) { super(a, b); k = c; } // display k – this overrides show()

in A void show() { System.out.println("k: " + k); } } class

Override { public static void main(String args[]) { B subOb =

new B(1, 2, 3); subOb.show(); // this calls show() in B } }

OUTPUT k: 3

100% MATCHING TEXT 111 WORDS

Method overriding. class A { int i, j; A(int a, int b) { i = a; j =

b; } // display i and j void show() { System.out.println("i and

j: " + i + " " + j); } } class extends A { int k; B(int a, int b, int c)

{ super(a, b); k = c; } // display k – this overrides show() in A

void show() { System.out.println("k: " + k); } } class Override

{ public static void main(String args[]) { B subOb = new B(1,

2, 3); subOb.show(); // this calls show() in B } } Output: k: 3

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

88/221 SUBMITTED TEXT 39 WORDS

class B extends A { int k; B(int a, int b, int c) { super(a, b); k =

c; } void show() { super.show(); // this calls A's show()

System.out.println("k: " + k); } }

70% MATCHING TEXT 39 WORDS

class B extends A { int k; B(int a, int b, int c) { super(a, b); k =

c; } // display this overrides show() in A void show() {

System.out.println("k: " + k); } }

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

89/221 SUBMITTED TEXT 19 WORDS

mechanism by which a call to an overridden method is

resolved at run time, rather than compile time.

91% MATCHING TEXT 19 WORDS

mechanism by which a call to an overridden method is

resolved at run time rather then compile time.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

90/221 SUBMITTED TEXT 167 WORDS

Dynamic Method Dispatch class A { void callme() {

System.out.println("Inside A's callme method"); } } class B

extends A { // override callme() void callme() {

System.out.println("Inside B's callme method"); } } class C

extends A { // override callme() void callme() {

System.out.println("Inside C's callme method"); } } class

Dispatch { public static void main(String args[]) { A a = new

A(); // object of type A B b = new B(); // object of type B C

c = new C(); // object of type C A r; // obtain a reference of

type A r = a; // r refers to an A object r.callme(); // calls A's

version of callme r = b; // r refers to a B object r.callme(); //

calls B's version of callme r = c; // r refers to a C object

r.callme(); // calls C's version of callme } } OUTPUT Inside

A‘s callme method Inside B‘s callme method Inside C‘s

callme method

100% MATCHING TEXT 167 WORDS

Dynamic Method Dispatch class A { void callme() {

System.out.println("Inside A's callme method"); } } class B

extends A { // override callme() void callme() {

System.out.println("Inside B's callme method"); } } class C

extends A { // override callme() void callme() {

System.out.println("Inside C's callme method"); } } class

Dispatch { public static void main(String args[]) { A a = new

A(); // object of type A B b = new B(); // object of type B C

c = new C(); // object of type C A r; // obtain a reference of

type A r = a; // r refers to an A object r.callme(); // calls A's

version of callme r = b; // r refers to a B object r.callme(); //

calls B's version of callme r = c; // r refers to a C object

r.callme(); // calls C's version of callme } } Output: Inside A’s

callme method Inside B’s callme method Inside C’s callme

method

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 107/139

91/221 SUBMITTED TEXT 164 WORDS

Using abstract methods and classes. abstract class Figure {

double dim1; double dim2; Figure(double a, double b) {

dim1 = a; dim2 = b; } // area is now an abstract method

abstract double area(); } class Rectangle extends Figure {

Rectangle(double a, double b) { super(a, b); } // override

area for rectangle double area() { System.out.println("Inside

Area for Rectangle."); return dim1 * dim2; } } class Triangle

extends Figure { Triangle(double a, double b) { super(a, b); }

// override area for right triangle double area() {

System.out.println("Inside Area for Triangle."); return dim1 *

dim2 / 2; } } class AbstractAreas { public static void

main(String args[]) { // Figure f = new Figure(10, 10); //

illegal now Rectangle r = new Rectangle(9, 5); Triangle t =

new Triangle(10, 8); Figure figref; // this is OK, no object is

created figref = r; System.out.println("Area is " +

figref.area()); figref = t; System.out.println("Area is " +

figref.area()); } }

97% MATCHING TEXT 164 WORDS

Using abstract methods and classes. abstract class Figure {

double dim1; double dim2; Figure(double a, double b) {

dim1 = a; dim2 = b; } Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in class Rectangle

extends Figure { Rectangle(double a, double b) { super(a,

b); } // override area for rectangle double area() {

System.out.println("Inside Area for Rectangle."); return dim1

* dim2; } } class Triangle extends Figure { Triangle(double a,

double b) { super(a, b); } // override area for right triangle

double area() { System.out.println("Inside Area for

Triangle."); return dim1 * dim2 / 2; } } class AbstractAreas {

public static void main(String args[]) { // Figure f = new

Figure(10, 10); // illegal now Rectangle r = new

Rectangle(9, 5); Triangle t = new Triangle(10, 8); Figure

figref; // this is OK, no object is created figref = r;

System.out.println("Area is " + figref.area()); figref = t;

System.out.println("Area is " + figref.area()); } }

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

92/221 SUBMITTED TEXT 35 WORDS

to prevent overriding To disallow a method from being

overridden, specify final as a modifier at the start of its

declaration. Methods declared as final cannot be

overridden. The following fragment illustrates final:

92% MATCHING TEXT 35 WORDS

to prevent it from occurring. To disallow a method from

being overridden, specify final as a modifier at the start of

its declaration. Methods declared as final cannot be

overridden. The following fragment illustrates final:

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

93/221 SUBMITTED TEXT 31 WORDS

class A { final void meth() { System.out.println("This is a final

method."); } } class B extends A { void meth() { // ERROR!

Can't override. System.out.println("Illegal!"); } }

100% MATCHING TEXT 31 WORDS

class A { final void meth() { System.out.println("This is a final

method."); } } class B extends A { void meth() { // ERROR!

Can't override. System.out.println("Illegal!"); } }

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

94/221 SUBMITTED TEXT 107 WORDS

Using final to Prevent Inheritance To prevent a class from

being inherited. To do this, precede the class declaration

with final. Declaring a class as final implicitly declared all of

its methods as final, too. As you might expect, it is illegal to

declare a class as both abstract and final since an abstract

class is incomplete by itself and relies upon its subclasses

to provide complete implementations. Here is an example

of a final class: final class A { // ... } // The following class is

illegal. class B extends A { // ERROR! Can't subclass A // ... }

6.9 The

95% MATCHING TEXT 107 WORDS

Using final to Prevent Inheritance: Sometimes you will

want to prevent a class from being inherited. To do this,

precede the class declaration with final. Declaring a class

as final implicitly declares all of its methods as final, too. As

you might expect, it is illegal to declare a class as both

abstract and final since an abstract class is incomplete by

itself and relies upon its subclasses to provide complete

implementations. Here is an example of a final class: final

class A { // ... } // The following class is illegal. class B

extends A { // ERROR! Can't subclass A // ... } As the

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 108/139

95/221 SUBMITTED TEXT 20 WORDS

mechanism by which a call to an overridden method is

resolved at run time, rather than compile time. 6.12

91% MATCHING TEXT 20 WORDS

mechanism by which a call to an overridden method is

resolved at run time rather then compile time.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

96/221 SUBMITTED TEXT 14 WORDS

Packages and interfaces are two of the basic components

of a Java program.

100% MATCHING TEXT 14 WORDS

Packages and Interfaces are two of the basic components

of a java program.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

97/221 SUBMITTED TEXT 42 WORDS

any (or all) of the following four internal parts: • A single

package statement (optional) • Any number of import

statements (optional) • A single public class declaration

(required) • Any number of classes private to the package

(optional) 7.1

90% MATCHING TEXT 42 WORDS

any (or all) of the following internal parts: o A single

package statement (optional) o Any number of import

statements (optional) o A single public class declaration

(required) o Any number of classes private to the package

(optional)

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

98/221 SUBMITTED TEXT 13 WORDS

Any classes declared within that file will belong to the

specified package.

100% MATCHING TEXT 13 WORDS

Any classes declared within that file will belong to the

specified package.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

99/221 SUBMITTED TEXT 19 WORDS

This is the general form of the package statement: package

pkg; Here, pkg is the name of

76% MATCHING TEXT 19 WORDS

This is the general form of the import statement: import

pkg1[.pkg2].(classname|*); Here, pkg1 is the name of

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

100/221 SUBMITTED TEXT 21 WORDS

two ways. First, by default, the Java run-time system uses

the current working directory as its starting point. Thus, if

92% MATCHING TEXT 21 WORDS

two parts. First, by default, the Java run-time system uses

the current working directory as its starting point. Thus, if

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 109/139

101/221 SUBMITTED TEXT 22 WORDS

package is in the current directory, or a subdirectory of the

current directory, it will be found. Second, a directory path

92% MATCHING TEXT 22 WORDS

package is in the current directory, or a subdirectory of the

current directory, it will be found. Second, you can specify

a directory path

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

102/221 SUBMITTED TEXT 50 WORDS

For example, consider the following package specification.

package MyPack; In order for a program to find MyPack,

one of two things must be true. Either the program is

executed from a directory immediately above MyPack, or

CLASSPATH must be set to include the path to MyPack.

100% MATCHING TEXT 50 WORDS

For example, consider the following package specification.

package MyPack; In order for a program to find MyPack,

one of two things must be true. Either the program is

executed from a directory immediately above MyPack, or

CLASSPATH must be set to include the path to MyPack.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

103/221 SUBMITTED TEXT 26 WORDS

b; } void show() { if(bal>0) System.out.print("--< ");

System.out.println(name + ": $" + bal); } } class

AccountBalance { public static void main(String args[]) {

50% MATCHING TEXT 26 WORDS

B } void show() { System.out.println("i in superclass: " +

super.i); System.out.println("i in subclass: " + i); } } class

UseSuper { public static void main(String args[]) {

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

104/221 SUBMITTED TEXT 34 WORDS

both means of encapsulating and containing the name

space and scope of variables and methods. Packages act

as containers for classes and other subordinate packages.

Classes act as containers for data and code.

72% MATCHING TEXT 34 WORDS

both means of encapsulating and containing the name

space and scope of variables and methods. x Packages

acts as a containers for classes and other sub – ordinate

packages. Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in x Classes act as

containers for data and code.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

105/221 SUBMITTED TEXT 39 WORDS

Java addresses four categories of visibility for class

members: • Subclasses in the same package • Non-

subclasses in the same package • Subclasses in different

packages • Classes that are neither in the same package

nor subclasses The

65% MATCHING TEXT 39 WORDS

Java address four categories of visibility for class members:

o Sub – classes in the same package. o Non – sub class in

the same package. o Sub – classes in the different

package. o Classes that are neither in the same package

nor subclasses. x The 3

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 110/139

106/221 SUBMITTED TEXT 23 WORDS

access specifiers, private, public, and protected, provide a

variety of ways to produce the many levels of access

required by these categories.

100% MATCHING TEXT 23 WORDS

access specifiers private, public and protected provide a

variety of ways to produce the many levels of access

required by these categories.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

107/221 SUBMITTED TEXT 42 WORDS

Private No modifier Protected Public Same class Yes Yes

Yes Yes Same package Subclass No Yes Yes Yes Same

package non- subclass No Yes Yes Yes Different package

subclass No No Yes Yes Different package non- subclass

No No No Yes

80% MATCHING TEXT 42 WORDS

Private No modifier Protected Public Same class Yes Yes

Yes Yes Same package sub class No Yes Yes Yes Same

package non – sub class No Yes Yes Yes Different package

sub class No No Yes Yes Different package non sub class

No No No Yes

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

108/221 SUBMITTED TEXT 48 WORDS

Java includes the import statement to bring certain classes,

or entire packages, into visibility. Once imported, a class

can be referred to directly, using only its name. The import

statement is a convenience to the programmer and is not

technically needed to write a complete Java program.

