
https://secure.urkund.com/view/158826004-173688-689700#/sources 1/125

Document Information

Analyzed document OOPS with C++.pdf (D166063612)

Submitted 5/6/2023 6:52:00 AM

Submitted by Mumtaz B

Submitter email mumtaz@code.dbuniversity.ac.in

Similarity 20%

Analysis address mumtaz.dbuni@analysis.urkund.com

Sources included in the report

URL: https://www.msuniv.ac.in/Download/Pdf/a6241a9e41024aa

Fetched: 6/13/2022 12:18:00 PM
4

DECAP444_OBJECT_ORIENTED_PROGRAMMING_USING_C++.pdf
Document DECAP444_OBJECT_ORIENTED_PROGRAMMING_USING_C++.pdf (D142327140)

9

120E1240_ Object Oriented Programming Using C++.doc
Document 120E1240_ Object Oriented Programming Using C++.doc (D165245825)

37

URL: http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAM...

Fetched: 12/18/2022 5:30:46 AM
75

URL: https://www.ddegjust.ac.in/studymaterial/mca-3/ms-17.pdf

Fetched: 11/5/2021 12:07:08 PM
10

248E1110-Object Oriented Programing using C++(Id 2732).doc
Document 248E1110-Object Oriented Programing using C++(Id 2732).doc (D165248029)

23

C++ From The Ground Up_ 3rd Edition (2003).pdf
Document C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

19

248E1160-Lab-1_Object Oriented Programming.doc
Document 248E1160-Lab-1_Object Oriented Programming.doc (D165247743)

1

ODL Learning Materials (ALL 5 UNITS).pdf
Document ODL Learning Materials (ALL 5 UNITS).pdf (D109014230)

14

URL: https://www.vidyarthiplus.com/vp/attachment.php?aid=46806

Fetched: 11/13/2021 11:48:10 AM
6

Object Oriented Programming through C++ Block 1.pdf
Document Object Oriented Programming through C++ Block 1.pdf (D164970258)

10

137E1240-Object Oriented Programming using C++_120E1240.docx
Document 137E1240-Object Oriented Programming using C++_120E1240.docx (D165245896)

9

URL: https://mu.ac.in/wp-content/uploads/2020/12/Object-Oriented-Programming-F.Y.-MCA-Semester-I.pdf

Fetched: 6/28/2022 11:36:59 AM
20

https://www.msuniv.ac.in/Download/Pdf/a6241a9e41024aa
http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMING.pdf
https://www.ddegjust.ac.in/studymaterial/mca-3/ms-17.pdf
https://www.vidyarthiplus.com/vp/attachment.php?aid=46806
https://mu.ac.in/wp-content/uploads/2020/12/Object-Oriented-Programming-F.Y.-MCA-Semester-I.pdf

https://secure.urkund.com/view/158826004-173688-689700#/sources 2/125

INF_1016.pdf
Document INF_1016.pdf (D164968061)

6

010E2340-Programming in C and C++.pdf
Document 010E2340-Programming in C and C++.pdf (D165445451)

7

ECAP 444.docx
Document ECAP 444.docx (D142426097)

34

URL: http://apsacollege.com/wp-content/uploads/2014/09/CPP_4BIT3C1.pdf

Fetched: 8/28/2021 7:10:58 AM
6

OOP through C++ (Block 2).pdf
Document OOP through C++ (Block 2).pdf (D148964031)

10

odl C++ lecture notes unit-5.docx
Document odl C++ lecture notes unit-5.docx (D109013221)

3

ODMCA-102_T_Intro_to_Programming_Section_D_25th_Oct.docx
Document ODMCA-102_T_Intro_to_Programming_Section_D_25th_Oct.docx (D43197291)

1

Entire Document

Basic Concepts of OOPS 1 Notes Unit 1: Basic Concepts of OOPS Structure 1.1 Introduction 1.2 Object Oriented Paradigms and

Metaphors 1.3 Distinction between Procedural and oops

55% MATCHING BLOCK 1/304

programming 1.4 Basic Concepts of Object-oriented Programming 1.5 Benefits of OOP 1.5.1 Others are extended conventional

languages 1.5.2 Applications of OOP 1.6

C++ 1.6.1 Invoking Turbo C++ 1.6.2 Naming Your Program 1.6.3 Using the Editor 1.6.4 Saving Your Programs 1.6.5 Compiling and

Linking 1.6.6 Running the Program 1.6.7 Exiting from the IDE 1.6.8 Opening an existing file 1.6.9 A Simple C++ Program 1.6.10 Output

1.7 Summary 1.8 Check Your Progress 1.9 Questions and Exercises 1.10 Key Terms 1.11

89% MATCHING BLOCK 2/304
DECAP444_OBJECT_ORIENTED_PROGRAMMING_USING_C++.pdf

(D142327140)

Further Readings Objectives After studying this unit, you should be able to: Understand the

object oriented

paradigms and metaphors. Discuss the basic concepts of oops. Explain the difference between oops and pop. 1.1 Introduction

Software system development is basically a modeling exercise where the user requirements are deciphered into a working software

model. The translation goes through various stages including sub-activities, every stage refining the initial model given to it. Precisely

how the system is seen, analyzed, planned, tested, implemented and maintained, while under development is briefly termed as

software development paradigm.

http://apsacollege.com/wp-content/uploads/2014/09/CPP_4BIT3C1.pdf

https://secure.urkund.com/view/158826004-173688-689700#/sources 3/125

2 Object Oriented Programmimg with C++ Notes 1.2 Object Oriented Paradigms and Metaphors In conventional software

development paradigm, the software system is seen as a procedure that changes the given input into desired output. Accordingly,

analysis, design, testing and other development phases have been developed each having the same process view of the system. Under

this paradigm, even a printer is seen as a procedure, as shown in the figure 1.1. Figure 1.1: Conventional Software Model In contrast to

the conventional development approach, OO approach sees a software system as an object having remarkable characteristics and

services it gives to its surrounding objects. The system is displayed as a real world object, which is made of smaller and simple objects

interacting with one another in a predefined way, as shown in the figure 1.2 . Figure 1.2: Object Oriented Software Model Object

oriented programming, since its inception, has progressed significantly. In the beginning, and for a many years hence, the term object

oriented (OO) was use to denote a software development approach that utilized one of available object-oriented programming

languages (e.g., Ada95, Java, C++ Eiffel, Smalltalk). While programming (a somewhat minor part in software system development)

could be accomplished using an object-oriented language, the major development activities remained conventional. This situation

could not exploit the rich features of object oriented programming optimally. In present times, however, OO approach has outgrown

into a huge structure incorporating a complete field of software engineering. Only written software into an object-oriented

programming language does not exploit all the benefit it offers. Object oriented approach is not only limited to programming but the

entire gamut of development processes giving it a larger scope. Thus, many object-oriented techniques have gradually emerged, like

Basic Concepts of OOPS 3 Notes Object Oriented Analysis (OOA) Object Oriented Design (OOD) Object Oriented Testing (OOT)

Object Oriented Data Base Management Systems (OODBMS) Object Oriented Programming (OOP) Object Oriented Domain Analysis

(OODA) OO approach, undoubtedly, has number of advantage over conventional software development process - simplicity of

maintenance and reusability being the foremost. That - a (software) system might be developed using object oriented techniques, as

indicated by the specified development framework in every phase to understand its full advantage is known to as Object Oriented

Paradigm as against conventional development paradigm. Various distinctive process models for software engineering have been

proposed by the researchers and employed by the developer. Although any of these models could be adopted for use with OO, the

best decision would recognize that OO systems have a tendency to evolve over time. Therefore, an evolutionary process model,

coupled with an approach that encourages component assembly reuse, is the best paradigm for OO software engineering. Figure 1.3,

displays the component-based development process model tailored for OO software engineering. The OO process moves through an

evolutionary spiral that begins with customer communication. It is here that the problem domain is defined and that basic problem

classes, which models for real world objects are identified. Planning and risk analysis lays a foundation for the OO project plan. The

technical work associated with OO software engineering follows the iterative path shown in the shaded box of figure 1.3. OO software

engineering emphasizes reuse. Therefore, classes are "looked up" in a library (of existing OO classes) before they are built. When a

class cannot be found in the library, the software engineer applies object-oriented analysis (OOA), object- oriented design (OOD),

object-oriented programming (OOP), and object-oriented testing (OOT) to create the class and the objects derived from the class.

The new class is then put into the library so that it may be reused in the future. Figure 1.3: Component Based Development Process

The object- oriented view demands an evolutionary approach to deal with software engineering since it is becoming exceedingly hard

to define all necessary classes for a major system or product in a single iteration. As the OO analysis and design models

4 Object Oriented Programmimg with C++ Notes develop, the requirement for additional classes becomes apparent. It is for the

reason that the paradigm simply described works best for OO. A metaphor refers to something substantial onto which one can outline

various features of the software being composed. In other words, it is a physical model that abstracts all the desired features of the

software intended to be designed. One major advantage of OO paradigm is that the component objects can be developed more or

less independently. The main limitation is that the interfaces of the respective objects remain intact or in case of any modification, is

communicated to different developers. The component objects, therefore, can be developed simultaneously. This is the concept of

concurrent object oriented systems. In this development model, the objects are developed concurrently reducing the overall

development time. A schematic presentation of the same is given below. (Figure 1.4) Figure 1.4: One Element of the Concurrent

Process Model All the software engineering activities - customer communication, analysis, coding implementation, testing etc. - are

completed concurrently. All the activities turn undergo a cycle of development phases. The activities exist simultaneously in the

development environment. The activities exist simultaneously in the development environment. However, they might be in various

phases of development as showed by the diagram above. (Figure 1.4) The significant inspiring

factor in the innovation of object-oriented approach is to salvage some of the flaws encountered in the procedural approach. OOP

treat

95% MATCHING BLOCK 4/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

data as a critical element in the program development and does not permit it to flow freely around the system. It ties data more

closely to the functions that operate on it and protects it from accidental modification from outside functions. OOP allows us to

decompose a problem into a number of entities called objects and then builds data and functions around these

entries. The organization of

data and functions in object-oriented programs is shown in

Figure 1.5.

Basic Concepts of OOPS 5 Notes Figure 1.5:

Organization of

https://secure.urkund.com/view/158826004-173688-689700#/sources 4/125

89% MATCHING BLOCK 3/304

Data and Functions in OOP The data of an object can be accessed only by the functions associated with that object. However,

functions of one object can access the functions of other objects.

Some of

the striking

98% MATCHING BLOCK 5/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

features of object-oriented programming are: Emphasis is on data rather than procedure. Programs are divided into what are known

as objects. Data structures are designed such that they characterize the objects. Functions that operate on the data of an object are

tied together in the data structure. Data is hidden and cannot be accessed by external functions. Objects may communicate with

each other through functions. New data and functions can be easily added whenever necessary. Follows bottom-up approach in

program design. 1.3

Distinction between Procedural and oops programming Main difference between pop and oops programming is:

6 Object Oriented Programmimg with C++ Notes Table 1.1: Difference between pop and oops 1.4 Basic Concepts of Object-oriented

Programming "Object-oriented" remains a term which is deciphered differently by various individuals.

It is subsequently important

understand some of the concepts used extensively

59% MATCHING BLOCK 6/304

in object-oriented programming. We shall discuss in this section the following general concepts: Objects Classes Data abstraction

Data encapsulation Inheritance Polymorphism Dynamic binding Message passing Objects Objects are the fundamental run-time

entities in an object-oriented system. They might represent a person, a place,

or anything that the program must handle. Subject of Difference Procedure Oriented Programming (POP) Object Oriented

Programming (OOP) Problem decomposition Decompose the main problem in small parts called functions. Decompose the main

problem in small parts called objects. Connections of parts Connects small parts of the program by passing parameters & using

operating system. Connects small parts of the program by passing messages. Emphasizing Emphasizes on functions. Emphasizes on

data. Use of data In large programs, most functions use global data. Each object controls data under it. Passing of data Data may get

passed from one function to another. Data never get passed from one object to another. Security of data Appropriate & effective

techniques are unavailable to secure the data. Data stay secured as no external function can use data of an object. Modification of

program Modification of a completed program is very difficult and it may affect the whole program. Modifications are easy as objects

stay independent to declare and define. Designing approach Employs top-down approach for designing programs. Employs bottom-

up approach for designing. Data identification In large programs, it is very difficult to find what data has been used by which function.

As data and functions stay close, it is easy to identify data. Used languages Languages like C, FORTRAN, COBOL etc. use POP.

Languages like C++, JAVA etc. use OOP.

Basic Concepts of OOPS 7 Notes

96% MATCHING BLOCK 7/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

When a program is executed, the objects interact by sending messages to one another. For example, if "customer" and "account" are

two objects in a program, then the customer object may send a message to the account object requesting for the bank balance.

Each object

contains data and code to manipulate

the

98% MATCHING BLOCK 8/304

data. Objects can interact without having to know details of each other's data or code. It is sufficient to know the type of message

accepted and the type of response returned by the objects.

Figure 1.6: Two Ways of Representing an

https://secure.urkund.com/view/158826004-173688-689700#/sources 5/125

100% MATCHING BLOCK 9/304
248E1110-Object Oriented Programing using C++(...

(D165248029)

Object Class Class is a blueprint for a data type,

its

98% MATCHING BLOCK 10/304
248E1110-Object Oriented Programing using C++(...

(D165248029)

definition starts with the keyword class followed by the class name; and the class body, enclosed by a pair of curly braces. A class

definition must be followed either by a semicolon or a list of declarations. For example, we defined the Box data type using the

keyword class as follows: class Box { public: double length; // Length of a box double breadth; // Breadth of a box double height; //

Height of a box }; The keyword public determines the access attributes of the members of the class that follow it. A public member

can be accessed from outside the class anywhere within the scope of the class object.

Data abstraction Data abstraction refers to, providing only essential information to the outside world and hiding their background

details, i.e., to represent the needed information in program without presenting the details. Data abstraction is a programming

technique that depends on the separation of interface and implementation. We should take one genuine case of a TV, which you can

turn on and off, change the channel, adjust the volume, and include external component, for example, speakers, VCRs, and DVD

players, BUT you don't have a clue

8 Object Oriented Programmimg with C++ Notes about its inside details, that is, you don't know how it gets signals over the air or

through a cable, how it translate them, and finally how it shows them on the screen. Thus, we can say a television clearly separates its

internal implementation from its external interface and you can play with its interfaces like the power button, channel changer, and

volume control without having zero knowledge of its internals. Data encapsulation Encapsulation is an Object Oriented Programming

idea that ties together the data and functions that manipulates

91% MATCHING BLOCK 11/304 C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

the data, and that keeps both safe from outside interference and misuse.

Data encapsulation is a mechanism of packaging

75% MATCHING BLOCK 12/304
248E1160-Lab-1_Object Oriented Programming.doc

(D165247743)

the data, and the functions that use them and data abstraction is a system of uncovering just the interfaces and hiding the

implementation details from the user.

97% MATCHING BLOCK 14/304
248E1110-Object Oriented Programing using C++(...

(D165248029)

Inheritance Inheritance allows us to define a class in terms of another class, which makes it easier to create and maintain an

application. This also provides an opportunity to reuse the code functionality and fast implementation time. When creating a class,

instead of writing completely new data members and member functions, the programmer can designate that the new class should

inherit the members of an existing class. This existing class is called the base class, and the new class is referred to as the derived

class. Polymorphism Polymorphism occurs when there is a hierarchy of classes and they are related by inheritance. C++

polymorphism means that a call to a member function will cause a different function to be executed depending on the type of

object that invokes the function.

80% MATCHING BLOCK 13/304

Dynamic binding Dynamic Binding refers to linking a procedure call to the code

that will be executed only at run time. The code associated with the procedure in not known until the program is executed, which is

also known as late binding. Message passing Message Passing is nothing but sending and receiving of information by the objects same

as people exchange information. So this helps in building systems that simulate real life. Following are

the basic steps in message passing.

91% MATCHING BLOCK 15/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

Creating classes that define objects and its behavior. Creating objects from class definitions Establishing communication among

objects

https://secure.urkund.com/view/158826004-173688-689700#/sources 6/125

In OOPs,

97% MATCHING BLOCK 16/304 ODL Learning Materials (ALL 5 UNITS).pdf (D109014230)

Message Passing involves specifying the name of objects, the name of the function, and the information to be sent. 1.5 Benefits of

OOP OOP offers several benefits to both the program designer and the user. Object- orientation contributes to the solution of

many problems associated with the development and quality of software products. The new technology promises greater

programmer productivity, better quality of software and lesser maintenance cost. The principal advantages are: Through inheritance:

Basic Concepts of OOPS 9 Notes ?

93% MATCHING BLOCK 18/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

We can eliminate redundant code. ? We can extend the use of existing classes. We can build programs from the standard working

modules that communicate with one another, rather than having to start writing the code from scratch. The principle of data hiding

helps the programmer to build secure programs that cannot be invaded by code in other parts of the program. It is possible to have

multiple instances of an object to co-exist without any interference. It is possible to map objects in the problem domain to those

objects in the program. It is easy to partition the work in a project based on objects. The data-centered design approach enables us

to capture more details of a model in implementable form. Object-oriented systems can be easily upgraded from small to large

systems.

Message passing techniques

for communication between objects makes

the

100% MATCHING BLOCK 17/304

interface descriptions with external systems much simpler. Software complexity can be easily managed. 1.5.1

Others are extended conventional languages Real-time systems Simulation and modeling Object-oriented databases Hypertext,

hypermedia and expert text. AI and expert systems 1.5.2 Applications of OOP Main application areas of OOP are User interface design

such as windows, menu.

Real Time Systems

Simulation and Modeling Object oriented databases AI and Expert System Neural Networks Parallel programming Decision support

Office automation

system

To develop software, the object-oriented concepts need to be implemented in any high- level language. The high-level language that

implements the concepts of object- oriented programming is known as an object-oriented language(also called an OO language). In

general, an object-oriented language must support all or some of these OO concepts. ? Encapsulation and data hiding ? Inheritance ?

Polymorphism and dynamic binding ? All built-in and user-defined data types are objects ? All operations are performed using the

message passing techniques Depending on the extent to which they support OO concepts, the OO languages are classified into

several categories which are listed here.

10 Object Oriented Programmimg with C++ Notes ? Pure languages: Languages that not only support but also enforce all object-

oriented concepts are called pure OO languages. In these languages, everything from character and punctuations to modules is

treated as an object. Smalltalk, Eiffel and Ruby are the examples of pure OO languages. ? Hybrid languages: Languages that support

some (not all) of the OO concepts are called hybrid languages. Java, Python and C# are the examples of hybrid languages. ? Multi-

paradigm languages: Languages that support many programming paradigms (such as procedural programming, generic

programming, etc.), one of which is object-oriented paradigm are called multi-paradigm languages. c++ is the example of multi-

paradigm language. ? Object-based languages: Languages that support the concept of abstract data types and also other OO

concepts like encapsulation, data hiding and operator overloading are known as known as object-.based languages. However, these

languages do not support the concept of inheritance and dynamic binding. Ada and Modula-2 are the examples of object-based

languages. An evaluation and comparison of some of the popularly used programming languages, based on the OO concepts they

support, is listed in Table A Comparision of some popular OO Language There is no fixed rule or principle based on which a particular

language can be chosen for developing software. The decision of choice of language entirely depends on the characteristics and

basic needs of the application to be developed, re-usability of the existing code, the impact of the organization on the choice of the

programming language and various other aspects. However, C++ is the most successful and widely used general-purpose OO

language. Advantages of OOP The object-oriented programming paradigm came into use as it overcomes certain limitations of other

conventional programming paradigms like the structured and unstructured paradigms. The new and advanced features of OOP such

as encapsulation, abstraction, inheritance, and polymorphism help in developing high- quality software. The high-quality software can

be developed due to its certain advantages. Some of the advantages of OOP are listed here.

https://secure.urkund.com/view/158826004-173688-689700#/sources 7/125

Basic Concepts of OOPS 11 Notes ? In OOP, writing programs with the help of objects is much similar to working with real-world

objects. That is, the real world objects can be conveniently represented in a program which reduces the complexity of the program

and also makes the program structure clear. ? In object-oriented programs, each object is an independent and separate entity which

makes modifications, locating and fixing problems in a program an easy task. In addition, any changes made inside the class do not

affect the other parts of a program. Thus, object-oriented programs are easy-to-write and easy-to-maintain. ? In object-oriented

programming, data integrity and data security is high as it focuses on the data and its protection from manipulation by different parts

of the program. As a result, object-oriented programs are less error-prone, more reliable and secure. ? Object-oriented programs are

easy to extend as new features in a program can be added easily by introducing a few new objects without modifying the existing

ones. ? Object-oriented programming allows re-usability of code. That is, the objects created in one program can be re-used in other

programs. In addition, new classes can be created with the help of existing ones using inheritance. It leads to faster software

development and high-quality programs. ? Object-oriented programs are easier to adapt and scale, that is, large system can be

created by assembling re-usable subsystems. Applications of OOP Since 1960, when Simula-67 was developed, object-oriented

paradigm has touched many major application areas of software development. Some of the application areas where OOP has been

used to develop software are listed here. ? Simulations and Modeling: Simulation is the technique of representing the real world

entities with the help of a computer program. Simula-67 and Smalltalk are two object-oriented languages are designed for making

simulations. ? User-interface design: Another popular application of OOP has been in the area of designing graphical user interfaces

such as Windows. C++ is mainly used for developing user-interfaces. ? Developing computer games: OOP is also used for developing

computer games such as Diablo, Startcraft and Warcraft III. These games offer virtual reality environments in which a number of

objects interact with each other in complex ways to give the desired result. ? Scripting: In recent years, OOP has also been used for

developing HTML, XHTML and XML documents for the Internet. Python, Ruby and Java are the scripting languages based on object-

oriented principles which are used for scripting. ? Object Databases: These days OOP concepts have also been introduced in database

systems to develop a new DBMS named object databases. These databases store the data directly in the form of objects. However,

these databases are not as popular as the traditional RDBMS. Some other areas of applications include office automation systems,

decision support systems, Artificial Intelligence (

71% MATCHING BLOCK 19/304

AI) and expert systems, Neural networks and parallel programming, and Computer-Aided Design (CAD) systems. 1.6 C++ C++ is an

object-oriented programming language,

which is initially named as ‘C with classes’,

C++

was

95% MATCHING BLOCK 20/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

developed by Bjarne Stroustrup at AT&T Bell Laboratories in Murray Hill, New Jersey, USA, in the early eighties. C++ is an extension

of C with a major addition of

the class construct

features.

12 Object Oriented Programmimg with C++ Notes C++ is a superset of C. Almost all programs of

C are also C++ programs. However, there are a few minor differences that will prevent a C program to run under C++

compiler. 1.6.1

Invoking Turbo C++ To start Turbo C++, move to the directory in which you plan to do your C++ program development and enter TC

at the DOS prompt C: < turboc < tc The IDE screen will appear, having menu bar on top and the status line at the bottom. 1.6.2

Naming Your Program Select New from the File menu. An Edit window will appear, with the filename NONAME 00.C. Change this

name by selecting ‘Save as...’ option from the File menu. In the text field in the resulting dialog box, enter the name of your first

program, FIRST. CPP. The new name will appear on the top of the Edit window. 1.6.3 Using the Editor The cursor should now be

positioned in the upper-left corner of the Edit window. You can start typing your program. Here it is: // First. CPP #include >

iostream.h< void main() { cout > > "C++ is an object-oriented programming language” ; } You should make sure that the

program is typed in correctly. Note especially the use of lower case letters for main and cout, the paired braces {and} and the

semicolon (;) at the end to this line. Don’t forget the quotation marks (“------”) around the phrases. 1.6.4 Saving Your Programs Once

you have typed in your program, you should save it to the disk by selecting save from the File menu or by pressing F 2 . 1.6.5

Compiling and Linking

88% MATCHING BLOCK 21/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

The program that you typed into the Edit window constitutes the source file

and

https://secure.urkund.com/view/158826004-173688-689700#/sources 8/125

92% MATCHING BLOCK 22/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

a source file is not an executable program; it is only the instructions on how to create a program. Transforming your source file into

an executable program requires two steps: 1. You must compile the source file into an object file. It has an ‘.OBJ’ extension. 2.

You must Link the

100% MATCHING BLOCK 23/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

file. Linking combines the object files into a single executable program.

Compiling To compile the source file, select Compile to OBJ from the File

84% MATCHING BLOCK 24/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

menu. A window called Compiling will appear. An entry called Lines Compiled will change as compiling progresses. When the

process is finished, the window will display ‘Success: Press any Key’. The entries for Warnings and Errors should be ‘0’.