100% MATCHING TEXT 48 WORDS

Java includes the import statement to bring certain classes,

or entire packages, into visibility. Once imported, a class

can be referred to directly, using only its name. The import

statement is a convenience to the programmer and is not

technically needed to write a complete Java program.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

109/221 SUBMITTED TEXT 115 WORDS

In a Java source file, import statements occur immediately

following the package statement (if it exists) and before

any class definitions. This is the general form of the import

statement: import pkg1[.pkg2].(classname|*); Here, pkg1 is

the name of a top-level package, and pkg2 is the name of

a subordinate package inside the outer package separated

by a dot (.). There is no practical limit on the depth of a

package hierarchy, except that imposed by the file system.

Finally, specify either an explicit classname or a star (*),

which indicates that the Java compiler should import the

entire package. This code fragment shows both forms in

use: import java.util.Date; import java.io.*;

99% MATCHING TEXT 115 WORDS

In a Java source file, import statements occur immediately

following the package statement (if it exists) and before

any class definitions. This the general form of the import

statement: import pkg1[.pkg2].(classname|*); Here, pkg1 is

the name of a top-level package, and pkg2 is the name of

a subordinate package inside the outer package separated

by a dot (.). There is no practical limit on the depth of a

package hierarchy, except that imposed by the file system.

Finally, you specify either an explicit classname or a star (*),

which indicates that the Java compiler should import the

entire package. This code fragment shows both forms in

use: import java.util.Date; import java.io.*;

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 111/139

110/221 SUBMITTED TEXT 141 WORDS

Implementing Interfaces Once an interface has been

defined, one or more classes can implement that interface.

To implement an interface, include the implements clause

in a class definition, and then create the methods defined

by the interface. The general form of a class that includes

the implements clause looks like this: access class

classname [extends superclass] [implements interface

[,interface...]] { // class-body } Here, access is either public

or not used. If a class implements more than one interface,

the interfaces are separated with a comma. If a class

implements two interfaces that declare the same method,

then the same method will be used by clients of either

interface. The methods that implement an interface must

be declared public. Also, the type signature of the

implementing method must match exactly the type

signature specified in the interface definition.

100% MATCHING TEXT 141 WORDS

Implementing Interfaces: Once an interface has been

defined, one or more classes can implement that interface.

To implement an interface, include the implements clause

in a class definition, and then create the methods defined

by the interface. The general form of a class that includes

the implements clause looks like this: access class

classname [extends superclass] [implements interface

[,interface...]] { // class-body } Here, access is either public

or not used. If a class implements more than one interface,

the interfaces are separated with a comma. If a class

implements two interfaces that declare the same method,

then the same method will be used by clients of either

interface. The methods that implement an interface must

be declared public. Also, the type signature of the

implementing method must match exactly the type

signature specified in the interface definition.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

111/221 SUBMITTED TEXT 32 WORDS

the default handler. The default handler displays a string

describing the exception, prints a stack trace from the

point at which the exception occurred, and terminates the

program. 8.4

100% MATCHING TEXT 32 WORDS

the default handler. The default handler displays a string

describing the exception, prints a stack trace from the

point at which the exception occurred, and terminates the

program.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

112/221 SUBMITTED TEXT 71 WORDS

catch (ArithmeticException e) {

System.out.println("Exceptio: " + e); a = 0; // set a to zero

and continue } When this version is substituted in the

program, the following message will be displayed.

Exception: java.lang.ArithmeticException: / by zero

Multiple catch Clauses In some cases, more than one

exception could be raised by a single piece of code. To

handle this type of situation, two or more catch clauses

77% MATCHING TEXT 71 WORDS

catch (ArithmeticException e) {

System.out.println("Exception: " + e); a = 0; // set a to zero

and continue } When this version is substituted in the

program, and the program is run, each divide-by- zero

error displays the following message: – Exception:

java.lang.ArithmeticException: / by zero Multiple Catch

Blocks In some cases, more than one exception could be

raised by a single piece of code. To handle this type of

situation, you can specify two or more catch clauses,

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 112/139

113/221 SUBMITTED TEXT 58 WORDS

each catching a different type of exception. When an

exception is thrown, each catch statement is inspected in

order, and the first one whose type matches that of the

exception is executed. After one catch statement executes,

the others are bypassed, and execution continues after the

try/catch block. The following example traps two different

exception types:

100% MATCHING TEXT 58 WORDS

each catching a different type of exception. When an

exception is thrown, each catch statement is inspected in

order, and the first one whose type matches that of the

exception is executed. After one catch statement executes,

the others are bypassed, and execution continues after the

try/catch block. The following example traps two different

exception types: //

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

114/221 SUBMITTED TEXT 89 WORDS

Demonstrate multiple catch statements. class MultiCatch {

public static void main(String args[]) { try { int a =

args.length; System.out.println("a = " + a); int b = 42 / a; int

c[] = { 1 }; c[42] = 99; } catch(ArithmeticException e) {

System.out.println("Divide by 0: " + e); }

catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index oob: " + e); }

System.out.println("After try/catch blocks."); } } This

program will cause a division-by-zero exception if it is

started with no command line parameters, since a will be

equal

94% MATCHING TEXT 89 WORDS

Demonstrate multiple catch class MultiCatch { public static

void main(String args[]) { try { int a = args.length;

System.out.println("a = " + a); int b = 42 / a; int c[] = { 1 };

c[42] = 99; } catch(ArithmeticException e) {

System.out.println("Divide by 0: " + e); }

catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index oob: " + e); }

System.out.println("After try/catch blocks."); } } This

program will cause a division-by-zero exception if it is

started with no commandline parameters, since a will

equal

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

115/221 SUBMITTED TEXT 88 WORDS

zero. It will survive the division if you provide a command-

line argument, setting a to something larger than zero. But

it will cause an ArrayIndexOutOfBoundsException, since

the int array c has a length of 1, yet the program attempts

to assign a value to c[42]. Here is the output generated by

running it both ways: C:\<java MultiCatch a = 0 Divide by

0: java.lang.ArithmeticException: / by zero After try/catch

blocks. C:\<java MultiCatch TestArg a = 1 Array index

oob: java.lang.ArrayIndexOutOfBoundsException After

try/catch blocks.

95% MATCHING TEXT 88 WORDS

zero. It will survive the division if you provide a command-

line argument, setting a to something larger than zero. But

it will cause an Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

ArrayIndexOutOfBoundsException, since the int array c has

a length of 1, yet the program attempts to assign a value to

c[42]. Here is the output generated by running it both

ways: C:\<java MultiCatch a = 0 Divide by 0:

java.lang.ArithmeticException: / by zero After try/catch

blocks. C:\<java MultiCatch TestArg a = 1 Array index

oob: java.lang.ArrayIndexOutOfBoundsException After

try/catch blocks.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

116/221 SUBMITTED TEXT 18 WORDS

statements. class NestTry { public static void main(String

args[]) { try { int a = args.length; /*

89% MATCHING TEXT 18 WORDS

statements. class MultiCatch { public static void main(String

args[]) { try { int a = args.length;

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 113/139

117/221 SUBMITTED TEXT 23 WORDS

C:\<java NestTry One a = 1 Divide by 0:

java.lang.ArithmeticException: / by zero C:\<java NestTry

One Two a = 2 Array index

52% MATCHING TEXT 23 WORDS

C:\<java MultiCatch a = 0 Divide by 0:

java.lang.ArithmeticException: / by zero After try/catch

blocks. C:\<java MultiCatch TestArg a = 1 Array index

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

118/221 SUBMITTED TEXT 42 WORDS

throw ThrowableInstance; Here, ThrowableInstance must

be an object of type Throwable or a subclass of Throwable.

Simple types, such as int or char, as well as non-Throwable

classes, such as String and Object, cannot be used as

exceptions. Two ways

97% MATCHING TEXT 42 WORDS

Throw throwableInstance Here, ThrowableInstance must

be an object of type Throwable or a subclass of Throwable.

Simple types, such as int or char, as well as non-Throwable

classes, such as String and Object, cannot be used as

exceptions There are two ways

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

119/221 SUBMITTED TEXT 102 WORDS

obtain a Throwable object: using a parameter into a catch

clause, or creating one with the new operator. The flow of

execution stops immediately after the throw statement;

any subsequent statements are not executed. The nearest

enclosing try block is inspected to see if it has a catch

statement that matches the type of the exception. If it does

find a match, control is transferred to that statement. If not,

then the next enclosing try statement is inspected, and so

on. If no matching catch is found, then the default

exception handler halts the program and prints the stack

trace.

98% MATCHING TEXT 102 WORDS

obtain a Throwable object: – using a parameter into a

catch clause – creating one with the new operator. The

flow of execution stops immediately after the throw

statement; any subsequent statements are not executed.

The nearest enclosing try block is inspected to see if it has

a catch statement that matches the type of the exception.

If it does find a match, control is transferred to that

statement. If not, then the next enclosing try statement is

inspected, and so on. If no matching catch is found, then

the default exception handler halts the program and prints

the stack trace //

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

120/221 SUBMITTED TEXT 51 WORDS

Demonstrate throw. class ThrowDemo { static void

demoproc() { try { throw new

NullPointerException("demo"); }

catch(NullPointerException e) { System.out.println("Caught

inside demoproc."); throw e; // rethrow the exception } }

public static void main(String args[]) { try { demoproc(); }

catch(NullPointerException e) {

System.out.println("Recaught: " + e); } } }

100% MATCHING TEXT 51 WORDS

Demonstrate throw. class ThrowDemo { static void

demoproc() { try { throw new

NullPointerException("demo"); }

catch(NullPointerException e) { System.out.println("Caught

inside demoproc."); throw e; // rethrow the exception } }

public static void main(String args[]) { try { demoproc(); }

catch(NullPointerException e) {

System.out.println("Recaught: " + e);

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 114/139

121/221 SUBMITTED TEXT 140 WORDS

throws clause If a method is capable of causing an

exception that it does not handle, it must specify this

behavior so that callers of the method can guard

themselves against that exception. You do this by including

a throws clause in the method‘s declaration. A throws

clause lists the types of exceptions that a method might

throw. This is necessary for all exceptions, except those of

type Error or RuntimeException, or any of their subclasses.

All other exceptions that a method can throw must be

declared in the throws clause. If they are not, a compile-

time error will result. This is the general form of a method

declaration that includes a throws clause: type method-

name(parameter-list) throws exception-list { // body of

method } Here, exception-list is a comma-separated list of

the exceptions that a method can throw.

99% MATCHING TEXT 140 WORDS

Throws Keyword If a method is capable of causing an

exception that it does not handle, it must specify this

behavior so that callers of the method can guard

themselves against that exception. You do this by including

a throws clause in the method’s declaration. A throws

clause lists the types of exceptions that a method might

throw. This is necessary for all exceptions, except those of

type Error or RuntimeException, or any of their subclasses.