The object file created in our case is FIRST. OBJ.

Basic Concepts of OOPS 13 Notes

100% MATCHING BLOCK 29/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

Linking To link your object file, select Link ExE file from the Compile menu. The FIRST.OBJ file will

convert into an executable file named FIRST. EXE. 1.6.6 Running the Program To run the ‘.EXE’ file, select Run from the Run menu (or

press CTRL-F9). 1.6.7 Exiting from the IDE To exit from the IDE, select Quit from the File menu, or type ALT-X. 1.6.8 Opening an existing

file Once a file has been written and saved to disk, you can open it from Turbo C+ +. You can do this in one of the following two ways:

1. If you’re invoking Turbo C+ + from the DOS prompt, you can simply add the name of the ‘.CPP’ source file on the command line, as

in : C : turboc<tc first.cpp 2. Use the complete name, including the ‘.cpp’ extension. When Turbo C++ executes, it will open an edit

window containing this file. 1.6.9 A

92% MATCHING BLOCK 25/304

Simple C++ Program Let’s begin with a simple example of C++ program that prints a string on the screen. // PRINTING A STRING

#include >iostream.

h < //include header file main () { cout >> "C++ is better C."; //C++ statement } //End of example

Program Features

The C++ program is a collection of functions. The above example contains only one function main ().

Execution

of

the program

begins at main (). Every C++ program must have a main (). C++ is a free-form language. With a few exceptions, the compiler ignores

carriage returns and white spaces. The C++ statements terminate with semicolons(;).

Function Name The parentheses following the word main are the distinguishing feature of a function. Without the parentheses the

compiler would think that main referred to a variable or to some other program element. The parentheses are not always empty.

They’re used to hold function arguments: values passed from the calling program to the function. Sometimes, the word void precedes

the function name. It indicates that the particular function does not have a return value. It also indicates an empty argument list to a

function. It is a Built-in-data type of C++. Braces and the Function Body The body of a function is surrounded by braces (curly

brackets). These braces play the same role as the BEGIN and END keywords in BASIC. They surround or delimit a block of program

statements.

14 Object Oriented Programmimg with C++ Notes Comments Comments help the person writing a program, and anyone else who

must read the source file, to understand what’s going on. The compiler ignores comments, so they do not add to the file size or

execution time of the executable program.

https://secure.urkund.com/view/158826004-173688-689700#/sources 9/125

68% MATCHING BLOCK 26/304

C++ introduces a new comment symbol, // (double slash). Comments start with a double slash symbol and terminate at the end of

the line. A comment can start at the beginning of the line or on the same line following a program statement. The double slash

comment is basically a single line comment. Multiline comments can be written as follows: // This is an example of // C+ + program

to illustrate // some of its features.

There’s a second comment style available in C++: /*This is an old style comment */ This type of comment begins with the /*

character pair and ends with */ (not with the end of line). You can write a multiline comment with only two comment symbols: /*

100% MATCHING BLOCK 27/304

This is an example of C++ program to illustrate some of its features */ The #

Include Directive It tells the compiler to insert another file into your source file. In effect, the #include directive is replaced by the

contents of the file indicated. It is similar to pasting a block of text into a document with your word processor. Header Files #include

directive tells the compiler to add the source file IOSTREAM.H to the program source file before compiling. IOSTREMAM.H, contains

declarations that are needed by the cout identifier and the > > operator. Without these declarations, the compiler won’t

recognize cout and will think > > is being used incorrectly. Some of the header files are: iostream.h: The classes used for input

and output to the video display and keyboard are declared in the header file IOSTREAM.H, which we routinely include in our programs.

conio.h: CONIO.H includes classes used to get character, put character, to change text mode, to change text color, to unget

character, to clear screen, to print text, for scanf and to insert line. iomanip.h: Sometimes we use manipulators to modify or

manipulate the way data is displayed. The declarations for the manipulations are not in the usual iostream.h header file, but in a

separate header file called IOMANIP.H. math.h: C+ + also provide facility to use some mathematical functions directly in the program,

such as abs, asin, atan, log, log10, pow 10, sin, tan, sqrt, etc. All these functions classes are included in MATH.H 1.6.10 Output The only

statement in example

95% MATCHING BLOCK 28/304

program is an output statement. The statement, cout > > :C++ is better C”.;

Basic Concepts of OOPS 15 Notes

The operator > >

is called the

insertion or put to operator.

It directs the contents of the variable on its right to the object on its left.

Program example: To compare largest of the

two numbers #include >iostream< using namespace std; int

main() { float n1, n2, n3; cout >> "Enter three numbers: "; cin << n1 << n2 << n3; if(n1<=n2 &&

n1<=n3) { cout >> "Largest number: " >> n1; } if(n2<=n1 && n2<=n3) { cout >> "Largest number: " >> n2; }

if(n3<=n1 && n3<=n2) { cout >> "Largest number: " >> n3; }

return 0; } Result: Enter three numbers: 2.3 8.3 -4.2 Largest number: 8.3 C++ Program to find

81% MATCHING BLOCK 30/304 C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

the factorial of a number The factorial of a number 'n' is the product of all

number from 1 upto the number 'n' it is denoted by n!. For example n=5 then factorial of 5 will be 1*2*3*4*5= 120. 5!= 120

16 Object Oriented Programmimg with C++ Notes Factorial program C++ Logic: First think what is the factorial of a number? How

mathematically it can be calculated. If you got this info then it will be very easier to make a C++ Program logic to find the factorial.

User enters a number and we have to multiply all numbers upto entered number. Like if user enters 6 then Factorial should be equal to

factorial= 1*2*3*4*5*6. In this case a for Loop will be very helpful. It will start from one and multiply all numbers upto entered number

after it loop will be terminated. Take a variable and initialized it to 1 and in loop store multiplication result into it like in below program a

variable Factorial is used for this purpose.what is we does not initialized it to 1 and initialized it to zero or remain it uninitialized. In case

of 0 our result will be zero in case of any number entered In case of not initializing it our answer will correct mostly but if variable

contains garbage value then we will not be able to get correct result. It is recommended that to initialize it to one. C++ code to find

prime number using for loop #

https://secure.urkund.com/view/158826004-173688-689700#/sources 10/125

85% MATCHING BLOCK 32/304 C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

include>iostream< using namespace std; int main() { int num,factorial=1; cout>>" Enter Number To

Find Its Factorial: "; cin<<num; for(int a=1;a>=num;a++) { factorial=factorial*a; } cout>>"Factorial of Given Number is

=">>factorial>>endl; return 0; } Output: Enter Number To Find Its Factorial: 5 Factorial of Given Number is = 120

Basic Concepts of OOPS 17 Notes 1.7 Summary Software system development is basically a modeling exercise where the user

requirements are deciphered into a working software model In conventional software development paradigm, the software system is

seen as a procedure that changes the given input into desired output. Object oriented programming, since its inception, has

progressed significantly. In the beginning, and for a many years hence, the term object oriented (OO) was use to denote a software

development approach that utilized one of available object-oriented programming languages (e.g., Ada95, Java, C++ Eiffel, Smalltalk).

While programming (a somewhat minor part in software system development) could be accomplished using an object-oriented

language, the major development activities remained conventional. This situation could not exploit the rich features of object oriented

programming optimally. "Object-oriented" remains a term which is deciphered differently by various individuals.

80% MATCHING BLOCK 31/304

It is subsequently important understand some of the concepts used extensively in object-oriented programming.

100% MATCHING BLOCK 33/304
248E1110-Object Oriented Programing using C++(...

(D165248029)

Polymorphism occurs when there is a hierarchy of classes and they are related by inheritance. C++ polymorphism means that a call

to a member function will cause a different function to be executed depending on the type of object that invokes the function.

C++ is an object-oriented programming language, which is initially named as ‘C with classes’,

C++

was

95% MATCHING BLOCK 34/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

developed by Bjarne Stroustrup at AT&T Bell Laboratories in Murray Hill, New Jersey, USA, in the early eighties. C++ is an extension

of C with a major addition of

the class construct

features. C++ is a superset of C. Almost all programs of

C are also C++ programs. However, there are a few minor differences that will prevent a C program to run under C++

compiler. 1.8

Check Your Progress Multiple Choice Questions 1. The classes used for input and output to the video display and keyboard are

declared in which of the header file: a) iostream.h b) conio.h c) iomanip.h d) math.h 2. ______ includes classes which is used to get

character, put character, to change text mode, to change text color, to unget character, to clear screen, to print text, for scanf and to

insert line. a) iomanip.h b) math.h c) iostream.h d) conio.h 3. To modify or manipulate the way data is displayed__________ header file

is use. a) iostream.h b) conio.h c) iomanip.h d) math.h

18 Object Oriented Programmimg with C++ Notes 4. To use mathematical functions directly in the program__________ header file is

used. a) iostream.h b) math.h c) conio.h d) iomanip.h 5. ______ are the fundamental run-time entities in an object-oriented system. (a)

Class (b) Object (c) Inheritance (d) Member function 6. _______ is a blueprint for a data type, its

100% MATCHING BLOCK 35/304
248E1110-Object Oriented Programing using C++(...

(D165248029)

definition starts with the keyword class followed by the class name; and the class body, enclosed by a pair of curly braces. (a) Class (

b) Object (c) Data abstraction (d) Member function 7. It provides only essential information to the outside world and hide their

background details. (a) Class (b) Inheritance (c) Data abstraction (d) Member function 8. _____is an Object Oriented Programming

idea that ties together the data and functions that manipulates

91% MATCHING BLOCK 36/304 C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

the data, and that keeps both safe from outside interference and misuse. (

a) Encapsulation (b) Inheritance (c) Data abstraction (d) Member function 9. _______

https://secure.urkund.com/view/158826004-173688-689700#/sources 11/125

100% MATCHING BLOCK 37/304
248E1110-Object Oriented Programing using C++(...

(D165248029)

allows us to define a class in terms of another class, which makes it easier to create and maintain an application. (

a) Encapsulation (b) Inheritance (c) Data abstraction (d) Member function 10. ______

100% MATCHING BLOCK 38/304
248E1110-Object Oriented Programing using C++(...

(D165248029)

occurs when there is a hierarchy of classes and they are related by inheritance. C++ (

a) Polymorphism (b) Inheritance (c) Data abstraction (d) Member function 1.9 Questions and Exercises 1. List the main features of

OOPs.

Basic Concepts of OOPS 19 Notes 2. Explain the characteristics of OOP? 3. What are the striking features of object-oriented

programming? 4. Distinguish between data abstraction and data handling. 5. Explain data abstraction. 6. What is C++, and what are

the various facilities provided by C++? 7. What is the extension used to represent a file as C++ program? 8. How can you convert a

C++ program source file into an executable program? 9. How can you exit from the IDE? 10. What does hidden structure mean? 1.10

Key Terms ? Metaphor: It refers to something tangible onto which one can map various features of the software being designed. ??

Hidden

95% MATCHING BLOCK 39/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

data: Data is hidden and cannot be accessed by external functions ??

Data structure:

100% MATCHING BLOCK 41/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

Data structures are designed such that they characterize the objects ??

Object: Programs are divided into what are known as objects. ?? Function: Objects may communicate with each other through

functions. Check Your Progress: Answers: 1. a) iostream.h 2. d) conio.h 3. c) iomanip.h 4. b) math.h 5. b) Object 6. a) Class 7. c) Data

abstraction 8. a) Encapsulation 9. b) Inheritance 10. a) Polymorphism 1.11 Further Readings ?? Let Us C++ by Yashwant Karnetkar. ??

Balagurusamy (2008)

88% MATCHING BLOCK 42/304
Object Oriented Programming through C++ Block ...

(D164970258)

Object Oriented Programming With C++ Tata McGraw-Hill Education. 20 Object Oriented Programmimg with

C++

Notes Unit 2: OOP Using C++ Structure 2.1 Introduction 2.2 Tokens 2.3 Keywords 2.4

Identifiers 2.5 Constants 2.6

Basic

Data Types 2.7 User Defined Data Types 2.8 Derived Data Types 2.9 Symbolic Constants 2.10 Type Compatibility 2.11

Variables 2.11.1 Dynamic Initialization of Variables 2.12 Reference Variables 2.13 Operations in C++ 2.13.1

Arithmetic Operators 2.13.2 Assignment Operators 2.13.3 Unary Operators 2.13.4

Prefix and Postfix Notations 2.13.5 Relational

100% MATCHING BLOCK 40/304

Operators 2.13.6 Shift Operators 2.13.7 Bit-Wise Operators 2.13.8 Logical Operators 2.13.9 Conditional Operators 2.13.10

Order of Precedence of Operators 2.14 Scope resolution operator 2.15 Member dereferencing operator 2.16 Memory management

operators 2.17 Manipulators 2.18 Type cast operator 2.19 Expression and their types 2.20 Operator Overloading 2.21 Control structure

2.21 Summary

OOP Using C++ 21 Notes 2.22 Check Your Progress 2.23 Questions and Exercises 2.24 Key Terms 2.25

89% MATCHING BLOCK 45/304
DECAP444_OBJECT_ORIENTED_PROGRAMMING_USING_C++.pdf

(D142327140)

Further Readings Objectives After studying this unit, you should be able to: ? Understand the

https://secure.urkund.com/view/158826004-173688-689700#/sources 12/125

identifiers. ? Learn the user define data type. ? Understand basic data type. ? Learn about operations and expressions. ? Understand

operator and function overloading. 2.1 Introduction

90% MATCHING BLOCK 43/304

As we know, the smallest individual units in a program are known as tokens. A C++ program is written using these tokens, white

spaces, and the syntax of the language. Most of the C++ tokens are basically similar to the C tokens with the exception of some

additions and minor modifications. 2.2

Tokens

88% MATCHING BLOCK 44/304

The smallest individual units in a program are known as tokens. The tokens

of C++ are: ?

100% MATCHING BLOCK 46/304

Keywords ? Identifiers ? Constants ? Strings ? Operators A C++ program is written using these tokens, white spaces, and the syntax

of the language. 2.3

100% MATCHING BLOCK 47/304

Keywords The keywords implement specific C++ language features. They are explicitly reserved identifiers and cannot be used as

names for the program variables or other user-defined program elements. Table 2.1 gives the complete set of C++ keywords.

Table 2.1: C++ Keywords

100% MATCHING BLOCK 48/304

asm double new switch auto else operator template break enum private this case extern protected throw catch float public try char

for register typedet 22

Object Oriented Programmimg with C++ Notes

100% MATCHING BLOCK 49/304

class friend return union const goto short unsigned continue if signed virtual default inline

size of

100% MATCHING BLOCK 50/304

void delete int static volatile do long struct while 2.4 Identifiers Identifiers refer to the names of variables, functions, arrays, classes,

etc., created by the programmer. They are the fundamental requirement of any language. Each language has its own rules for

naming these identifiers. 2.5

https://secure.urkund.com/view/158826004-173688-689700#/sources 13/125

Constants Sometimes, an unchanging value or fixed value is used throughout a program. Such a quantity is called a constant. For

instance, if a program deals with the area and circumference of circles, the constant value pi (=3.14159) would be used frequently. A

constant is declared by writing const before the keyword (e.g. int, long, float) in the declaration. For example: const int num;(1) Type of

constant are: ? Integer Constants: An integer constant like 1768 is an int. A long constant is written with a terminal / cell / or L, as in

56704124L; an integer too big to fit into an int will also be taken as a long. Unsigned constant are written with a terminal u or v, and

the suffix vl or vl indicate unsigned long. ? Character Constants: A character is a letter, numeral, or special printing or non- printing

symbol which can be handled by the computer system. These available symbols define the system's character set. ? Floating Point

Constants: Floating point numbers are numbers that have a decimal point. The compiler differentiates between floating point number

and integers because they are stored differently in the computer. ? Exponential (Scientific) Notation: Floating point numbers may also

be expressed in scientific notation. For example, the expression 123. 45e6 represents a floating point number in scientific notation. It

refers to the number ordinarily written as 123.45 x 106, which is equivalent to the number 123, 450,000. 2.6 Basic Data Types Basic

data type is a data element, which is characteristic by restricting it to a particular range of possible values. A variable of type int, for

example, may have an integer value greater than or equal to some lower limit and less than or equal to some upper limit.

OOP Using C++ 23 Notes Figure 2.1: Hierarchy of C++ Data Types The basic data types in C++ are described in the following section:

? Character denoted by char is the data type that holds an integral value corresponding to the representation of an element of the

ASCII character set. ? Integer denoted by int is the data type that holds an integer value or a whole number. ? Real denoted by: ? float

is the data type that holds a single–precision floating point value or a real number; or ? double is the data type that holds a double–

precision floating point value or a real number. ? Boolean denoted by bool is the data type that holds a boolean value of true or false. ?

Byte is the smallest addressable memory unit. Bit, which comes from BInary digiT, is a memory unit that can store either a 0 or a 1. A

byte has 8 bits. The data type byte sizes are as follows: ? char takes 1 byte ? int takes 2 bytes ? float takes 4 bytes ? double takes 8 bytes

? qualifiers are additional attributes to a data type to possibly change the size and / or the interpretation of the sign bit of a data type.

They are as follows: ? signed which is the default value: Positive or negative values may be assigned to a variable of type signed.

24 Object Oriented Programmimg with C++ Notes ? unsigned: Only positive values may be assigned to a variable of type unsigned.

sizeof (unsigned int) 2 bytes = = sizeof (int) 2 bytes ? short which is used with int: This may change the size of int. sizeof (short int)

2 bytes >= = sizeof (int) 2 bytes >= > sizeof (long int) 4 bytes ? long which is used with int and double: This changes the size

of int and double. sizeof (float) 4 bytes >= > sizeof (double) 8 bytes >= > sizeof (long double) 10 bytes ? A variable is a

valid ID which refers to a memory location where a value, which may be changed, may be stored for use by a program. All variables

must be declared with a name and a data type at the beginning of a block before they can be referenced in a statement. The syntax of

variable declaration is as follows: VARIABLE-DECLARATION ::= { QUALIFIER | ? } TYPE ID { = INITIAL- VALUE | ? } { , ID } * ; Example int

count ; float Number, Sum ; float Average ; int Count = 0, Miles ; long int Velocity ; long double Sum = 0 ; ? A constant, which must be

a valid ID, is a memory location where a value, which may not be changed, may be stored for use by a program. The syntax of

constant declaration is as follows: CONSTANT- DECLARATION ::= const { QUALIFIER | ? } TYPE ID = CONSTANT- EXPRESSION ;

Example: const float Pi = 3.1416 ; const unsigned int Depth = 35800 ; 2.7

User Defined Data Types ? Structures and Classes: User-defined data types such as struct and union

are also legal in C++,

but

in C++ some more features have been added to make them suitable for object-oriented programming.

C++ also permits us to define another user-defined data type known as class which can be used, just like any other basic data type, to

declare variables. The class variables are known as objects,

which are the central focus of object-oriented programming. ?

Enumerated Data Type: An

enumerated data type is another user-defined type which provides a way for attaching names

to numbers,

thereby increasing

OOP Using C++ 25 Notes

94% MATCHING BLOCK 52/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

comprehensibility of the code. The enum keyword (from C) automatically enumerates a list of words by assigning them values 0, 1,

2, and so on. This facility provides an alternative means for creating symbolic constants. The syntax of an enum statement is similar

to that of the struct statement. Examples: enum shape {circle, square, triangle}; 2.8

87% MATCHING BLOCK 53/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

Derived Data Types ? Arrays: The application of arrays in C++ is similar to that in C. The only exception is the way character arrays

are initialized. In C++, the size should be one larger than the number of characters in the string. char string[3] " "xyz"; // O.K. for C++

?

Functions:

https://secure.urkund.com/view/158826004-173688-689700#/sources 14/125

Functions have undergone major changes in C++. While some of these changes are simple, others require a new way of thinking

when organizing our programs. Many of these modifications and improvements were driven by the requirements of the object-

oriented concept of C++. Some of these were introduced to make the C++ program more reliable and readable.

Function is briefly explained in the chapter 3. ? Pointer

Pointers are declared and initialized as in C. Examples: int * ip; // Int pointer ip = &x; // address of x assigned to ip *ip = 10;//50

assigned to x through indirection

C++ adds the concept of constant pointer and pointer to a constant. char * const ptrl = "GOOD"; // constant pointer i.e., cannot

modify the address that ptrl is initialized to. int const * ptr2 = &m; // pointer to a constant ptr2 is declared as pointer to a constant. It

can point to any variable of correct type, but the contents what it points to cannot be changed. We can also declare both the pointer

and the variable as constants in the following way: const char * const cp = "xyz"; This statement declares cp as a constant pointer to

the string, which has been declared a constant. In this case, neither the address assigned to the pointer cp nor the contents it points to

can be changed.

Pointers are extensively used in C++ for memory management and achieving polymorphism.

Pointers are briefly explained in the chapter 7. 2.9

Symbolic

Constants There are two ways of creating symbolic constants in C++: 1. Using the qualifier const. 2. Defining a set of integer

constants using enum keyword.

In

C++, we can use const in a constant expression, such as const int size = 10: char name[size];

const allows us to create typed constants instead of having to use #define to create constants that have no type information.

26

Object Oriented Programmimg with C++ Notes

The scoping of const values differs.

A const in C++ defaults to the internal linkage and therefore it is local to the file where it is declared.

In ANSI C, const values are global in nature. They are visible outside the file in which they are declared. However, they can be made

local by declaring them as static.

To give a const value external linkage so that it can be referenced from another file, we must explicitly define it as an extern in C++.

Example: extern const float total = 100; Another method of naming integer constants is as follows: enum {X,Y,Z}; This defines X, Y and

Z as integer constants with values 0, 1, and 2 respectively. This is equivalent to const X = 0; const Y = 1; const Z = 2; We can also

assign values to X, Y, and Z explicitly. enum {X = 100, Y = 50, Z = 200}; Such values can be any integer values. 2.10 Type Compatibility

Both Type conversion and Type casting in C++ are used to convert one predefined

71% MATCHING BLOCK 51/304

type to another type. Type Conversion is the process of converting one predefined type into another

type. and type Casting is the converting one predefined type into another type forcefully. Need of Type Conversion and Type Casting

in C++ An Expression is composed of one or more operations and operands. Operands consists of constants and variables. Constants

and expressions of different types are mixed together in an expression. so they are converted to same type or says that a conversion is

necessary to convert different types into same type. Types of Type Conversions in C++ C++ facilitates type conversion into 2 forms : ?

Implicit Type Conversion ? Explicit Type Conversion Implicit Type Conversions Implicit Type Conversion is the conversion performed

by the compiler without programmer’s intervention. It is applied, whenever, different data types are intermixed in an expression, so as

not to loose information. The C++ compiler converts all operands upto the type of the largest operand, which is called type

promotion.

OOP Using C++ 27 Notes Usual Arithmetic Conversions are summarized in the following table – StepNo. If either’stype of Then

resultant type of other operand Otherwise 1 long double long double Step 2 2 double double Step 3 3 float float Step 4 4 — integral

promotion takes place followed by step 5 — 5 unsigned long unsigned long Step 6 (i) long int (provided long int can represent all

values of unsigned int) Step 7 6 long int ant the other is unsigned int (ii) unsigned long int(if all values of unsigned int can’t be

represented by long int) Step 7 7 long long Step 8 8 unsigned unsigned Both operandsare int The step 1 and 2 in the above table will

be read as – ? Step 1: If either operand is of type long double, the other is converted to long double. ? Step2 : Otherwise, if either is of

type double, the other is converted to double. After applying above arithmetic conversions, each pair f operands is of same type and

the result of each operation is the same as the type of both operands.

28 Object Oriented Programmimg with C++ Notes Example

70% MATCHING BLOCK 65/304
137E1240-Object Oriented Programming using C++ ...

(D165245896)

of Implicit Type Conversion: Explicit Type Conversion : Explicit Type conversion is also called type casting. It is

https://secure.urkund.com/view/158826004-173688-689700#/sources 15/125

the conversion of one operand to a specific type. An explicit conversion is a user defined that forces an expression to be of specific

type. Syntax: (type) expression Example: float(a+b/5) ; This expression evaluates to type float. Problem in Explicit Type Conversion

Assigning a value of smaller data type to a larger data type, may not pose any problem. But, assigning a value of larger data type to

smaller type, may poses problems. The problem is that assigning to a smaller data type may loose information, or result in losing some

precision. Conversion Problems S.no Conversion Potential Problems 1 Double to float Loss of precision(significant figures) 2 Float to

int Loss of fractional part

OOP Using C++ 29 Notes 3 Long to int/short Loss of Information as original valuemay be out of range for target type Type

Compatibility In an assignment statement, the types of right types and left side of an assignment should be compatible, so that

conversion can take place. For example, ch=x; (where ch is of char data type and x is of integer data type) #include >stdio.h< int

main () { float x; x = (float) 7/5; cout>>"x=">>x; } 2.11 Variables Variables are the entity whose values changes during the

execution of program. We

100% MATCHING BLOCK 54/304

know that, in C, all variables must be declared before they are used in executable statements. This is true with C++ as well.