All other exceptions that a method can throw must be

declared in the throws clause. If they are not, a compile-

time error will result. This is the general form of a method

declaration that includes a throws clause: type method-

name(parameter-list) throws exception-list { // body of

method } Here, exception-list is a comma-separated list of

the exceptions that a method can throw

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

122/221 SUBMITTED TEXT 103 WORDS

class ThrowsDemo { static void throwOne() throws

IllegalAccessException { System.out.println("Inside

throwOne."); throw new IllegalAccessException("demo"); }

public static void main(String args[]) { try { throwOne(); }

catch (IllegalAccessException e) {

System.out.println("Caught " + e); } } } OUTPUT inside

throwOne caught java.lang.IllegalAccessException:

88% MATCHING TEXT 103 WORDS

class ThrowsDemo { static void throwOne() throws

IllegalAccessException { System.out.println("Inside

throwOne."); throw new IllegalAccessException("demo"); }

public static void main(String args[]) { try { throwOne(); }

catch (IllegalAccessException e) {

System.out.println("Caught " + e); } } } Here is output

generated by running this example program: inside

throwOne caught java.lang.IllegalAccessException

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

123/221 SUBMITTED TEXT 142 WORDS

creates a block of code that will be executed after a

try/catch block has completed and before the code

following the try/catch block. The finally block will execute

whether or not an exception is thrown. If an exception is

thrown, the finally block will execute even if no catch

statement matches the exception. Any time a method is

about to return to the caller from inside a try/catch block,

via an uncaught exception or an explicit return statement,

the finally clause is also executed just before the method

returns. This can be useful for closing file handles and

freeing up any other resources that might have been

allocated at the beginning of a method with the intent of

disposing of them before returning. The finally clause is

optional. However, each try statement requires at least one

catch or a finally clause.

97% MATCHING TEXT 142 WORDS

creates a block of code that will be executed after a

try/catch block has completed and before the code

following the try/catch block. The finally block will execute

whether or not an exception is thrown. If an exception is

thrown, the finally block will execute even if no catch

statement matches the exception. Any time a method is

about to return to the caller from inside a try/catch block,

via an uncaught exception or an explicit return statement,

the finally clause is also executed just before the method

returns. This can be useful for closing file handles and

freeing up any other resources that Smartzworld.com

Smartworld.asia jntuworldupdates.org Specworld.in might

have been allocated at the beginning of a method with the

intent of disposing of them before returning. The finally

clause is optional. However, each try statement requires at

least one catch or a finally clause. //

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 115/139

124/221 SUBMITTED TEXT 139 WORDS

Demonstrate finally. class FinallyDemo { // Through an

exception out of the method. static void procA() { try {

System.out.println("inside procA"); throw new

RuntimeException("demo"); } finally {

System.out.println("procA' finally"); } } // Return from within

a try block. static void procB() { try {

System.out.println("inside procB"); return; } finally {

System.out.println("procB's finally"); } } // Execute a try

block normally. static void procC() { try {

System.out.println("inside procC"); } finally {

System.out.println("procC's finally"); } } public static void

main(String args[]) { try { procA(); } catch (Exception e) {

System.out.println("Exception caught"); } procB(); procC(); }

}

99% MATCHING TEXT 139 WORDS

Demonstrate finally. class FinallyDemo { // Through an

exception out of the method. static void procA() { try {

System.out.println("inside procA"); throw new

RuntimeException("demo"); } finally {

System.out.println("procA's finally"); } } // Return from

within a try block. static void procB() { try {

System.out.println("inside procB"); return; } finally {

System.out.println("procB's finally"); } } // Execute a try

block normally. static void procC() { try {

System.out.println("inside procC"); } finally {

System.out.println("procC's finally"); } } public static void

main(String args[]) { try { procA(); } catch (Exception e) {

System.out.println("caught"); } procB(); procC(); } }

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

125/221 SUBMITTED TEXT 22 WORDS

inside procA procA‘s finally Exception caught inside procB

procB‘s finally inside procC procC‘s finally

100% MATCHING TEXT 22 WORDS

inside procA procA’s finally Exception caught inside procB

procB’s finally inside procC procC’s finally

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

126/221 SUBMITTED TEXT 64 WORDS

In this example, procA() prematurely breaks out of the try

by throwing an exception. The finally clause is executed on

the way out. procB()‘s try statement is exited via a return

statement. The finally clause is executed before procB()

returns. In procC(), the try statement executes normally,

without error. However, the finally block is still executed.

8.6

93% MATCHING TEXT 64 WORDS

In this example, procA() prematurely breaks out of the try

by throwing an exception. The finally clause is executed on

the way out. procB()’s try statement is exited via a return

statement. The finally clause is executed before procB()

returns. In procC(), the Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in try statement executes

normally, without error. However, the finally block is still

executed.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

127/221 SUBMITTED TEXT 78 WORDS

The most general exceptions are subclasses of the

standard type RuntimeException. Since java.lang is

implicitly imported into all Java programs, most exceptions

derived from RuntimeException are automatically available.

Furthermore, they need not be included in any method ‘s

throws list. In the language of Java, these are called

unchecked exceptions because the compiler does not

check to see if a method handles or throws these

exceptions. The unchecked exceptions defined in java.lang

are listed in Table 8-1

98% MATCHING TEXT 78 WORDS

The most general of these exceptions are subclasses of the

standard type RuntimeException. Since java.lang is

implicitly imported into all Java programs, most exceptions

derived from RuntimeException are automatically available.

Furthermore, they need not be included in any method’s

throws list. In the language of Java, these are called

unchecked exceptions because the compiler does not

check to see if a method handles or throws these

exceptions. The unchecked exceptions defined in java.lang

are listed in Table 10-1.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 116/139

128/221 SUBMITTED TEXT 54 WORDS

Table 8-2 lists those exceptions defined by java.lang that

must be included in a method‘s throws list if that method

can generate one of these exceptions and does not handle

it itself. These are called checked exceptions. Java defines

several other types of exceptions that relate to its various

class libraries. 8.7

100% MATCHING TEXT 54 WORDS

Table 10-2 lists those exceptions defined by java.lang that

must be included in a method’s throws list if that method

can generate one of these exceptions and does not handle

it itself. These are called checked exceptions. Java defines

several other types of exceptions that relate to its various

class libraries

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

129/221 SUBMITTED TEXT 29 WORDS

System.out.println("Normal exit"); } public static void

main(String args[]) { try { compute(1); compute(20); } catch

(MyException e) { System.out.println("Caught " +

59% MATCHING TEXT 29 WORDS

System.out.println(" procC's public static void main(String

args[]) { try { procA(); } catch (Exception e) {

System.out.println("caught"); }

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

130/221 SUBMITTED TEXT 47 WORDS

Introduction Java provides built-in support for

multithreaded programming. A multithreaded program

contains two or more parts that can run concurrently.

Each part of such a program is called a thread, and each

thread defines a separate path of execution. Thus,

multithreading is a specialized form of

54% MATCHING TEXT 47 WORDS

Introduction: o Java provides a built – in support for

multithreaded programming. o A multithreaded program

contains two o more parts that can run concurrently. o

Each part of such a program called thread. o Each thread

defines a separate path of execution. o Thus multi thread is

a specialized form of

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

131/221 SUBMITTED TEXT 18 WORDS

format text at the same time that it is printing, as long as

these two actions are

91% MATCHING TEXT 18 WORDS

format text at the same time that is printing as long as

these two actions are

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

132/221 SUBMITTED TEXT 24 WORDS

At any time, a thread can be terminated, which halts its

execution immediately. Once terminated, a thread cannot

be resumed. 9.4

97% MATCHING TEXT 24 WORDS

At any time, a thread can be terminated, which halts its

execution immediately. ƒ Once terminated, a thread

cannot be resumed

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 117/139

133/221 SUBMITTED TEXT 30 WORDS

The Thread Class and the Runnable Interface Java‘s

multithreading system is built upon the Thread class, its

methods, and its companion interface, Runnable. Thread

encapsulates a thread of execution.

90% MATCHING TEXT 30 WORDS

The Thread Class and the Runnable InterfaceJava’s

multithreading system is built upon the Thread class, its

methods, and its companion interface, Runnable. Thread

encapsulates a thread of execution.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

134/221 SUBMITTED TEXT 11 WORDS

The Thread class defines several methods that help

manage threads.

100% MATCHING TEXT 11 WORDS

The Thread class defines several methods that help

manage threads.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

135/221 SUBMITTED TEXT 32 WORDS

by instantiating an object of type Thread. Java defines two

ways in which this can be accomplished: • implement the

Runnable interface or • extend the Thread class, itself.

Implementing

83% MATCHING TEXT 32 WORDS

by instantiating an object of type Thread. x Java defines

two ways in which this can be accomplished: ƒ You can

implement the Runnable interface. ƒ You can extend the

Thread class, itself. Implementing

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

136/221 SUBMITTED TEXT 65 WORDS

start(); // Start the thread } // This is the entry point for

thread. public void run() { try { for(int i = 5; i < 0; i--) {

System.out.println(name + ": " + i); Thread.sleep(1000); } }

catch (InterruptedException e) { System.out.println(name +

"Interrupted"); } System.out.println(name + " exiting."); } }

class MultiThreadDemo { public static void main(String

args[]) { new NewThread("

72% MATCHING TEXT 65 WORDS

start(); // Start the thread } // This is the entry point for the

second thread. public void run() { try { for(int i = 5; i < 0;

i--) { System.out.println("Child Thread: " + i);

Thread.sleep(500); } } catch (InterruptedException e) {

System.out.println("Child interrupted."); }

System.out.println("Exiting child thread."); } } class

ExtendThread { Smartzworld.com Smartworld.asia

jntuworldupdates.org in public static void main(String

args[]) { new NewThread(); //

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

137/221 SUBMITTED TEXT 17 WORDS

Thread.sleep(10000); } catch (InterruptedException e) {

System.out.println("Main thread Interrupted"); }

System.out.println("Main thread exiting."); } }

100% MATCHING TEXT 17 WORDS

Thread.sleep(1000); } } catch (InterruptedException e) {

System.out.println("Main thread interrupted."); }

System.out.println("Main thread exiting."); } }

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 118/139

138/221 SUBMITTED TEXT 11 WORDS

Thread.sleep(10000); } catch (InterruptedException e) {

System.out.println("Main thread interrupted."); }

100% MATCHING TEXT 11 WORDS

Thread.sleep(1000); } } catch (InterruptedException e) {

System.out.println("Main thread interrupted"); } } }

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

139/221 SUBMITTED TEXT 13 WORDS

threads to terminate. try { hi.t.join(); lo.t.join(); } catch

(InterruptedException e) { System.out.println("

62% MATCHING TEXT 13 WORDS

threads to end try { ob1.t.join(); t.join(); ob3.t.join(); }

catch(InterruptedException e) { System.out.println("

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

140/221 SUBMITTED TEXT 121 WORDS

that the resource is used only by one thread at a time is

called synchronization. Java provides unique, language-

level support for it. Key to synchronization is the concept

of the monitor (also called a semaphore). A monitor is an

object that is used as a mutually exclusive lock, or mutex.

Only one thread can own a monitor at a given time. When

a thread acquires a lock, it is said to have entered the

monitor. All other threads attempting to enter the locked

monitor will be suspended until the first thread exits the

monitor. These other threads are said to be waiting for the

monitor. A thread that owns a monitor can reenter the

same monitor if it so desires.

92% MATCHING TEXT 121 WORDS

that the resource will be used by only one thread at a time.