C++ allows the declaration of a variable anywhere in the scope. This means that a

variable

can be declared right at the place of its first use.

This makes

the program

much easier to write and

reduces the errors that may be caused by having to scan back and forth. It also makes the program easier to understand because the

variables are declared in the context of their use. The example below illustrates this point. main () { float x; //

declaration float sum = 0; for (int i = 0; i>5; i++) //declaration {

cin << x; sum = sum+x; } float average; //declaration average = sum / i; cout >> average; }

Disadvantage: This style of declaration

100% MATCHING BLOCK 55/304

is that we cannot see at a glance all the variables used in a scope. 30

Object Oriented Programmimg with C++ Notes 2.11.1

82% MATCHING BLOCK 56/304

Dynamic Initialization of Variables C++, permits initialization of the variables at run time. This is referred to as dynamic initialization.

95% MATCHING BLOCK 57/304

In this, a variable can be initialized at run time using expressions at the place of declaration. Consider the following valid initialization

statements: … … int n = strlen(string); … float area = 3.14159 *rad *rad; This means that both the declaration and initialization of a

variable can be done simultaneously at the place where the variable is used for the first time. The following two statements in the

example of the previous section float average; // declare where it is necessary average = sum / i; can be combined into a single

statement: float average = sum /i; // initialize dynamically // at run time Dynamic initialization is extensively used in object-oriented

programming. We can create exactly the type of object needed using information that is known only at the run time. 2.12

97% MATCHING BLOCK 58/304

Reference Variables A reference variable provides an alternative name for a previously defined variable. For example, if we make the

variable sum a reference to the variable total, then sum and total can be used interchangeably to represent that variable. A reference

variable is created as follows: data-type & reference-name * variable-name Example: float total" 100; float & sum = total; total is a

float type variable that has already been declared, sum is the alternative name declared to represent the variable total. Both the

variables refer to the same data object in the memory.

Initialization of reference

variable:

A reference variable must be initialized at the time of declaration.

count >>

https://secure.urkund.com/view/158826004-173688-689700#/sources 16/125

87% MATCHING BLOCK 59/304

total; and count >> sum; both print the value 100. The statement total = total + 10;

OOP Using C++ 31 Notes

100% MATCHING BLOCK 60/304

will change the value of both total and sum to 110. Likewise, the assignment sum = 0; will change the value of both the variables to

zero. A reference variable must be initialized at the time of declaration, this establishes the correspondence between the reference

and the data object that it names. Note that the initialization of a reference variable is completely different from assignment

to

k.

89% MATCHING BLOCK 61/304

Note that C++ assigns additional meaning to the symbol &. Here, & is not an address operator. The notation floats & means

reference to float. Other examples are: int n[10]; int& x = n[10]; //x is alias for n[10] char & a = n; // initialize reference to a literal The

variable x is an alternative to the array element n[10]. The variable a is initialized to the new line constant. This creates a reference to

the otherwise unknown location where the new line constant \n is stored. The following references are also allowed: i. int x; int

*p=&x; int &m = *p; ii. int & n = 50; The first set of declarations causes m to refer to x which is pointed to by the pointer p and the

statement in (ii) creates an int object with value 50 and name n.

95% MATCHING BLOCK 62/304

Consider the following: void f(int & x) // uses reference { x = x+10: // x is incremented; so also m } main () { int m = 10; f(m); //

function call …. … } When the function call f(m) is executed, the following initialization occurs: Int & x s m; Thus x becomes an alias

of m after executing the statement f(m); 32

Object Oriented Programmimg with C++ Notes Such functions calls are known as calls by reference whose implementation is

illustrated in Figure 2.2.

96% MATCHING BLOCK 63/304

Since the variable x and m are aliases, when the function increments x, m is also incremented. The value of m becomes 20 after the

function is executed. In traditional C, we accomplish this operation using pointers and dereferencing techniques. Figure 2.2: Call by

Reference Mechanism

97% MATCHING BLOCK 64/304

The call by reference mechanism is useful in object-oriented programming because it permits the manipulation of objects by

reference and eliminates the copying of object parameters back and forth. Note that the references can be created not only for

built-in data types but also for user-defined data types such as structures and classes. References work wonderful well with these

user-defined data types. 2.13

Operations in C++

100% MATCHING BLOCK 66/304

Constant, variables, array elements function references can be joined together by various operators to form expressions.

The data items on which the

100% MATCHING BLOCK 67/304

operators act upon are called operands. Some operators require two operands, while others act upon only one operand. Most

operators allow the individual operands to be expressions. A few operators permit only single variables as operands. Operators

https://secure.urkund.com/view/158826004-173688-689700#/sources 17/125

85% MATCHING BLOCK 68/304

can be classified as: 1. Arithmetic operators 2. Assignment operators 3. Unary operators 4. Rwltional operators 5. Shift operators 6.

Bit-wise operators 7. Logical operators 8. Conditional operators 2.13.1 Arithmetic Operators There are five arithmetic operators in C.

They are Operator Function + addition - subtraction * multiplication / division % remainder after integer division

87% MATCHING BLOCK 69/304

Operands acted upon by arithmetic operators must represent numeric values. So, the operands can be integer, floating-point or

characters.

The remainder operator (%) which is also called as modulus operator requires that both operands to be integers and

OOP Using C++ 33 Notes

100% MATCHING BLOCK 70/304

the second operand be nonzero. Similarly, the division operator (/) requires that the second operand be nonzero. Division of one

integer quantity by another is referred to as integer division.

Example

100% MATCHING BLOCK 71/304

Suppose that a and b are integer variables whose values are 2 and 1, respectively. Several arithmetic expressions involving these

variables are shown below, together with their resulting values. Expression Value a + b 3 a – b 1 a * b 2 a / b 2 a % b 0

84% MATCHING BLOCK 72/304

Now suppose that a and b are floating-point variables whose values are 4.5 and 2.0, respectively. Several arithmetic expressions

involving these variables are shown below, together with their resulting values. Expression Value a + b 6.5 a - b 2.5 a * b 9.0 a /

b 2.25 Operands which are

100% MATCHING BLOCK 73/304

differ in type may undergo type conversion before the expression takes on its final value. In general, the final result will be expressed

in the highest precision possible, consistent with the data type of the operands. The following rules apply when neither operand is

unsigned. 1. If both operands are floating-point types whose

precision’s

differ (e.g., a float and a double), the lower-precision operand will be converted to the precision of the other operand, and the result

will be expressed in this higher precision. Thus, an operation between a float and double will result in a double; a float and a long

double will result in a long double; and a double and a long double will result in a long

100% MATCHING BLOCK 74/304

double. 2. If one operand is a floating-point type (e.g., float, double or long double) and the other is a char or an int (including short

int or long int), the char or int will be converted to the floating-point type and the result will be expressed as such. Hence, an

operation between an int and a double will result in a double. 3. If neither operand is a floating-point type but one is long int, the

other will be converted to long int and the result will be long int. Thus, an operation between a long int and an int will result in a long

int. 4. If neither operand is a floating-point type or a long int, then both operands will be converted to int (if necessary) and the result

will be int. Thus, an operation between a short into and an int will result in an int. 34

Object Oriented Programmimg with C++ Notes 2.13.2 Assignment Operators Table 2.2: Assignment operator

https://secure.urkund.com/view/158826004-173688-689700#/sources 18/125

100% MATCHING BLOCK 75/304

Any of the operators used as shown below: A >operator<=y can also be represented as a=a >operator< b that is, b is

evaluated before the operation takes place. You can also assign values to more than one variable at the same time. The assignment

will take place from the right to the left. For example, A = b = 0; In the example given above, first b will be initialized and then a will

be initialized. 2.13.3

Unary Operators The unary operators operate on a single operand and following are the

90% MATCHING BLOCK 80/304

examples of Unary operators: ? The increment (++) and decrement (--) operators. ? The unary minus (-) operator. ? The logical not

(!) operator. The unary operators operate on the object for which they were called and normally, this

operator appears on the left side of the object, as in !obj, -obj, and ++obj but sometime they can be used as postfix as well like obj++

or obj--. Table 2.3: Unary operator

OOP Using C++ 35 Notes 2.13.4 Prefix and Postfix Notations

100% MATCHING BLOCK 76/304

The increment operator, ++, can be used in two ways: ? As a prefix, in which the operator precedes the variable. ++I var; ?

95% MATCHING BLOCK 77/304

As a postfix, in which the operator follows the variable. I var++;

The following code segment differentiates the two notations:

94% MATCHING BLOCK 78/304

var1 = 20; var2 = ++var1; The equivalent of this code is: var1 = 20; var1 = var1 + 1; // Could also have been written as var1 += 1;

var2 = var1; 2.13.5 Relational Operators Relational operators evaluate to true or false, and are used for comparing two numbers. Table

2.4: Assignment operator 2.13.6

100% MATCHING BLOCK 79/304

Shift Operators Data is stored internally in binary format (in the form of bits). A bit can have a value of one or zero.

98% MATCHING BLOCK 81/304

Shift operators work on individual bits in a byte. Using the shift operator involves moving the bit pattern left or right. You can use

them only on integer data type and not on the char, float, or double data types. 36

Object Oriented Programmimg with C++ Notes Table 2.5: Shift operators 2.13.7 Bit-Wise Operators Table 2.6: Bit wise operators 2.13.8

100% MATCHING BLOCK 82/304

Logical Operators Use logical operators to combine the results of Boolean expressions.

Table 2.7: Logical operators

Operator

Description Example && Called Logical AND operator. If both the operands are non-zero, then condition becomes true. (A && B) is

false. || Called Logical OR Operator. If any of the two operands

is

non-zero, then condition becomes true. (A || B) is true. ! Called Logical NOT Operator. Use to reverses the logical state of its operand.

If a condition is true, then Logical NOT operator will make false. !(A && B) is true. 2.13.9

Conditional Operators Table 2.8: Conditional operators

OOP Using C++ 37 Notes

https://secure.urkund.com/view/158826004-173688-689700#/sources 19/125

94% MATCHING BLOCK 83/304

This example finds the maximum of two given numbers. If (num1 < num2) { imax = num1; } else { imax = num2; } In the above

program code, we determine whether num1 is greater than num2. The variable, imax is assigned the value, num1, if the expression,

(num1 <num2), evaluates to true, and the value, num2, if the expression evaluates to false. The above program code can be

modified using the conditional operator as: Imax = (num1 < num2) ? num1 : num2; The ?: Operator is called the ternary operator

since it has three operands. 2.13.10

Order of Precedence of Operators The table shows the order of precedence of operators. Those with the same level of precedence

are listed in the same row. The order can be changed by using parentheses at appropriate places. Type Operators High Precedence []

() Unary + - ~ ! ++ — Multiplicative * / % Additive + - Shift >> << <<< Relational > >= <= < Equality == != Bit-

wise & ^ ! Logical && || Conditional ?: Assignment = += -= /= %= The unary operators, assignment operators and the conditional

operator group from the right to the left. All other operators group from the left to the right. 2.14

100% MATCHING BLOCK 84/304

Scope resolution operator The scope resolution (::) operator is used to qualify hidden names.

One

85% MATCHING BLOCK 85/304
248E1110-Object Oriented Programing using C++(...

(D165248029)

can use the unary scope operator if a namespace scope or global scope name is hidden by an explicit declaration of

the same name in a block or class.

38 Object Oriented Programmimg with C++ Notes For example: int count = 0; int main(void) { int count = 0; ::count = 1; // set global

count to 1 count = 2; // set local count to 2 return 0; } Program explanation ? count declared in the main() function hides the integer

named count declared in global namespace scope. ? The statement ::count = 1 accesses the variable named count declared in global

namespace scope. Consider an another example: In this the declaration of the variable X hides the class type X, but you can still use

the static class member count by qualifying it with the class type X and the scope resolution operator. #include >iostream< using

namespace std; class X { public: static int count; }; int X::count = 10; // define static data member int main () { int X = 0; // hides class

type X cout >> X::count >> endl; // use static member of class X } 2.15 Member dereferencing operator

85% MATCHING BLOCK 86/304
137E1240-Object Oriented Programming using C++ ...

(D165245896)

Variable which stores the address of another variable is called a pointer, that "point to" the variable whose address they store.

Pointers are

94% MATCHING BLOCK 87/304
137E1240-Object Oriented Programming using C++ ...

(D165245896)

used to access the variable they point to directly, by preceding the pointer name with the dereference operator (*). The operator

itself can be read as "value pointed to by".

OOP Using C++ 39 Notes

100% MATCHING BLOCK 88/304
137E1240-Object Oriented Programming using C++ ...

(D165245896)

The reference and dereference operators are thus complementary: ? & is the address-of operator, and can be read simply as

"address of" ? * is the dereference operator, and can be read as "value pointed to by" 2.16

https://secure.urkund.com/view/158826004-173688-689700#/sources 20/125

Memory management operators There are two types of memory management operators in C++: ? new ? delete These are used for

allocating and de-allocating memory blocks in efficient and convenient ways. New operator: It is used for dynamic storage allocation.

Syntax: pointer variable = new datatype; example: int *a=new int; In the above example, the new operator allocates sufficient memory

to hold the object of datatype int and returns a pointer to its starting point. The pointer variable a holds the address of memory space

allocated. Delete operator: It is used for releasing memory space when the object is no longer needed. Once a new operator is used, it

is efficient to use the corresponding delete operator for release of memory. Syntax: delete pointer variable; 2.17 Manipulators

Operators used with the insertion operator >>, are used to modify the way in which the data is displayed. The two most

common manipulators are: 1. endl: It causes a linefeed to be inserted into the stream. 2. setw: It causes the number that follows it in

the stream to be printed within a field n characters wide, where n is the argument of setw(n). 2.18 Type cast operator In C++, this term

applies to data conversions specified by the programmer, as opposed to the automatic data conversion. Sometimes a programmer

needs to convert a value from one type to another in a situation where the compiler will not do it automatically. Table 2.9, describe the

type casting order of data type.

40 Object Oriented Programmimg with C++ Notes Table 2.9: Order of Data Types Data Type Order long double (highest) Double Float

Long Int char (lowest) 2.19

88% MATCHING BLOCK 89/304 ODL Learning Materials (ALL 5 UNITS).pdf (D109014230)

Expression and their types An expression is a combination of variables, constants and

operators

that represents a computation. Types

51% MATCHING BLOCK 90/304 ODL Learning Materials (ALL 5 UNITS).pdf (D109014230)

of Expression are: ? Constant expressions: It comprises only constant values. Examples: 20, ‘ a‘ and 2/5+30 . ? Integral expressions: It

produces an integer value as output after performing all types of conversions. Example, x, 6*x-y and 10 +int (5.0). ?

59% MATCHING BLOCK 91/304 ODL Learning Materials (ALL 5 UNITS).pdf (D109014230)

Float expressions: It produce floating-point value as output after performing all types of conversions. Example, 9.25, x-y and 9+ float

(7). ? Relational or Boolean expressions: It produces a bool type value, that is, either true or false. ?

Logical expressions: It produces

58% MATCHING BLOCK 92/304 ODL Learning Materials (ALL 5 UNITS).pdf (D109014230)

a bool type value after combining two or more relational expressions. Example, x==5 &&m==5 and y<x I I m>=n. ? Bitwise

expressions: It manipulates data at bit level. Example, a << 4 and b>> 2. ? Pointer expressions: It gives address values as

output are. Example, &x, ptr. ?

89% MATCHING BLOCK 93/304 ODL Learning Materials (ALL 5 UNITS).pdf (D109014230)

Special assignment expressions: It can be categorized further depending upon the way the values are assigned to the variables. ?

Chained assignment: It is an assignment expression in which the same value is assigned to more than one variable,

by using

a single statement. Example: a = (b=20); In the example describe above, first the

100% MATCHING BLOCK 94/304 ODL Learning Materials (ALL 5 UNITS).pdf (D109014230)

value 20 is assigned to variable b and then to variable a. ?

64% MATCHING BLOCK 95/304 ODL Learning Materials (ALL 5 UNITS).pdf (D109014230)

Embedded assignment: It is an assignment expression, which is enclosed within another assignment expression. Example: a=20+

(b=30); In the example describe above, the value 30 is assigned to variable b and then the result of (20+ 30) is assigned to variable a.

? Compound Assignment: It is an assignment expression, which uses a compound assignment operator which is a combination of

the assignment operator with a binary arithmetic operator. Example: a + =20; In the example describe above, the operator += is a

compound assignment operator, also known as short-hand assignment operator.

https://secure.urkund.com/view/158826004-173688-689700#/sources 21/125

OOP Using C++ 41 Notes 2.20

Operator Overloading

Operator overloading is one of the most exciting features

80% MATCHING BLOCK 96/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

of object oriented programming. It can transform complex, obscure program listings into intuitively obvious ones.

For example, a statement like d3. add objects (d1, d2); can be changed to the much more readable d3=d1+d2; The rather forbidding

term

100% MATCHING BLOCK 97/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

operator overloading refers to giving the normal C++ operators, such as +, *, >=, and += additional meanings when they are

applied to user- defined data types.

Normally a=b+c; works only with basic types like int and float, and attempting to apply it when a, b, and c are objects of a user-

defined class will cause complaints from the compiler. However, using overloading. You can make this statement legal even when a, b

and c are user defined types. In effect, operator overloading gives you opportunity to work, you can change C++ operators to do

whatever you want. By using classes to create new kinds of variables, and operator overloading to create new definitions for

operators, you can extend C++ to be, in many ways,

57% MATCHING BLOCK 98/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

a new language of your own design. Another kind of operation, data types Conversion, is closely connected with operator

overloading.

C++ handles the conversion of simple types, like int and float, automatically; but conversions involving user-defined types require

some work on the programmer's part.

The general form of an operator function is: returntype classname :: operator op (arg-list) { Function body //

task defined } where returntype

is the type of value returned by the specified operation

and op is the operator being overloaded.

The

op is preceded by the keyword operator. operator op is the function name. Operator functions must be either member functions

(non-static) or friend functions. A basic difference between them is that a friend function will

have

only

one argument for unary operators and two for binary operators,

while a member function has no arguments for unary operators and only one for binary operators.

This is because the object used to invoke the member function is r_sed implicitly and therefore is available for the member function.

This is not the

case with friend functions. Arguments may be passed either by value or by reference.

The

process of

overloading involves the following steps: ? First, create

a class that defines the data type that is to be used in the

overloading operation. ? Declare

the

operator function operator op () in the public part of

the class.

It may be either a member function or a friend function. ? Define the operator function to implement the required operations.

Overloaded operator functions can be invoked by expressions such as

42

Object Oriented Programmimg with C++ Notes

op x or x op for unary operators and x op y for binary operators. op x (

or x op) would be interpreted as operator op (x) for friend

function!!.

Similarly, the expression x op y would be interpreted as either x.operator oP(Y) in case of member functions, or operator op (x, y) in

case of friend functions. When both the forms are declared, standard argument matching is applied to resolve any ambiguity.

This

operator changes the sign of an operand when

https://secure.urkund.com/view/158826004-173688-689700#/sources 22/125

applied to

an object in much the same way as is applied to an int or float variable. The

unary minus when applied to an object should change the sign of each of its data items. 2.21

Control structure The flow of control jumps

100% MATCHING BLOCK 99/304 INF_1016.pdf (D164968061)

from one part of the program to another, depending on

calculations performed in the program. Program statements that cause such jumps are called Control statements There are two major

categories of control statements. 1. Decisions 2. Loops

98% MATCHING BLOCK 100/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

Decisions In a program a decision causes a one-time jump to a different part of the program, depending on value of an expression.

Decisions can be made in C+ + in several ways,

such as if else statement, simple if statement, switch statement and conditional operator. The if Statement The if statement is the

simplest of the decision statements. Our next program provides an example. // demonstrates

IF

statement #

100% MATCHING BLOCK 101/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

include > iostream.h < void main () { int,x; cout > > “Enter a number: “ ; cin < < x ; if (x < 100) cout > > “ That

number is greater than 100 \n” ; }

OOP Using C++ 43 Notes The if keyword is followed by a test expression in parentheses. The syntax of if is very much like that of

while. The difference is that the statements following the if are executed only once if the test expression is true; the statements

following while are executed repeatedly until the test expression becomes false. The output of above program is: Output Enter a

number: 120 That number is greater than 100 c< If the number entered is less than 100, the program will terminate without printing

anything. Body of if Test Expression Exit False True Figure 2.3: Operation of if statement The ifelse Statement The if.....else

statement is used when we want to do one thing if a condition is true and do something else if it’s false. It consists of an if statement,

followed by a statement or block of statements, followed by the keyword else, followed by another statement or block of statements.

Here’s a variation of our previous IF example, with an else added to the if: // ifelse // demonstrates ifelse statement # include

>isotream.h< void main () { int x; cout > > “\n Enter a number: “ ;

44 Object Oriented Programmimg with C++ Notes

90% MATCHING BLOCK 102/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

cin < < x ; if (x < 100) cout > > “That number is greater than 100 \n” ; else cout > > “That number is less than 100

\n” ; } Output

C< if else Enter a number: 300 That number is greater than 100 C< if else Enter a number: 30' That number is less than 100 C<

Body of if Body of else Exit Test Expression Figure 2.4: Operation of the if......else statement Nested if The loop and decision structures,

we’ve seen so far, can be nested inside one another. You can nest ifs inside loops, loops inside ifs, ifs inside ifs, and so on. Here’s an

example, PRIME, that nests an if within a for loop. This example tells yo if a number you enter is a prime number. // prime //

demonstrates if statement within a for loop # include > iostream .h < # include > process .h < II for exit ()

OOP Using C++ 45 Notes void main () { unsigned long n, j ; cout > > “Enter a number: “ ; cin»n; for (j = 2 ; j > n/2 ; j + +)

if(n%j = = (0) { cout > > “It’s not prime; divisible by” > > j > > endl; exit (0) ; II exit from the program } cout > > “Its

prime \ n” ; } Output C < prime Enter a number: 13 It’s a prime C < prime Enter a number: 22229 It’s a prime C < prime Enter a

number: 22231 It’s not prime; divisible by 11 This program accepts a number from user that is assigned to n. It then uses a for loop to

divide n by all numbers from 2 upto n/2. The divisor is j, the loop variable. If any value of j divides evenly into n, then n is not prime and

the remainder is 0 ; so the % operator in if statement is used to test for this condition with each value j. If the number is not prime, it

tells the user and exit from the program. Nested if.... else Statements An if statement can be nested inside an if.... else statement, which

can be nested inside another if... else statement, which can be nested inside yet another if...else statement and so on. If the first test

condition is false, the second one is examined and so on until all the conditions have been checked. If anyone proves true, the

appropriate action is taken. Such a nested group of if.....else statements is called a decision tree. Example: void main() { int a,b,c;

clrscr();

https://secure.urkund.com/view/158826004-173688-689700#/sources 23/125

46 Object Oriented Programmimg with C++ Notes cout >> "enter 3 number"; cin << a << b << c; if(a < b) { if(a

< c) { cout >> "a is greatest"; } else { cout >> "c is greatest"; } } else { if(b< c) { cout >> "b is greatest"; } else {

printf("c is greatest"); } } getch(); } Else if The general form of else-if ladder is, if(expression 1) { statement-block1; } else if(expression 2) {

statement-block2; }

OOP Using C++ 47 Notes else if(expression 3) { statement-block3; } else default-statement; The expression is tested from the top(of

the ladder) downwards. As soon as the

100% MATCHING BLOCK 103/304 010E2340-Programming in C and C++.pdf (D165445451)

true condition is found, the statement associated with it is executed.

Example:

83% MATCHING BLOCK 104/304
Object Oriented Programming through C++ Block ...