The process by which this is achieved is called

synchronization. As you will see, Java provides unique,

language-level support for it. Key to synchronization is the

concept of the monitor (also called a semaphore). A

monitor is an object that is used as a mutually exclusive

lock, or mutex. Only one thread can own a monitor at a

given time. When a thread acquires a lock, it is said to have

entered the monitor. All other threads attempting to enter

the locked monitor will be suspended until the first thread

exits the monitor. These other threads are said to be

waiting for the monitor. A thread that owns a monitor can

reenter the same monitor if it so desires.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 119/139

141/221 SUBMITTED TEXT 114 WORDS

synchronized. class Callme { void call(String msg) {

System.out.print("[" + msg); try { Thread.sleep(1000); }

catch(InterruptedException e) {

System.out.println("Interrupted"); } System.out.println("]"); } }

class Caller implements Runnable { String msg; Callme

target; Thread t; public Caller(Callme targ, String s) { target

= targ; msg = s; t = new Thread(this); t.start(); } public void

run() { target.call(msg); } } class Synch { public static void

main(String args[]) { Callme target = new Callme(); Caller

ob1 = new Caller(target, "Hello"); Caller ob2 = new

Caller(target, "Synchronized"); Caller ob3 = new

Caller(target, "World"); // wait for threads to end try {

ob1.t.join(); ob2.t.join(); ob3.t.join(); }

catch(InterruptedException e) {

System.out.println("Interrupted"); } } }

92% MATCHING TEXT 114 WORDS

synchronized block. class Callme { void call(String msg) {

System.out.print("[" + msg); try { Thread.sleep(1000); }

catch (InterruptedException e) {

System.out.println("Interrupted"); } System.out.println("]"); } }

class Caller implements Runnable { String msg; Callme

target; Thread t; public Caller(Callme targ, String s) { target

= targ; msg = s; t = new Thread(this); t.start(); } //

synchronize calls to call() public void run() {

synchronized(target) { // synchronized block

target.call(msg); } } } class Synch1 { public static void

main(String args[]) { Callme target = new Callme(); Caller

ob1 = new Caller(target, "Hello"); Caller ob2 = new

Caller(target, "Synchronized"); Caller ob3 = new

Caller(target, "World"); Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in // wait for threads to

end try { ob1.t.join(); ob2.t.join(); ob3.t.join(); }

catch(InterruptedException e) { System.out.println("

Interrupted"); } } }

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

142/221 SUBMITTED TEXT 25 WORDS

to synchronize access to objects of a class • that was not

designed for multithreaded access, • the class does not use

synchronized methods

95% MATCHING TEXT 25 WORDS

to synchronize access to objects of a class that was not

designed for multithreaded access. That is, the class does

not use synchronized methods.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

143/221 SUBMITTED TEXT 21 WORDS

this class was created by a third party, • do not have access

to the source code.

81% MATCHING TEXT 21 WORDS

this class was not created by you, but by a third party, and

you do not have access to the source code.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

144/221 SUBMITTED TEXT 73 WORDS

simply put calls to the methods defined by this class inside

a synchronized block. This is the general form of the

synchronized statement: synchronized(object) { //

statements to be synchronized } Here, object is a reference

to the object being synchronized. A synchronized block

ensures that a call to a method that is a member of ‘object’

occurs only after the current thread has successfully

entered ‘object‘s’ monitor. Here is an

94% MATCHING TEXT 73 WORDS

simply put calls to the methods defined by this class inside

a synchronized block. This is the general form of the

synchronized statement: Smartzworld.com

Smartworld.asia jntuworldupdates.org Specworld.in

statements to be synchronized } Here, object is a reference

to the object being synchronized. A synchronized block

ensures that a call to a method that is a member of object

occurs only after the current thread has successfully

entered object’s monitor. Here is an

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 120/139

145/221 SUBMITTED TEXT 134 WORDS

This program uses a synchronized block. class Callme {

void call(String msg) { System.out.print("[" + msg); try {

Thread.sleep(1000); } catch (InterruptedException e) {

System.out.println("Interrupted"); } System.out.println("]"); } }

class Caller implements Runnable { String msg; Callme

target; Thread t; public Caller(Callme targ, String s) { target

= targ; msg = s; t = new Thread(this); t.start(); } //

synchronize calls to call() public void run() {

synchronized(target) { // synchronized block

target.call(msg); } } } class Synch1 { public static void

main(String args[]) { Callme target = new Callme(); Caller

ob1 = new Caller(target, "Hello"); Caller ob2 = new

Caller(target, "Synchronized"); Caller ob3 = new

Caller(target, "World"); // wait for threads to end try {

ob1.t.join(); ob2.t.join(); ob3.t.join(); }

catch(InterruptedException e) {

System.out.println("Interrupted"); } } }

96% MATCHING TEXT 134 WORDS

This program uses a synchronized block. class Callme {

void call(String msg) { System.out.print("[" + msg); try {

Thread.sleep(1000); } catch (InterruptedException e) {

System.out.println("Interrupted"); } System.out.println("]"); } }

class Caller implements Runnable { String msg; Callme

target; Thread t; public Caller(Callme targ, String s) { target

= targ; msg = s; t = new Thread(this); t.start(); } //

synchronize calls to call() public void run() {

synchronized(target) { // synchronized block

target.call(msg); } } } class Synch1 { public static void

main(String args[]) { Callme target = new Callme(); Caller

ob1 = new Caller(target, "Hello"); Caller ob2 = new

Caller(target, "Synchronized"); Caller ob3 = new

Caller(target, "World"); Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in // wait for threads to

end try { ob1.t.join(); ob2.t.join(); ob3.t.join(); }

catch(InterruptedException e) {

System.out.println("Interrupted"); } } }

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

146/221 SUBMITTED TEXT 14 WORDS

notify() Wakes up a single thread that is waiting on this

object's monitor.

96% MATCHING TEXT 14 WORDS

notify() method Wakes up a single thread that is waiting on

this object's monitor.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

147/221 SUBMITTED TEXT 23 WORDS

that the resource is used only by one thread at a time is

called synchronization. Java provides unique, language-

level support for it.

58% MATCHING TEXT 23 WORDS

that the resource will be used by only one thread at a time.

The process by which this is achieved is called

synchronization. As you will see, Java provides unique,

language-level support for it.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

148/221 SUBMITTED TEXT 37 WORDS

class Box { double width; double height; double depth;

Box(double w, double h, double d) { width = w; height = h;

depth = d; }

85% MATCHING TEXT 37 WORDS

class Box { double width; double height; double depth; //

This is the constructor for Box. Box(double w, double h,

double d) { width = w; height = h; depth = d; } //

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 121/139

149/221 SUBMITTED TEXT 15 WORDS

ArrayList. import java.util.*; class ArrayListDemo { public

static void main(String args[]) { //

83% MATCHING TEXT 15 WORDS

ArrayList import java.util.*; 2. class public static void

main(String args[]){ 4. 5.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

150/221 SUBMITTED TEXT 15 WORDS

class import java.util.Properties; class PropertiesDemo {

public static void main(String args[]) {

76% MATCHING TEXT 15 WORDS

class 1. import java.util.*; 2. class TestCollection1{ 3. public

static void main(String args[]){ 4. 5.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

151/221 SUBMITTED TEXT 15 WORDS

A directory is a File that contains a list of other files and

directories.

85% MATCHING TEXT 15 WORDS

A directory is a File which can contains a list of other files

and directories.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

152/221 SUBMITTED TEXT 43 WORDS

The mkdir() method creates a directory, returning true on

success and false on failure. Failure indicates that the path

specified in the File object already exists, or that the

directory cannot be created because the entire path does

not exist yet.

100% MATCHING TEXT 43 WORDS

The mkdir() method creates a directory, returning true on

success and false on failure. Failure indicates that the path

specified in the File object already exists, or that the

directory cannot be created because the entire path does

not exist yet.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

153/221 SUBMITTED TEXT 13 WORDS

creates both a directory and all the parents of the

directory.

100% MATCHING TEXT 13 WORDS

creates both a directory and all the parents of the

directory.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

154/221 SUBMITTED TEXT 14 WORDS

import java.io.*; class FileOutputStreamDemo { public

static void main(String args[]) throws IOException {

84% MATCHING TEXT 14 WORDS

import java.io.*; public class CopyFile { public static void

main(String args[]) throws IOException {

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

155/221 SUBMITTED TEXT 8 WORDS

Thread(){ public void run(){ try{ for(int i=65;i>=90;i++)

System.out.println(

100% MATCHING TEXT 8 WORDS

thread. public void run() { try { for(int i = 5; i < 0; i--) {

System.out.println("

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 122/139

156/221 SUBMITTED TEXT 15 WORDS

import java.io.*; public class SerializationDemo { public

static void main(String args[]) { //

87% MATCHING TEXT 15 WORDS

import java.io.*; public class CopyFile { public static void

main(String args[])

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

157/221 SUBMITTED TEXT 16 WORDS

A directory is a File that contains a list of other files and

directories. •

85% MATCHING TEXT 16 WORDS

A directory is a File which can contains a list of other files

and directories.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

158/221 SUBMITTED TEXT 57 WORDS

All but the most trivial applets override a set of methods

that provides the basic mechanism by which the browser

or applet viewer interfaces to the applet and controls its

execution. Four of these methods—init(), start(), stop(),

and destroy()—are defined by Applet. Another, paint(), is

defined by the AWT Component class.

100% MATCHING TEXT 57 WORDS

All but the most trivial applets override a set of methods

that provides the basic mechanism by which the browser

or applet viewer interfaces to the applet and controls its

execution. Four of these methods—init(), start(), stop(),

and destroy()—are defined by Applet. Another, paint(), is

defined by the AWT Component class.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

159/221 SUBMITTED TEXT 28 WORDS

Applet Initialization and Termination When an applet

begins, the AWT calls the following methods, in this

sequence: 1. init() 2. start() 3. paint() 4.

100% MATCHING TEXT 28 WORDS

Applet Initialization and Termination When an applet

begins, the AWT calls the following methods, in this

sequence: 1. init() 2. start() 3. paint()

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

160/221 SUBMITTED TEXT 34 WORDS

When an applet is terminated, the following sequence of

method calls takes place: 1. stop() 2. destroy() init(): The

init() method is the first method to be called.

84% MATCHING TEXT 34 WORDS

When an applet is terminated, the following sequence of

method calls takes place: 1. stop() 2. destroy()

Smartzworld.com Smartworld.asia jntuworldupdates.org

Specworld.in init() The init() method is the first method to

be called.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

161/221 SUBMITTED TEXT 12 WORDS

This method is called only once during the run time of

100% MATCHING TEXT 12 WORDS

This method is called only once during the run time of

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 123/139

162/221 SUBMITTED TEXT 81 WORDS

applet. start() The start() method is called after init(). It is

also called to restart an applet after it has been stopped.

Whereas init() is called once—the first time an applet is

loaded—start() is called each time an applet‘s HTML

document is displayed onscreen. So, if a user leaves a web

page and comes back, the applet resumes execution at

start(). paint() The paint() method is called each time

100% MATCHING TEXT 81 WORDS

applet. start() The start() method is called after init(). It is

also called to restart an applet after it has been stopped.

Whereas init() is called once—the first time an applet is

loaded—start() is called each time an applet’s HTML

document is displayed onscreen. So, if a user leaves a web

page and comes back, the applet resumes execution at

start(). paint() The paint() method is called each time

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

163/221 SUBMITTED TEXT 35 WORDS

applet‘s output must be redrawn. This situation can occur

for several reasons. For example, the window in which the

applet is running may be overwritten by another window

and then uncovered. Or the applet

100% MATCHING TEXT 35 WORDS

applet’s output must be redrawn. This situation can occur

for several reasons. For example, the window in which the

applet is running may be overwritten by another window

and then uncovered. Or the applet

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

164/221 SUBMITTED TEXT 48 WORDS

The paint() method has one parameter of type Graphics.

This parameter will contain the graphics context, which

describes the graphics environment in which the applet is

running. This context is used whenever output to the

applet is required. repaint() The repaint() method is

93% MATCHING TEXT 48 WORDS

The paint() method has one parameter of type Graphics.