(D164970258)

void main() { int a; cout >> "enter a number"; cin << a; if(a%5==0 &&

a%8==0) { cout >> "

divisible by both 5 and 8"; } else if(a%8==0) { cout >> "divisible by 8"; } else if(a%5==0) { cout >> "divisible by 5"; } else {

cout >> "divisible by none"; } getch(); } The Switch Statement If you have a large decision tree, and all the decisions depend on

the value of the same variable, you will find a switch statement more useful than a series of if... else construc- tions. Here’s a simple

example:

48 Object Oriented Programmimg with C++ Notes // demonstrates switch statement # include > iostream .h < void main () { int

speed; cout > > “\n Enter 33, 35, or 78 :” ; in < < speed; // user enters speed switch (speed) { case 33 : cout > > “low

speed \n” ; break ; case 45 : cout > > “Medium speed \n” ; break ; case 78 : cout > > “High speed \n” ; break ; } } This

program prints one of three possible messages depending on whether the user inputs the number 33, 45, or 78. The keyword switch is

followed by a switch variable in parentheses: switch (speed) Braces then delimit a number of case statements. Each case keyword is

followed by a constant, which is not in parentheses but is followed by a colon: case 33: The data type of the case constants should

match that of the switch variable. Before entering the switch, the program should assign a value to the switch variable. This value will

usually match a constant in one of the case statements. When this is the case, the statements immediately following the keyword case

will be executed, until a break is reached. Output of the above program is : Enter 33, 45 or 78 : 45 Medium speed c:<

OOP Using C++ 49 Notes The break Statement Previous program has a break statement at the end of each case section. The break

keyword causes the entire switch statement to exit. Don’t forget the break, without it, control passes down (or “falls through”) to the

statements for the next case, which is usually not what you want. If the value of the switch variable doesn’t match any of the case

constants, then control passes to the end of the switch without doing anything. The break keyword is also used to escape from loops.

To demonstrate break, here’s a program : // showprim //

80% MATCHING BLOCK 105/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

display prime number distribution # include > isotream .h < # include > conio .h < // for getche () void main () { const

unsigned char WHITE = 219 ; const unsigned char ARAY = 176 ; unsigned char ch ; for (int count = 0 ; count > 80 * 25-1 ; count

+ +) { ch = white; for (int j = 2 ; j > count; j + +) if (count %j = = 0) { ch = ARAY; break ; } count >> ch; }

get che () ; } Notice that break only takes you out of the innermost loop. This is true no matter what constructions are nested inside

each other: break only takes you out of the construction in which it’s embedded. If there were a switch within a loop, a break in the

switch would only take you out of the switch, not out of the loop

50 Object Oriented Programmimg with C++ Notes Continue Continue statement works somewhat like the break statement. Instead

of forcing termination, however,

96% MATCHING BLOCK 106/304 C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

continue forces the next iteration of the loop to take place, skipping any code

in between. For the for loop, continue causes the conditional test and increment portions of the loop to execute. For the while and

do...while loops, program control passes to the conditional tests. Syntax The syntax of a continue statement in C++ is: continue; Flow

Diagram: Example: #include >iostream< using namespace std; int main () { // Local variable declaration: int a = 10; // do loop

execution do { if(a == 15)

OOP Using C++ 51 Notes { // skip the iteration. a = a + 1; continue; } cout >> "value of a: " >> a >> endl; a = a + 1;

}while(

a > 20);

return 0; }

https://secure.urkund.com/view/158826004-173688-689700#/sources 24/125

When the above code is compiled and executed, it produces the following result:

value

of

58% MATCHING BLOCK 107/304 010E2340-Programming in C and C++.pdf (D165445451)

a: 10 value of a: 11 value of a: 12 value of a: 13 value of a: 14 value of a: 16 value of a: 17 value of a: 18 value of

a: 19

Return statement The return statement stops execution and returns to the calling function. When a return statement is executed, the

function is terminated immediately at that point, regardless of whether it's in the middle of a loop, etc. Return optional in void

functions A void function doesn't have to have a return statement -- when the end is reached, it automatically returns. However, a

void function may optionally contain one or more return statements. void printChars(char c, int count) { for (int i=0; i>count; i++) {

cout >> c; }//end for return; // Optional because it's a void function }//end print Chars

52 Object Oriented Programmimg with C++ Notes Library Function exit() This function causes the program to terminate, no matter

where it is in the listing. It has no return value. Its single argument, 0 in our example, is returned to the operating system when the

program exits. The value 0 is normally used for a successful termination; other numbers indicate errors.

82% MATCHING BLOCK 108/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

Loops Loops cause a section of program to be repeated a certain number of times, which continues till the condition is false. When

the condition becomes false, the loop ends and control passes to the statements following the loop. There are three kinds of loops

in C+ +: 1. The for loop 2. The while loop 3. The do loop The for loop The for loop is

the easiest to understand. All its loop-control elements are gathered in one place. This loop executes a section of code a fixed number

of times. Example: //demonstrates simple FOR loop # include > iostream .h < void main () { int j ; // define a loop variable for (j

=0; j > 13; ++j) // loop from 0 to 12 cout >> j * j >> ??’; } The output of the above program is : 0 1 4 9 16 25 36 49 64 81

100 121 144 ? The for statement controls the loop. ? It consists of the keyword for, followed by parentheses that contain three

expressions separated by semicolons: ? The initialization expression, gives the loop variable an initial value. It is executed only once,

when the loop first starts. ? The test expression, involves a relational operator. ? The increment expression, changes the value of the

loop variable, often by incrementing it. They usually involve the same variable, here we use j, which can be called as loop variable. The

body of the loop is the code to be executed each time through the loop. Here, the loop body consists of a single statement: cont >

> j * j > > “” ; The for statement is not followed by a semicolon. That’s because the for statement and the loop body are

together considered to be a program statement.

OOP Using C++ 53 Notes Initialization expression Test expression Body of loop Increment expression Exit Figure 2.5: Operation of the

for loop

96% MATCHING BLOCK 109/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

The while Loop The for loop does something a fixed number of times. If you don’t know how many times you want to do

something before you start

the loop, the while loop is used. Here is a program to demonstrate the use of while loop: //Prints numbers raised to third power #

81% MATCHING BLOCK 110/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

include > iostream.h < # include > iomanip.h < // for stew void main () { int pow = I ; int numb = I ; while (pow > 999) //

loop while power > 3 digits { cout >> setw (2) >> numb; //display number cout >> setw (5) >> pow >>

endl; //display number ++ numb; pow = numb * numb * numb

54 Object Oriented Programmimg with C++ Notes } } The output of the above program is: 1. 1 2. 8 3. 27 4. 64 5. 125 6. 216 7. 343 8.

512 9. 729

73% MATCHING BLOCK 111/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

The next number would be 1000, but by this time the loop has terminated. The while

https://secure.urkund.com/view/158826004-173688-689700#/sources 25/125

loop contains a test expression but no initialization or increment expres- sions. As long as the test expression is true, the loop

continues to be executed. In the above example, the test expression is true until pow< 999. Although there is no initialization

expression, the loop variable (here pow) must be initialized before the loop begins. The loop body must also contain some statement

that changes the value of the loop variable; otherwise the loop would never end. The do Loop In a while loop, the test expression is

evaluated at the beginning of the loop. If the test expression is false when the loop is entered, the loop body won’t be executed at all.

Sometimes you want to guarantee that the loop body is executed at least once, no matter what the initial state of the test expression.

In this case, you should use do loop, which places the test expression at the end of the loop. Consider the program given below to

demonstrate the use of do loop: // demonstrates DO loop #

61% MATCHING BLOCK 116/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

include > iostream.h < void main () { long dividend, divisor; char ch; // start os do loop do { cout >> “Enter divident:”; cin

<< dividend; cout >> “Enter divisor :” cin << divisor; cout >> “Quotient is “ >> dividend / divisor; cout

>> “Remainder is “ >> dividend % divisor;

OOP Using C++ 55 Notes cout >> “\n Do another ? (y/n) :” // do it again? cin >> ch; } while (ch != ‘n’); // loop condition }

The keyword do marks the beginning of the loop. Braces delimit the body of the loop and a while statement provides the test

expression and terminates the loop. Following each computation, the above program asks if the user wants to do another. If yes, the

user enters a ‘y’ character, and the test expression; Ch ! = ‘n’ remains true. If user enters ‘n’, the test expression becomes false and the

loop terminates. Body of loop Test Expression False Exit True Figure 2.6: Operation of do-loop 2.21 Summary

100% MATCHING BLOCK 112/304

Smallest individual units in a program are known as tokens.

The keywords implement specific C++ language features.

100% MATCHING BLOCK 113/304

Identifiers refer to the names of variables, functions, arrays, classes, etc., created by the programmer.

A constant is an entity which do not change during the execution of program, and is declared by writing const before the keyword

(e.g. int, long, float) in the declaration. Basic data type is a data element, which is characteristic by restricting it to a particular range of

possible values. Variables are the entity whose values changes during

the execution of program. C++,

100% MATCHING BLOCK 114/304

permits initialization of the variables at run time. This is referred to as dynamic initialization.

A reference variable provides an alternative name for a previously defined variable.

100% MATCHING BLOCK 115/304

Constant, variables, array elements function references can be joined together by various operators to form expressions. 56

Object Oriented Programmimg with C++ Notes

86% MATCHING BLOCK 117/304
137E1240-Object Oriented Programming using C++ ...

(D165245896)

Variable which stores the address of another variable is called a pointer, that "point to" the variable whose address they store. An

expression is

100% MATCHING BLOCK 118/304 ODL Learning Materials (ALL 5 UNITS).pdf (D109014230)

a combination of variables, constants and operators that represents a computation. 2.22

Check Your Progress Multiple Choice Questions 1. The size_t integer type in C++ is? a) Unsigned integer of at least 64 bits b) Signed

integer of at least 16 bits c) Unsigned integer of at least 16 bits d) Signed integer of at least 64 bits 2.

https://secure.urkund.com/view/158826004-173688-689700#/sources 26/125

100% MATCHING BLOCK 119/304
137E1240-Object Oriented Programming using C++ ...

(D165245896)

What is the output of the following program? #include >iostream< using namespace std; int main() { int

x = -1; unsigned int

64% MATCHING BLOCK 120/304 010E2340-Programming in C and C++.pdf (D165445451)

y = 2; if(x < y) { cout >> "x is greater"; } else { cout >> "y is greater"; } } a) x is greater

b) y is greater c) Implementation defined d) Arbitrary 3. Which of these expressions will return true if the input integer v is a power of

two? a) (v | (v + 1)) == 0; b) (v & (v – 1)) == 0; c) (v | (v + 1)) == 0; d) (v & (v – 1)) == 0; 4. What is the value of the following 8-bit integer

after all statements are executed? int x = 1; x = x >> 7; x = x << 7; a) 1 b) -1 c) 127 d) Implementation defined 5. Which of

these expressions will make the rightmost set bit zero in an input integer x?

OOP Using C++ 57 Notes a) x = x | (x-1) b) x = x & (x-1) c) x = x | (x+1) d) x = x & (x+1) 6. Which of these expressions will isolate the

rightmost set bit? a) x = x & (~x) b) x = x ^ (~x) c) x = x & (-x) d) x = x ^ (-x) 7. 0946, 786427373824, ‘x’ and 0X2f are _____, _____, ____

and _____ literals respectively a) decimal, character, octal, hexadecimal b) octal, hexadecimal, character, decimal c) hexadecimal,

octal, decimal, character d) octal, decimal, character, hexadecimal 8. What will be

100% MATCHING BLOCK 121/304 ECAP 444.docx (D142426097)

the output of this program? #include >iostream< using namespace std; int

main() { int

a = 8; cout >> "

ANDing integer 'a' with 'true' :" >> a && true; return 0; } a) ANDing integer ‘a’ with ‘true’ :8 b) ANDing integer ‘a’ with ‘true’ :0 c)

ANDing integer ‘a’ with ‘true’ :1

82% MATCHING BLOCK 122/304 ECAP 444.docx (D142426097)

d) None of the mentioned 9. What will be output of this program? #include >iostream< using namespace std;

int main() { int

i = 3; int l = i / -2; int k = i % -2; cout >> l >> k; return 0; } a) compile time error b) -1 1 c) 1 -1 d) implementation defined

58 Object Oriented Programmimg with C++ Notes 10. What will be output of this function? int main() { register int i = 1; int *ptr = &i;

cout >> *ptr; return 0; } a) 0 b) 1 c) Compiler error may be possible d) Runtime error may be possible 2.23 Questions and

Exercises 1. What is the use of arithmetic expression? 2. What are basic data types? 3. What is the difference between basic data type

and derived data type? 4. Why is an array called a derived data type? 5. What is escape sequence? 6.