This parameter will contain the graphics context, which

describes the graphics environment in which the applet is

running. This context is used whenever output to the

applet is required. stop() The stop() method is

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

165/221 SUBMITTED TEXT 16 WORDS

defined by the AWT. It causes the AWT run-time system to

execute a call to

100% MATCHING TEXT 16 WORDS

defined by the AWT. It causes the AWT run-time system to

execute a call to

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

166/221 SUBMITTED TEXT 13 WORDS

applet‘s update() method, which, in its default

implementation, calls paint().

100% MATCHING TEXT 13 WORDS

applet’s update() method, which, in its default

implementation, calls paint()

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 124/139

167/221 SUBMITTED TEXT 39 WORDS

stop() The stop() method is called when a web browser

leaves the HTML document containing the applet, and

when it goes to another page. For example, When stop() is

called, the applet is probably running.

95% MATCHING TEXT 39 WORDS

stop() The stop() method is called when a web browser

leaves the HTML document containing the applet— when

it goes to another page, for example. When stop() is called,

the applet is probably running.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

168/221 SUBMITTED TEXT 64 WORDS

to suspend threads that don‘t need to run when the applet

is not visible. It can be restarted, when start() is called if the

user returns to the page. destroy() The destroy() method is

called when the environment determines that the applet

needs to be removed completely from memory. At this

point, any resources the applet may be using

86% MATCHING TEXT 64 WORDS

to suspend threads that don’t need to run when the applet

is not visible. You can restart them when start() is called if

the user returns to the page. destroy() The destroy()

method is called when the environment determines that

your applet needs to be removed completely from

memory. At this point, you should free up any resources

the applet may be using.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

169/221 SUBMITTED TEXT 220 WORDS

An applet is a Java program that runs in a Web browser. An

applet can be a fully functional Java application because it

has the entire Java API at its disposal. There are some

important differences between an applet and a standalone

Java application, including the following: • An applet is a

Java class that extends the java.applet.Applet class. • A

main() method is not invoked on an applet, and an applet

class will not define main(). • Applets are designed to be

embedded within an HTML page. • When a user views an

HTML page that contains an applet, the code for the applet

is downloaded to the user's machine. • A JVM is required

to view an applet. The JVM can be either a plug-in of the

Web browser or a separate runtime environment. • The

JVM on the user's machine creates an instance of the

applet class and invokes various methods during the

applet's lifetime. • Applets have strict security rules that are

enforced by the Web browser. The security of an applet is

often referred to as sandbox security, comparing the applet

to a child playing in a sandbox with various rules that must

be followed. • Other classes that the applet needs can be

downloaded in a single Java Archive (JAR) file. 14.1

100% MATCHING TEXT 220 WORDS

139E1120, 151E1120,155E1140-Advanced Java Programming.doc (D165246352)

https://secure.urkund.com/view/158826330-304149-193235#/sources 125/139

170/221 SUBMITTED TEXT 176 WORDS

PROGRAM /* A simple banner applet. This applet creates a

thread that scrolls the message contained in msg right to

left across the applet's window. */ import java.awt.*; import

java.applet.*; /* >applet code="SimpleBanner"

width=300 height=50< >/applet< */ public class

SimpleBanner extends Applet implements Runnable {

String msg = " A Simple Moving Banner."; Thread t = null;

int state; boolean stopFlag; // Set colors and initialize

thread. public void init() { setBackground(Color.cyan);

setForeground(Color.red); } // Start thread public void

start() { t = new Thread(this); stopFlag = false; t.start(); } //

Entry point for the thread that runs the banner. public void

run() { char ch; // Display banner for(; ;) { try { repaint();

Thread.sleep(250); ch = msg.charAt(0); msg =

msg.substring(1, msg.length()); msg += ch; if(stopFlag)

break; } catch(InterruptedException e) {} } } / Pause the

banner. public void stop() { stopFlag = true; t = null; } //

Display the banner. public void paint(Graphics g) {

g.drawString(msg, 50, 30); } }

97% MATCHING TEXT 176 WORDS

Program /* A simple banner applet. This applet creates a

thread that scrolls the message contained in msg right to

left across the applet's window. */ import java.awt.*; import

java.applet.*; /* >applet code="SimpleBanner"

width=300 height=50< >/applet< */ public class

SimpleBanner extends Applet implements Runnable { com

Smartworld.jntuworldupdates.org Specworld.inA Simple

Moving Banner."; Thread t = null; int state; boolean

stopFlag; // Set colors and initialize thread. public void init()

{ setBackground(Color.cyan); setForeground(Color.red); }

// Start thread public void start() { t = new Thread(this);

stopFlag = false; t.start(); } // Entry point for the thread that

runs the banner. public void run() { char ch; // Display

banner for(; ;) { try { repaint(); Thread.sleep(250); ch =

msg.charAt(0); msg = msg.substring(1, msg.length()); msg

+= ch; if(stopFlag) break; } catch(InterruptedException e) {}

} } // Pause the banner. public void stop() { stopFlag = true;

t = null; } // Display the banner. public void paint(Graphics

g) { g.drawString(msg, 50, 30); } }

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

171/221 SUBMITTED TEXT 16 WORDS

The syntax for the standard APPLET tag is shown here.

Bracketed items are optional. [

100% MATCHING TEXT 16 WORDS

The syntax for the standard APPLET tag is shown here.

Bracketed items are optional. >

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

172/221 SUBMITTED TEXT 161 WORDS

HTML Displayed in the absence of Java] >/APPLET<

CODEBASE CODEBASE is an optional attribute that

specifies the base URL of the applet code, which is the

directory that will be searched for the applet‘s executable

class file (specified by the CODE tag). The HTML

document‘s URL directory is used as the CODEBASE if this

attribute is not specified. The CODEBASE does not have to

be on the host from which the HTML document was read.

CODE CODE is a required attribute that gives the name of

the file containing your applet‘s compiled .class file. This

file is relative to the code base URL of the applet, which is

the directory that the HTML file was in or the directory

indicated by CODEBASE if set. ALT The ALT tag is an

optional attribute used to specify a short text message that

should be displayed if the browser understands the APPLET

tag but can‘t currently run Java applets.

97% MATCHING TEXT 161 WORDS

HTML Displayed in the absence of Java] >/APPLET<

CODEBASE Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in CODEBASE is an

optional attribute that specifies the base URL of the applet

code, which is the directory that will be searched for the

applet’s executable class file (specified by the CODE tag).

The HTML document’s URL directory is used as the

CODEBASE if this attribute is not specified. The CODEBASE

does not have to be on the host from which the HTML

document was read. CODE CODE is a required attribute

that gives the name of the file containing your applet’s

compiled .class file. This file is relative to the code base

URL of the applet, which is the directory that the HTML file

was in or the directory indicated by CODEBASE if set. ALT

The ALT tag is an optional attribute used to specify a short

text message that should be displayed if the browser

understands the APPLET tag but can’t currently run Java

applets.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 126/139

173/221 SUBMITTED TEXT 309 WORDS

applets. NAME NAME is an optional attribute used to

specify a name for the applet instance. Applets must be

named in order for other applets on the same page to find

them by name and communicate with them. To obtain an

applet by name, use getApplet(), which is defined by the

AppletContext interface. WIDTH AND HEIGHT WIDTH and

HEIGHT are required attributes that give the size (in pixels)

of the applet display area. ALIGN ALIGN is an optional

attribute that specifies the alignment of the applet. This

attribute is treated the same as the HTML IMG tag with

these possible values: LEFT, RIGHT, TOP, BOTTOM,

MIDDLE, BASELINE, TEXTTOP, ABSMIDDLE, and

ABSBOTTOM. VSPACE AND HSPACE These attributes are

optional. VSPACE specifies the space, in pixels, above and

below the applet. HSPACE specifies the space, in pixels, on

each side of the applet. They‘re treated the same as the

IMG tag‘s VSPACE and HSPACE attributes. PARAM NAME

AND VALUE The PARAM tag allows you to specify applet

specific arguments in an HTML page. Applets access their

attributes with the getParameter() method. HANDLING

OLDER BROWSERS Some very old web browsers can‘t

execute applets and don‘t recognize the APPLET tag.

Although these browsers are now nearly extinct (having

been replaced by Java-compatible ones), you may need to

deal with them occasionally. The best way to design your

HTML page to deal with such browsers is to include HTML

text and markup within your >applet<>/applet<

tags. If the applet tags are not recognized by your browser,

you will see the alternate markup. If Java is available, it will

consume all of the markup between the

>applet<>/applet< tags and disregard the

alternate markup. Here‘s the HTML to start an applet called

SampleApplet in Java and to display a message in older

browsers: 14.4.1

98% MATCHING TEXT 309 WORDS

applets. NAME NAME is an optional attribute used to

specify a name for the applet instance. Applets must be

named in order for other applets on the same page to find

them by name and communicate with them. To obtain an

applet by name, use getApplet(), which is defined by the

AppletContext interface. WIDTH AND HEIGHT WIDTH and

HEIGHT are required attributes that give the size (in pixels)

of the applet display area. ALIGN ALIGN is an optional

attribute that specifies the alignment of the applet. This

attribute is treated the same as the HTML IMG tag with

these possible values: LEFT, RIGHT, TOP, BOTTOM,

MIDDLE, BASELINE, TEXTTOP, ABSMIDDLE, and

ABSBOTTOM. VSPACE AND HSPACE These attributes are

optional. VSPACE specifies the space, in pixels, above and

below the applet. HSPACE specifies the space, in pixels, on

each side of the applet. They’re treated the same as the

IMG tag’s VSPACE and HSPACE attributes. PARAM NAME

AND VALUE The PARAM tag allows you to specify applet

specific arguments in an HTML page. Applets access their

attributes with the getParameter() method. HANDLING

OLDER BROWSERS Some very old web browsers can’t

execute applets and don’t recognize the APPLET tag.

Although these browsers are now nearly extinct (having

been replaced by Java-compatible ones), you may need to

deal with them occasionally. The best way to design your

HTML page to deal with such browsers is to include HTML

text and markup within your >applet<>/applet<

tags. If the applet tags are not recognized by your browser,

you will see the alternate markup. If Java is available, it will

consume all of the markup between the

>applet<>/applet< tags and disregard the

alternate markup. Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in Here’s the HTML to

start an applet called SampleApplet in Java and to display a

message in older browsers: >

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

174/221 SUBMITTED TEXT 15 WORDS

Passing Parameters to Applets The APPLET tag in HTML

allows to pass parameters to

92% MATCHING TEXT 15 WORDS

Passing Parameters to Applets: z the APPLET tag in HTML

allows you to pass parameters to

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 127/139

175/221 SUBMITTED TEXT 40 WORDS

applet. To retrieve a parameter, use the getParameter()

method. It returns the value of the specified parameter in

the form of a String object. Thus, for numeric and Boolean

values, convert their string representations into their

internal formats.

93% MATCHING TEXT 40 WORDS

applet. To retrieve a parameter, use the getParameter()

method. z It returns the value of the specified parameter in

the form of a String object. Thus, for numeric and boolean

values, you will need to convert their string representations

into their internal formats.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

176/221 SUBMITTED TEXT 16 WORDS

The event handling is at the core of successful applet

programming. Most events to which

96% MATCHING TEXT 16 WORDS

the output: Event Handling is at the core of successful

applet programming. Most events to which

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

177/221 SUBMITTED TEXT 14 WORDS

applet will respond are generated by the user. These events

are passed to

100% MATCHING TEXT 14 WORDS

applet will respond are generated by the user. These events

are passed to

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

178/221 SUBMITTED TEXT 52 WORDS

applet in a variety of ways, with the specific method

depending upon the actual event. There are several types

of events. The most commonly handled events are those

generated by the mouse, the keyboard, and various

controls, such as a push button. Events are supported by

the java.awt.event package. 15.1

92% MATCHING TEXT 52 WORDS

applet in a variety of ways, with the specific method

depending upon the actual event. There are several

Smartzworld.com Smartworld.asia jntuworldupdates.org

Specworld.in types of events. The most commonly

handled events are those generated by the mouse, the

keyboard, and various controls, such as a push button.

Events are supported by the java.awt.event package

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

179/221 SUBMITTED TEXT 30 WORDS

The Delegation Event Model The modern approach to

handling events is based on the delegation event model,

which defines standard and consistent mechanisms to

generate and process events. Its

100% MATCHING TEXT 30 WORDS

The Delegation Event Model The modern approach to

handling events is based on the delegation event model,

which defines standard and consistent mechanisms to

generate and process events. Its

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

180/221 SUBMITTED TEXT 17 WORDS

quite simple: a source generates an event and sends it to

one or more listeners. In

100% MATCHING TEXT 17 WORDS

quite simple: a source generates an event and sends it to

one or more listeners. In

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 128/139

181/221 SUBMITTED TEXT 101 WORDS

the listener simply waits until it receives an event. Once

received, the listener processes the event and then returns.

The advantage of this design is that the application logic

that processes events is cleanly separated from the user

interface logic that generates those events. A user interface

element is able to ―delegate‖ the processing of an event

to a separate piece of code. In the delegation event model,

listeners must register with a source in order to receive an

event notification. This provides an important benefit:

notifications are sent only to listeners that want to receive

them.

96% MATCHING TEXT 101 WORDS

the listener simply waits until it receives an event. Once

received, the listener processes the event and then returns.

The advantage of this design is that the applicationlogic

that processes events is cleanly separated from the user

interface logic that generates those events. A user interface

element is able to ―delegate‖ the processing of an event

to a separate piece of code. In the delegation event model,

listeners must register with a source in order to receive an

event notification. This provides an important benefit:

notifications are sent only to listeners that want to receive

them.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

182/221 SUBMITTED TEXT 121 WORDS

Events In the delegation model, an event is an object that

describes a state change in a source. It can be generated

as a consequence of a person interacting with the

elements in a graphical user interface. Some of the

activities that cause events to be generated are pressing a

button, entering a character via the keyboard, selecting an

item in a list, and clicking the mouse. Many other user

operations could also be cited as examples. Events may

also occur that are not directly caused by interactions with

a user interface. For example, an event may be generated

when a timer expires, a counter exceeds a value, a

software or hardware failure occurs, or an operation is

completed.

100% MATCHING TEXT 121 WORDS

Events In the delegation model, an event is an object that

describes a state change in a source. It can be generated

as a consequence of a person interacting with the

elements in a graphical user interface. Some of the

activities that cause events to be generated are pressing a

button, entering a character via the keyboard, selecting an

item in a list, and clicking the mouse. Many other user

operations could also be cited as examples. Events may

also occur that are not directly caused by interactions with

a user interface. For example, an event may be generated

when a timer expires, a counter exceeds a value, a

software or hardware failure occurs, or an operation is

completed.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 129/139

183/221 SUBMITTED TEXT 311 WORDS

Event Sources A source is an object that generates an

event. This occurs when the internal state of that object

changes in some way. Sources may generate more than

one type of event. A source must register listeners in order

for the listeners to receive notifications about a specific

type of event. Each type of event has its own registration

method. Here is the general form: public void

addTypeListener(TypeListener el) Here, Type is the name of

the event and el is a reference to the event listener. For

example, the method that registers a keyboard event

listener is called addKeyListener(). The method that

registers a mouse motion listener is called

addMouseMotionListener(). When an event occurs, all

registered listeners are notified and receive a copy of the

event object. This is known as multicasting the event. In all

cases, notifications are sent only to listeners that register to

receive them. Some sources may allow only one listener to

register. The general form of such a method is this: public

void addTypeListener(TypeListener el) throws

java.util.TooManyListenersException Here, Type is the

name of the event and el is a reference to the event

listener. When such an event occurs, the registered listener

is notified. This is known as unicasting the event. A source

must also provide a method that allows a listener to

unregister an interest in a specific type of event. The

general form of such a method is this: public void

removeTypeListener(TypeListener el) Here, Type is the

name of the event and el is a reference to the event

listener. For example, to remove a keyboard listener, you

would call removeKeyListener(). The methods that add or

remove listeners are provided by the source that generates

events. For example, the Component class provides

methods to add and remove keyboard and mouse event

listeners. Event

98% MATCHING TEXT 311 WORDS

Event Sources A source is an object that generates an

event. This occurs when the internal state of that object

changes in some way. Sources may generate more than

one type of event. A source must register listeners in order

for the listeners to receive notifications about a specific

type of event. Each type of event has its own registration

method. Here is the general form: public void

addTypeListener(TypeListener el) Here, Type is the name of

the event and el is a reference to the event listener. For

example, the method that registers a keyboard event

listener is called addKeyListener(). The method that

registers a mouse motion listener is called

addMouseMotionListener(). When an event occurs, all

registered listeners are notified and receive a copy of the

event object. This is known as multicasting the event. In all

cases, notifications are sent only to listeners that register to

receive them. Some sources may allow only one listener to

register. The general form of such a method is this: public

void addTypeListener(TypeListener el) throws

java.util.TooManyListenersException Here, Type is the

name of the event and el is a reference to the event

listener. When such an event occurs, the registered listener

is notified. This is known as unicasting the event. A source

must also provide a method that allows a listener to

unregister an interest in a specific type of event. The

general form of such a method is this: public void

removeTypeListener(TypeListener el) Smartzworld.com

Smartworld.asia jntuworldupdates.org Specworld.in Here,

Type is the name of the event and el is a reference to the

event listener. For example, to remove a keyboard listener,

you would call removeKeyListener(). The methods that

add or remove listeners are provided by the source that

generates events. For example, the Component class

provides methods to add and remove keyboard and mouse

event listeners. Event

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 130/139

184/221 SUBMITTED TEXT 107 WORDS

Event Listeners A listener is an object that is notified when

an event occurs. It has two major requirements. First, it

must have been registered with one or more sources to

receive notifications about specific types of events.

Second, it must implement methods to receive and

process these notifications. The methods that receive and

process events are defined in a set of interfaces found in

java.awt.event. For example, the MouseMotionListener

interface defines two methods to receive notifications

when the mouse is dragged or moved. Any object may

receive and process one or both of these events if it

provides an implementation of this interface. 15.3

100% MATCHING TEXT 107 WORDS

Event Listeners A listener is an object that is notified when

an event occurs. It has two major requirements. First, it

must have been registered with one or more sources to

receive notifications about specific types of events.

Second, it must implement methods to receive and

process these notifications. The methods that receive and

process events are defined in a set of interfaces found in

java.awt.event. For example, the MouseMotionListener

interface defines two methods to receive notifications

when the mouse is dragged or moved. Any object may

receive and process one or both of these events if it

provides an implementation of this interface.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

185/221 SUBMITTED TEXT 23 WORDS

At the root of the Java event class hierarchy is EventObject,

which is in java.util. It is the superclass for all events.

100% MATCHING TEXT 23 WORDS

At the root of the Java event class hierarchy is EventObject,

which is in java.util. It is the superclass for all events.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

186/221 SUBMITTED TEXT 44 WORDS

shown here: EventObject(Object src) Here, src is the object

that generates this event. EventObject contains two

methods: getSource() and toString(). The getSource()

method returns the source of the event. Its general form is

shown here: Object getSource()

100% MATCHING TEXT 44 WORDS

shown here: EventObject(Object src) Here, src is the object

that generates this event. EventObject contains two

methods: getSource() and toString(). The getSource()

method returns the source of the event. Its general form is

shown here: Object getSource()

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

187/221 SUBMITTED TEXT 21 WORDS

toString() returns the string equivalent of the event. The

class AWTEvent, defined within the java.awt package, is a

subclass

100% MATCHING TEXT 21 WORDS

toString() returns the string equivalent of the event. The

class AWTEvent, defined within the java.awt package, is a

subclass

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

188/221 SUBMITTED TEXT 46 WORDS

It is the superclass (either directly or indirectly) of all AWT-

based events used by the delegation event model. Its

getID() method can be used to determine the type of the

event. The signature of this method is shown here: int

getID()

100% MATCHING TEXT 46 WORDS

It is the superclass (either directly or indirectly) of all AWT-

based events used by the delegation event model. Its

getID() method can be used to determine the type of the

event. The signature of this method is shown here: int

getID()

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 131/139

189/221 SUBMITTED TEXT 39 WORDS

The package java.awt.event defines several types of events

that are generated by various user interface elements.

Table 15-1 enumerates the most important of these event

classes and provides a brief description of when they are

generated.

100% MATCHING TEXT 39 WORDS

The package java.awt.event defines several types of events

that are generated by various user interface elements.

Table 20-1 enumerates the most important of these event

classes and provides a brief description of when they are

generated.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

190/221 SUBMITTED TEXT 20 WORDS

MouseMotionListener Defines two methods to recognize

when the mouse is dragged or moved.

80% MATCHING TEXT 20 WORDS

MouseMotionListener interface defines two methods to

receive notifications when the mouse is dragged or

moved.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

191/221 SUBMITTED TEXT 106 WORDS

Demonstrate the key event handlers. import java.awt.*;

import java.awt.event.*; import java.applet.*; /*>applet

code="SimpleKey" width=300 height=100<

>/applet< */ public class SimpleKey extends Applet

implements KeyListener { String msg = ""; int X = 10, Y =

20; // output coordinates public void init() {

addKeyListener(this); requestFocus(); // request input focus

} public void keyPressed(KeyEvent ke) { showStatus("Key

Down"); } public void keyReleased(KeyEvent ke) {

showStatus("Key Up"); } public void keyTyped(KeyEvent ke) {

msg += ke.getKeyChar(); repaint(); } // Display keystrokes.

public void paint(Graphics g) { g.drawString(msg, X, Y); } }

95% MATCHING TEXT 106 WORDS

Demonstrate the key event handlers. import java.awt.*;

import java.awt.event.*; import java.applet.*; /* >applet

code="SimpleKey" width=300 height=100<

>/applet< */ public class SimpleKey extends Applet

implements KeyListener { String msg = ""; int X = 10, Y =

20; // output coordinates public void init() {

addKeyListener(this); requestFocus(); // request input focus

} public void keyPressed(KeyEvent ke) { showStatus("Key

Down"); } public void keyReleased(KeyEvent ke) {

showStatus("Key Up"); } public void keyTyped(KeyEvent ke) {

msg += ke.getKeyChar(); Smartzworld.com

Smartworld.asia jntuworldupdates.org Specworld.in

repaint(); } // Display keystrokes. public void paint(Graphics

g) { g.drawString(msg, X, Y); } }

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

192/221 SUBMITTED TEXT 38 WORDS

Events: In the delegation model, an event is an object that

describes a state change in a source. It can be generated

as a consequence of a person interacting with the

elements in a graphical user interface.

100% MATCHING TEXT 38 WORDS

Events In the delegation model, an event is an object that

describes a state change in a source. It can be generated

as a consequence of a person interacting with the

elements in a graphical user interface.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 132/139

193/221 SUBMITTED TEXT 36 WORDS

Event Sources: A source is an object that generates an

event. This occurs when the internal state of that object

changes in some way. Sources may generate more than

one type of event 15.7

100% MATCHING TEXT 36 WORDS

Event Sources A source is an object that generates an

event. This occurs when the internal state of that object

changes in some way. Sources may generate more than

one type of event.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

194/221 SUBMITTED TEXT 31 WORDS

void fillRect(int top, int left, int width, int height) The upper-

left corner of the rectangle is at top,left. The dimensions of

the rectangle are specified by width and height.

32% MATCHING TEXT 31 WORDS

void repaint(int left, int top, int width, int height) x Here, the

coordinates of the upper-left corner of the region are

specified by left and top, and the width and height of the

region are passed in width and height.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

195/221 SUBMITTED TEXT 24 WORDS

import java.awt.*; import java.applet.*; /* >applet

code="ColorDemo" width=300 height=200<

>/applet< */ public class ColorDemo extends Applet {

// draw lines public void

71% MATCHING TEXT 24 WORDS

import java.awt.*; import java.applet.*; /* >applet

code="AppletSkel" width=300 height=100<

>/applet< */ public class AppletSkel extends Applet {

// Called first. public void

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

196/221 SUBMITTED TEXT 24 WORDS

import java.applet.*; import java.awt.*; /* >applet

code="FontInfo" width=350 height=60< >/applet<

*/ public class FontInfo extends Applet { public void

81% MATCHING TEXT 24 WORDS

import java.applet.*; import java.awt.event.*; /* >applet

code="AnonymousInnerClassDemo" width=200

height=100< >/applet< */ public class

AnonymousInnerClassDemo extends Applet { public void

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

197/221 SUBMITTED TEXT 41 WORDS

import java.awt.*; import java.awt.event.*; import

java.applet.*; /* >applet code="FlowLayoutDemo"

width=250 height=200< >/applet< */ public class

FlowLayoutDemo extends Applet implements ItemListener

{ String msg = ""; Checkbox Win98, winNT, solaris, mac;

public void init() { //

63% MATCHING TEXT 41 WORDS

import java.awt.*; import java.awt.event.*; import

java.applet.*; /* >applet code="SimpleKey" width=300

height=100< >/applet< */ public class SimpleKey

extends Applet implements String msg = ""; int X = 10, Y =

20; // output coordinates public void init() {

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 133/139

198/221 SUBMITTED TEXT 27 WORDS

import java.awt.*; import java.applet.*; import java.util.*; /*

>applet code="BorderLayoutDemo" width=400

height=200< >/applet< */ public class

BorderLayoutDemo extends Applet { public void init() {

setLayout(new

68% MATCHING TEXT 27 WORDS

import java.awt.*; import java.awt.event.*; import

java.applet.*; /* >applet code="AdapterDemo"

width=300 height=100< >/applet< */ public class

AdapterDemo extends Applet { public void init() {

addMouseListener(new

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

199/221 SUBMITTED TEXT 22 WORDS

import java.awt.*; import java.awt.event.*; import

java.applet.*; /* >applet code="CardLayoutDemo"

width=300 height=100< >/applet< */ public class

CardLayoutDemo extends Applet implements

86% MATCHING TEXT 22 WORDS

import java.awt.*; import java.awt.event.*; import

java.applet.*; /* >applet code="SimpleKey" width=300

height=100< >/applet< */ public class SimpleKey

extends Applet implements

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

200/221 SUBMITTED TEXT 20 WORDS

The Swing-related classes are contained in javax.swing and

its subpackages, such as javax.swing.tree. Many other

Swing-related classes and interfaces

100% MATCHING TEXT 20 WORDS

The Swing-related classes are contained in javax.swing and

its subpackages, such as javax.swing.tree. Many other

Swing-related classes and interfaces

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

201/221 SUBMITTED TEXT 14 WORDS

JApplet Fundamental to Swing is the JApplet class, which

extends Applet. Applets that

100% MATCHING TEXT 14 WORDS

JApplet Fundamental to Swing is the JApplet class, which

extends Applet. Applets that

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

202/221 SUBMITTED TEXT 13 WORDS

must be subclasses of JApplet. JApplet is rich with

functionality that is

100% MATCHING TEXT 13 WORDS

must be subclasses of JApplet. JApplet is rich with

functionality that is

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

203/221 SUBMITTED TEXT 21 WORDS

in Applet. For example, JApplet supports various ―panes,‖
such as the content pane, the glass pane, and the root

pane.

100% MATCHING TEXT 21 WORDS

in Applet. For example, JApplet supports various ―panes,‖
such as the content pane, the glass pane, and the root

pane.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 134/139

204/221 SUBMITTED TEXT 90 WORDS

When adding a component to an instance of JApplet, do

not invoke the add() method of the applet. Instead, call

add() for the content pane of the JApplet object. The

content pane can be obtained via the method shown here:

Container getContentPane() The add() method of

Container can be used to add a component to a content

pane. Its form is shown here: void add(comp) Here, comp

is the component to be added to the content pane. 17.3

JFrame and JDialog In

96% MATCHING TEXT 90 WORDS

When adding a component to an instance of JApplet, do

not invoke the add() method of the applet. Instead, call

add() for the content pane of the JApplet object. The

content pane can be obtained via the method shown here:

Container getContentPane() The add() method of

Container can be used to add a component to a content

pane. Its form is shown here: void add(comp) Here, comp

is the component to be added to the content pane. Icons

and In

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

205/221 SUBMITTED TEXT 181 WORDS

Fields The Swing text field is encapsulated by the

JTextComponent class, which extends JComponent. It

provides functionality that is common to Swing text

components. One of its subclasses is JTextField, which

allows you to edit one line of text. Some of its constructors

are shown here: JTextField() JTextField(int cols)

JTextField(String s, int cols) JTextField(String s) Here, s is

the string to be presented, and cols is the number of

columns in the text field. The following example illustrates

how to create a text field. The applet begins by getting its

content pane, and then a flow layout is assigned as its

layout manager. Next, a JTextField object is created and is

added to the content pane. PROGRAM import java.awt.*;

import javax.swing.*; /* >applet code="JTextFieldDemo"

width=300 height=50< >/applet< */ public class

JTextFieldDemo extends JApplet { JTextField jtf; public

void init() { // Get content pane Container contentPane =

getContentPane(); contentPane.setLayout(new

FlowLayout()); // Add text field to content pane jtf = new

JTextField(15); contentPane.add(jtf); } } OUTPUT 17.5

97% MATCHING TEXT 181 WORDS

Fields The Swing text field is encapsulated by the

JTextComponent class, which extends JComponent. It

provides functionality that is common to Swing text

components. One of its subclasses is JTextField, which

allows you to edit one line of text. Some of its constructors

are shown here: JTextField() JTextField(int cols)

JTextField(String s, int cols) JTextField(String s) Here, s is

the string to be presented, and cols is the number of

columns in the text field. The following example illustrates

how to create a text field. The applet begins by getting its

content pane, and a flow layout is assigned as its layout

manager. Next, a JTextField object is created and is added

to the content pane. Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in import java.awt.*;

import javax.swing.*; /* >applet code="JTextFieldDemo"

width=300 height=50< >/applet< */ public class

JTextFieldDemo extends JApplet { JTextField jtf; public

void init() { // Get content pane Container contentPane =

getContentPane(); contentPane.setLayout(new

FlowLayout()); // Add text field to content pane jtf = new

JTextField(15); contentPane.add(jtf); } } Output

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 135/139

206/221 SUBMITTED TEXT 249 WORDS

Swing buttons are subclasses of the AbstractButton class,

which extends JComponent. AbstractButton contains

many methods that allow you to control the behavior of

buttons, check boxes, and radio buttons. For example, you

can define different icons that are displayed for the

component when it is disabled, pressed, or selected.

Another icon can be used as a rollover icon, which is

displayed when the mouse is positioned over that

component. The following are the methods that control

this behavior: void setDisabledIcon(Icon di) void

setPressedIcon(Icon pi) void setSelectedIcon(Icon si) void

setRolloverIcon(Icon ri) Here, di, pi, si, and ri are the icons

to be used for these different conditions. The text

associated with a button can be read and written via the

following methods: String getText() void setText(String s)

Here, s is the text to be associated with the button.

Concrete subclasses of AbstractButton generate action

events when they are pressed. Listeners register and

unregister for these events via the methods shown here:

void addActionListener(ActionListener al) void

removeActionListener(ActionListener al) Here, al is the

action listener. AbstractButton is a superclass for push

buttons, check boxes, and radio buttons. The JButton

Class The JButton class provides the functionality of a

push button. JButton allows an icon, a string, or both to be

associated with the push button. Some of its constructors

are shown here: JButton(Icon i) JButton(String s)

JButton(String s, Icon i) Here, s and i are the string and icon

used for the button.

97% MATCHING TEXT 249 WORDS

Swing buttons are subclasses of the AbstractButton class,

which extends JComponent. AbstractButton contains

many methods that allow you to control the behavior of

buttons, check boxes, and radio buttons. For example, you

can define different icons that are displayed for the

component when it is disabled, pressed, or selected.

Another icon can be used as a rollover icon, which is

displayed when the mouse is positioned over that

component. The following are the methods that control

this behavior: void setDisabledIcon(Icon di) void

setPressedIcon(Icon pi) void setSelectedIcon(Icon si) void

setRolloverIcon(Icon ri) Here, di, pi, si, and ri are the icons

to be used for these different conditions. The text

associated with a button can be read and written via the

following methods: Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in String getText() void

setText(String s) Here, s is the text to be associated with the

button. Concrete subclasses of AbstractButton generate

action events when they are pressed. Listeners register and

unregister for these events via the methods shown here:

void addActionListener(ActionListener al) void

removeActionListener(ActionListener al) Here, al is the

action listener. AbstractButton is a superclass for push

buttons, check boxes, and radio buttons. Each is next. The

JButton The JButton class provides the functionality of a

push button. JButton allows an icon,a string, or both to be

associated with the push button. Some of its constructors

are shown here: JButton(Icon i) JButton(String s)

JButton(String s, Icon i) Here, s and i are the string and icon

used for the button.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

207/221 SUBMITTED TEXT 12 WORDS

text field. The applet begins by getting its content pane and

100% MATCHING TEXT 12 WORDS

text field. The applet begins by getting its content pane,

and

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

208/221 SUBMITTED TEXT 44 WORDS

import java.awt.*; import java.awt.event.*; import

javax.swing.*; /* >applet code="JButtonDemo"

width=250 height=300< >/applet< */ public class

JButtonDemo extends JApplet implements ActionListener

{ JTextField jtf; public void init() { // Get content pane

Container contentPane = getContentPane();

contentPane.setLayout(new FlowLayout()); //

82% MATCHING TEXT 44 WORDS

import java.awt.*; import java.awt.event.*; import

javax.swing.*; /* >applet code="JCheckBoxDemo"

width=400 height=50< >/applet< */ public class

JCheckBoxDemo extends JApplet implements JTextField

jtf; public void init() { SOFTWARE DEVELOPMENT USING

Get content pane Container contentPane =

getContentPane(); contentPane.setLayout(new

FlowLayout()); //

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 136/139

209/221 SUBMITTED TEXT 22 WORDS

this); contentPane.add(jb); // Add text field to content pane

jtf = new JTextField(15); contentPane.add(jtf); } public void

88% MATCHING TEXT 22 WORDS

this); contentPane.add(cb); // Add text field to the content

pane jtf = new JTextField(15); contentPane.add(jtf); } public

void

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

210/221 SUBMITTED TEXT 50 WORDS

Boxes Swing provides a combo box (a combination of a

text field and a drop-down list) through the JComboBox

class, which extends JComponent. A combo box normally

displays one entry. However, it can also display a drop-

down list that allows a user to select a different entry.

Selection can

97% MATCHING TEXT 50 WORDS

Boxes Swing provides a combo box (a combination of a

text field and a drop-down list) through the JComboBox

class, which extends JComponent. A combo box normally

displays one entry. However, it can also display a drop-

down list that allows a user to select a different entry. You

can

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

211/221 SUBMITTED TEXT 214 WORDS

into the text field. Two of JComboBox‘s constructors are

shown here: JComboBox() JComboBox(Vector v) Here, v

is a vector that initializes the combo box. Items are added

to the list of choices via the addItem() method, whose

signature is shown here: void addItem(Object obj) Here,

obj is the object to be added to the combo box. The

following example contains a combo box and a label. The

label displays an icon. The combo box contains entries for

―France‖, ―Germany‖, ―Italy‖, and ―Japan‖. When a

country is selected, the label is updated to display the flag

for that country. PROGRAM import java.awt.*; import

java.awt.event.*; import javax.swing.*; /* >applet

code="JComboBoxDemo" width=300 height=100<

>/applet< */ public class JComboBoxDemo extends

JApplet implements ItemListener { JLabel jl; ImageIcon

france, germany, italy, japan; public void init() { // Get

content pane Container contentPane = getContentPane();

contentPane.setLayout(new FlowLayout()); // Create a

combo box and add it // to the panel JComboBox jc =

new JComboBox(); jc.addItem("France");

jc.addItem("Germany"); jc.addItem("Italy");

jc.addItem("Japan"); jc.addItemListener(this);

contentPane.add(jc); // Create label jl = new JLabel(new

ImageIcon("france.gif")); contentPane.add(jl); } public void

itemStateChanged(ItemEvent ie) { String s =

(String)ie.getItem(); jl.setIcon(new ImageIcon(s + ".gif")); } }

OUTPUT 17.7

96% MATCHING TEXT 214 WORDS

into the text field. Two of JComboBox’s constructors are

shown here: JComboBox() JComboBox(Vector v) Here, v

is a vector that initializes the combo box. Items are added

to the list of choices via the addItem() method, whose

signature is shown here: void addItem(Object obj) Here,

obj is the object to be added to the combo box. The

following example contains a combo box and a label. The

label displays an icon. The combo box contains entries for

―France‖, ―Germany‖, ―Italy‖, and ―Japan‖. When a

country is selected, the label is updated to display the flag

for that country. SOFTWARE DEVELOPMENT USING import

java.awt.*; import java.awt.event.*; import javax.swing.*; /*

>applet code="JComboBoxDemo" width=300

height=100< >/applet< */ public class

JComboBoxDemo extends JApplet implements

ItemListener { JLabel jl; Smartzworld.com Smartworld.asia

jntuworldupdates.Specworld.in ImageIcon france,

germany, italy, japan; public void init() { // Get content pane

Container contentPane = getContentPane();

contentPane.setLayout(new FlowLayout()); // Create a

combo box and add it // to the panel JComboBox jc =

new JComboBox(); jc.addItem("France");

jc.addItem("Germany"); jc.addItem("Italy");

jc.addItem("Japan"); jc.addItemListener(this);

contentPane.add(jc); // Create label jl = new JLabel(new

ImageIcon("france.gif")); contentPane.add(jl); } public void

itemStateChanged(ItemEvent ie) { String s =

(String)ie.getItem(); jl.setIcon(new ImageIcon(s + ".gif")); } }

Output

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 137/139

212/221 SUBMITTED TEXT 19 WORDS

import java.awt.*; import java.awt.event.*; /* >applet

code="JListDemo" width=200 height=120<

>/applet< */ public class JListDemo extends JApplet {

75% MATCHING TEXT 19 WORDS

import java.awt.*; import java.awt.event.*; import

javax.swing.*; /* >applet code="JCheckBoxDemo"

width=400 height=50< >/applet< */ public class

JCheckBoxDemo extends JApplet

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

213/221 SUBMITTED TEXT 25 WORDS

Panes A tabbed pane is a component that appears as a

group of folders in a file cabinet. Each folder has a title.

When

100% MATCHING TEXT 25 WORDS

Panes A tabbed pane is a component that appears as a

group of folders in a file cabinet. Each folder has a title.

When

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

214/221 SUBMITTED TEXT 156 WORDS

user selects a folder, its contents become visible. Only one

of the folders may be selected at a time. Tabbed panes are

commonly used for setting configuration options. Tabbed

panes are encapsulated by the JTabbedPane class, which

extends JComponent. We will use its default constructor.

Tabs are defined via the following method: void

addTab(String str, Component comp) Here, str is the title

for the tab, and comp is the component that should be

added to the tab. Typically, a JPanel or a subclass of it is

added. The general procedure to use a tabbed pane in an

applet is outlined here: 1. Create a JTabbedPane object. 2.

Call addTab() to add a tab to the pane. (The arguments to

this method define the title of the tab and the component

it contains.) 3. Repeat step 2 for each tab. 4. Add the

tabbed pane to the content pane of the applet.

97% MATCHING TEXT 156 WORDS

user selects a folder, its contents become visible. Only one

of the folders may be selected at a time. Tabbed panes are

commonly used for setting configuration options. Tabbed

panes are encapsulated by the JTabbedPane class, which

extends JComponent. We will use its default constructor.

Tabs are defined via the following method:

Smartzworld.Smartworld.asia jntuworldupdates.org

Specworld.in str, Component Here, str is the title for the

tab, and comp is the component that should be added to

the tab. Typically, a JPanel or a subclass of it is added. The

general procedure to use a tabbed pane in an applet is

outlined here: 1. Create a JTabbedPane object. 2. Call

addTab() to add a tab to the pane. (The arguments to this

method define the title of the tab and the component it

contains.) 3. Repeat step 2 for each tab. 4. Add the tabbed

pane to the content pane of the applet.

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

215/221 SUBMITTED TEXT 22 WORDS

import javax.swing.*; /* >applet

code="JTabbedPaneDemo" width=400 height=100<

>/applet< */ public class JTabbedPaneDemo extends

JApplet { public void init() {

82% MATCHING TEXT 22 WORDS

import javax.swing.*; /* >applet

code="JScrollPaneDemo" width=300 height=250<

>/applet< */ public class JScrollPaneDemo extends

JApplet { public void init() { //

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 138/139

216/221 SUBMITTED TEXT 16 WORDS

Panes A scroll pane is a component that presents a

rectangular area in which a

100% MATCHING TEXT 16 WORDS

Panes A scroll pane is a component that presents a

rectangular area in which a

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

217/221 SUBMITTED TEXT 62 WORDS

be viewed. Horizontal and/or vertical scroll bars may be

provided if necessary. Scroll panes are implemented in

Swing by the JScrollPane class, which extends

JComponent. Some of its constructors are shown here:

JScrollPane(Component comp) JScrollPane(int vsb, int

hsb) JScrollPane(Component comp, int vsb, int hsb) Here,

comp is the component to be added to the scroll pane.

vsb and hsb are

95% MATCHING TEXT 62 WORDS

be viewed. Horizontal and/or vertical scroll bars may be

provided if necessary. Scroll panes are implemented in

Swing by the JScrollPane class, which

extendsJComponent. Some of its constructors are shown

here: JScrollPane(Component comp) JScrollPane(int vsb,

int hsb) JScrollPane(Component comp, int vsb, int hsb)

Here, comp is the component to be added to the scroll

pane. vsb and hsb are

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

218/221 SUBMITTED TEXT 40 WORDS

that define when vertical and horizontal scroll bars for this

scroll pane are shown. These constants are defined by the

ScrollPaneConstants interface. Some examples of these

constants are described as follows: Constant Description

HORIZONTAL_SCROLLBAR_ALW AYS Always provide

horizontal scroll bar HORIZONTAL_SCROLLBAR_AS_

86% MATCHING TEXT 40 WORDS

that define when vertical and horizontal scroll bars for this

scroll pane These constants are defined by the

ScrollPaneConstants interface. Some examples of these

constants are described as follows: Constant Description

HORIZONTAL_SCROLLBAR_ ALWAYS Always provide

horizontal scroll bar HORIZONTAL_SCROLLBAR_AS_

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

219/221 SUBMITTED TEXT 155 WORDS

Provide horizontal scroll bar, if needed

VERTICAL_SCROLLBAR_ALWAYS Always provide vertical

scroll bar VERTICAL_SCROLLBAR_AS_NEE Provide vertical

scroll bar, if needed DED Here are the steps that you

should follow to use a scroll pane in an applet: 1. Create a

JComponent object. 2. Create a JScrollPane object. (The

arguments to the constructor specify the component and

the policies for vertical and horizontal scroll bars.) 3. Add

the scroll pane to the content pane of the applet. The

following example illustrates a scroll pane. First, the

content pane of the JApplet object is obtained and a

border layout is assigned as its layout manager. Next, a

JPanel object is created and four hundred buttons are

added to it, arranged into twenty columns. The panel is

then added to a scroll pane, and the scroll pane is added to

the content pane. This causes vertical and horizontal scroll

bars to appear. the scroll bars

96% MATCHING TEXT 155 WORDS

Provide horizontal scroll bar, if needed

VERTICAL_SCROLLBAR_ALWAYS Always provide vertical

scroll bar VERTICAL_SCROLLBAR_AS_NEEDED Provide

vertical scroll bar, if needed Here are the steps that you

should follow to use a scroll pane in an applet: 1. Create a

JComponent object. 2. Create a JScrollPane object. (The

arguments to the constructor specify the component and

the policies for vertical and horizontal scroll bars.) 3. Add

the scroll pane to the content pane of the applet. USING

The following example illustrates a scroll pane. First, the

content pane of the JApplet object is obtained and a

border layout is assigned as its layout manager. Next, a

JPanel object is created and four hundred buttons are

added to it, arranged into twenty columns. The panel is

then added to a scroll pane, and the scroll pane is added to

the content pane. This causes vertical and horizontal scroll

bars to appear. You can use the scroll bars

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

https://secure.urkund.com/view/158826330-304149-193235#/sources 139/139

220/221 SUBMITTED TEXT 113 WORDS

to scroll the buttons into view. PROGRAM import

java.awt.*; import javax.swing.*; /* >applet

code="JScrollPaneDemo" width=300 height=250<

>/applet< */ public class JScrollPaneDemo extends

JApplet { public void init() { // Get content pane Container

contentPane = getContentPane();

contentPane.setLayout(new BorderLayout()); // Add 400

buttons to a panel JPanel jp = new JPanel();

jp.setLayout(new GridLayout(20, 20)); int b = 0; for(int i =

0; i > 20; i++) { for(int j = 0; j > 20; j++) { jp.add(new

JButton("Button " + b)); ++b; } } // Add panel to a scroll

pane int v =

ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED;

int h =

ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_

94% MATCHING TEXT 113 WORDS

to scroll the buttons into view. Smartzworld.com

Smartworld.asia jntuworldupdates.org Specworld.in import

java.awt.*; import javax.swing.*; /* >applet

code="JScrollPaneDemo" width=300 height=250<

>/applet< */ public class JScrollPaneDemo extends

JApplet { public void init() { // Get content pane Container

contentPane = getContentPane();

contentPane.setLayout(new BorderLayout()); // Add 400

buttons to a panel JPanel jp = new JPanel();

jp.setLayout(new GridLayout(20, 20)); int b = 0; for(int i =

0; i > 20; i++) { for(int j = 0; j > 20; j++) { jp.add(new

JButton("Button " + b)); ++b; } } // Add panel to a scroll

pane int v =

ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED;

int h =

ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

221/221 SUBMITTED TEXT 21 WORDS

JScrollPane jsp = new JScrollPane(jp, v, h); // Add scroll

pane to the content pane contentPane.add(jsp,

BorderLayout.CENTER); } }

92% MATCHING TEXT 21 WORDS

JScrollPane jsp = new JScrollPane(table, v, h); // Add scroll

pane to the content pane contentPane.add(jsp,

BorderLayout.CENTER); } }

http://sim.edu.in/wp-content/uploads/2019/10/java-bca.pdf