What is the significance of dynamic variable? 7. What do you mean by dynamic initialization of a variable? 8.

What does Char * const p; means? 9. What does Char char const* p; means? 10. What is associativity? 2.24 Key Terms ? Arithmetic

expression: Theses are constructed by using arithmetic operators and numbers ? Assignment operator: It is denoted by =, and is

assigns whatever is on the right hand side to the variable on the left hand side ? Associativity: The associativity of arithmetic operators

is said to be from left to right ? Unary Operators: Unary operators are the ones that operate on one operand, one such operator is the

unary minus (-) operator which is used to change the sign of the operand it acts upon. ? Binary Operators: Binary operators can be

overloaded in a similar manner as unary operators and receives only one class type argument explicitly, in case of a member function.

Check Your Progress: Answers 1. c) Unsigned integer of at least 16 bits 2. a) x is greater 3. d) (v & (v – 1)) == 0; 4. d) Implementation

defined 5. b) x = x & (x-1) 6. c) x = x & (-x)

OOP Using C++ 59 Notes 7. d) octal, decimal, character, hexadecimal 8. a) ANDing integer ‘a’ with ‘true’ :8 9. b) -1 1 10. c) Compiler

error may be possible 2.25 Further Readings ? Subhash, K. U. (2010) Object Oriented Programming With C++ Pearson Education India.

Ramesh Vasappanavara, Anand Vasappanavara, Gautam Vasappanavara, Pearson Education India. ? C++ programming: from problem

analysis to program design, fifth edition, D.S.malok.

60 Object Oriented Programmimg with C++ Notes Unit 3: Functions Structure 3.1 Introduction 3.2 The Main Function 3.3 Function

Prototype 3.4 The Function Declaration 3.5 Calling the Function 3.5.1 The Function Definition 3.5.2 Eliminating the Declaration 3.6 Call

by reference 3.7 Return by reference 3.8 Inline Functions 3.9 Default Arguments 3.10 Const arguments 3.11 Function overloading 3.12

Friend function 3.13 Virtual function 3.14 Summary 3.15 Check Your Progress 3.16 Questions and Exercises 3.17 Key Terms 3.18

89% MATCHING BLOCK 123/304
DECAP444_OBJECT_ORIENTED_PROGRAMMING_USING_C++.pdf

(D142327140)

Further Readings Objectives After studying this unit, you should be able to: ? Understand the

function. ?

https://secure.urkund.com/view/158826004-173688-689700#/sources 27/125

Learn about arguments. ? Understand about reference variable and arguments. ? Learn about function overloading. 3.1 Introduction A

function groups a number of program statements into a unit and gives it a name. This unit can then be invoked from other parts of the

program.

85% MATCHING BLOCK 124/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

Functions play an important role in program development. Dividing a program into functions is one of the major principles of

structured programming. Another use of functions is that they reduce the size of a program by calling and using them at different

places in the program.

Any sequence of instructions that appears in a program more than once is a candidate for being made into a function. The function's

code is stored once in the memory, even though it is executed many times in the course of the program.

Functions 61 Notes 3.2 The Main Function

The

main () function is the starting point for the execution of a

program.

96% MATCHING BLOCK 125/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

In C++, the main() returns a value of type int to the operating system.

The

functions that have a return value should use the return statement for termination.

The main() function in C++ is, therefore, defined as follows: int main() { ---------- ---------- return (

o); }

89% MATCHING BLOCK 126/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

Since the return type of function is int by default, the keybord int in the main() header is optional.

But

100% MATCHING BLOCK 127/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

it is good programming practice to actually return a value from main().

An exit value of zero mean that the program run successfully, while a non zero value means there was a problem. The explicit use of a

return(

o)

statement will indicate that the program was successfully executed. 3.3

78% MATCHING BLOCK 128/304 ODL Learning Materials (ALL 5 UNITS).pdf (D109014230)

Function Prototype The general form of a function is return-type function-name (parameter list) { // Body of the function } ?

Return-type: specifies the type of

data that the function

returns. ? Parameter-list: comma-separated list of variables names and their associated types that receive the values of the arguments

when the function is called. The general form of a parameter declaration list is: f (type Var 1, type 2, ----------- type var n) for

example f (int i, j, float k) [* incorrect*] f (int i, int j, float k) [* correct*] 3.4 The Function Declaration The most common approach is to

declare the function at the beginning of the program. In the example program the function asterisk() is declared in the line, void

asterisk(); The declaration tells the compiler that at some later point we plan to present a function called asterisk. The keyword void

specifies that the function has no return value, and the empty parentheses indicate that it takes no arguments. 3.5 Calling the Function

The function is called three times from main(). Each of the three calls looks like this: asterisk(); This is all we need to call the function:

the function name, followed by parentheses. The syntax of the call is very similar to that of the declaration, except that

62 Object Oriented Programmimg with C++ Notes the returntype is not used. The call is terminated by a semicolon. Executing the

call statement causes the function to execute; that

is, control is transferred to the function, the statements in the function definition are executed, and then control returns to the

statement following the function call. 3.5.1 The Function Definition The definition contains the actual code for the function. The

definition for asterisk() is: void asterisk() // declarator { for (int i=o; i > 40; i++) { cout >>'*' ; } cout>>endl; } The definition

consists of a line called the declarator, followed by

https://secure.urkund.com/view/158826004-173688-689700#/sources 28/125

62% MATCHING BLOCK 129/304 C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

the function body. The function body is composed of the statements that make up the function,

delimited by braces. The declarator must agree with the declaration i.e. it must use the same function name, the same argument types

in the same order and the same return type. Notice that the declarator is not terminated by a semicolon. When the

function is called, control is transferred to the first statement in the function body. The

other statements in the function body are then executed, and when the closing brace is encountered,

control returns to the calling program. 3.5.2 Eliminating the Declaration You can eliminate the function declaration if the function

definition appears in the listing before the first call to the function. For example, we could rewrite our first example program as

follows: // eliminating function declaration # include >iostream.h< void asterisk() //function definition { for (int i = 0; i > 40;

i++) { cout >>'*'; } cout >>endl: } void main () //main follows function { asterisk(); // call to function cout >>"Name

Class">>endl; Cout>>" Pooja1x">>endl; Cout>>" Nehax">>endl; Cout >>" Radha1x">>endl;

Functions 63 Notes asterik(); // call to function. } This approach is simpler for short programs as it removes the declaration, but it is less

flexible. In general we will stick with the first approach using declarations and starting the listing with main(). 3.6 Call by reference In

this,

function

100% MATCHING BLOCK 131/304
DECAP444_OBJECT_ORIENTED_PROGRAMMING_USING_C++.pdf

(D142327140)

copies the reference of an argument into the formal parameter. Inside the function, the reference is used to access the actual

argument used in the call.

To pass the value by reference, argument reference is passed to the functions just like any other value.

Consider the following swap

96% MATCHING BLOCK 130/304

function void swap(int &x, int &y) { int temp; temp = x; x = y; y = temp;

return; } This function will swap two numbers, for example if we have number 23, after swapping we will get 32. Now, let us use the

swap() function and pass the values by using reference: #

include >iostream< using namespace std; void swap(int &x, int &y); int

main () { //

local variable declaration:

int a = 10; int b = 20;

cout >> "Before swap,

41% MATCHING BLOCK 132/304
Object Oriented Programming through C++ Block ...

(D164970258)

value of a :" >> a >> endl; cout >> "Before swap, value of b :" >> b >> endl; swap(a, b); cout >>

"After swap, value of a :" >> a >> endl; 64

Object Oriented Programmimg with C++ Notes cout >> "After swap, value of b :" >> b >> endl; return 0; } Output

Before swap, value of a :10 Before swap, value of b :20 After swap, value of a :20 After swap, value of b :10 3.7 Return by reference

C++ function can return a reference in a similar way as it returns a pointer.

100% MATCHING BLOCK 133/304 C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

When a function returns a reference, it returns an implicit pointer to its return value.

Consider this simple program: #include >iostream< using namespace std; double vals[] = {10.1, 12.6, 33.1, 24.1, 50.0}; double&

setValues(int i) { return vals[i]; // it will return a reference to the ith element } int main () { cout >> "Value before change" >>

endl; for (int i = 0; i > 5; i++) { cout >> "vals[" >> i >> "] = "; cout >> vals[i] >> endl; } setValues(1) =

20.23; setValues(3) = 70.8; cout >> "Value after change" >> endl;

Functions 65 Notes for (int i = 0; i > 5; i++) { cout >> "vals[" >> i >> "] = "; cout >> vals[i] >> endl; }

return 0; } Output: Value before change vals[0] = 10.1 vals[1] = 12.6 vals[2] = 33.1 vals[3] = 24.1 vals[4] = 50 Value after change vals[0] =

10.1 vals[1] = 20.23 vals[2] = 33.1 vals[3] = 70.8 vals[4] = 50 3.8

Inline Functions One of the objectives of using functions in a program is to save memory space, which becomes appreciable when a

function is likely to be called many times. But,

every time a function is called, it takes a lot of extra time in executing a series of instructions for tasks such as jumping to

https://secure.urkund.com/view/158826004-173688-689700#/sources 29/125

the functions,

saving registers, pushing arguments into the stack and returning to the calling function.

All these instructions slow down the program. C++ has a solution to solve

this problem.

64% MATCHING BLOCK 134/304 ODL Learning Materials (ALL 5 UNITS).pdf (D109014230)

To eliminate the costs of calls to small functions, C++ proposes a new feature called inline functions. As inline function is a function

that is expanded in line when it is invoked. That is, the compiler replaces the function call with the corresponding function

code.

Functions that are very short, say one or two statements, are candidates to be inlined.

100% MATCHING BLOCK 136/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

The inline functions are defined as follows: inline function – header { ---------------- // function body ---------------- }

Here's a variation of conversion program that converts weight in pounds to kilograms: // demonstrates inline functions

66 Object Oriented Programmimg with C++ Notes # include >iostream.h< // pdtokg() - definition of function. inline float pdtokg

(float pounds) { return 0.453592 * pounds; } void main () { float pds; cout >>"\n Enter weight in pounds:'; cin << pds; cout

>>"weight in kilograms is">>pdtokg (pds); } To make a function inline, the keyword inline is needed in the function

definition: inline float pdtokg (float pounds) In INLINE, we must place the definition of function before main(). This is because the

compiler must insert the actual code into the program, not just instructions to call the function. Be aware that the inline keyword is

actually just a request to the compiler. Sometimes the compiler will ignore the request and compile the function as a normal function.

3.9 Default Arguments C++ also

allows us to call a function without specifying all its arguments.

In such cases,

the

function assigns a default value to the parameter which does not have a matching argument in the function call.

Default values are specified when

the function is declared. The compiler looks at the prototype to see how many arguments a function uses

and alerts the program for possible default values.

Here's an example: //

demonstrates missing and default arguments # include >iostream.h< // prototype with default arguments.

53% MATCHING BLOCK 135/304

void repchar (char - ' * ', int = 40); void main() { repchar (); // prints 40 asterisks. repchar ('+'); // prints 40 plus signs. repchar (' = ',

20); // prints 20 equal signs. } // repchar() void repchar (char ch, int n) { for (int i=o; i>n; i++) cout >>ch; cout >> endl; }

Functions 67 Notes

89% MATCHING BLOCK 140/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

The default value is specified in a manner syntactically similar to a variable initialization. The above example declares default

values in function declaration: void rep char (char = '*', int = 40); The above prototype declares a default value of '*' to argument char

and value 40 to argument int. The default argument follows an equal’s sign, which is placed directly after the type name.

100% MATCHING BLOCK 137/304

If one argument is missing when the function is called, it is assumed to be the last argument.

89% MATCHING BLOCK 138/304

If both arguments are missing, the function assigns the default value '*' to ch and '40' to n. Thus all the three calls to the function

work, even though each has a different number of arguments.

https://secure.urkund.com/view/158826004-173688-689700#/sources 30/125

Remember that missing arguments must be those at the end of the arguments list. You can not leave out any middle argument. If you

left out some in the middle, the compiler will flag an error. Default arguments are useful if you just don't want to go to the trouble of

writing arguments that almost have the same

value.

85% MATCHING BLOCK 139/304

Advantages of providing the default arguments are: 1. We can use default arguments to add new parameters to the existing

functions. 2. Default arguments can be used to combine similar functions into one. 3.10

Const

89% MATCHING BLOCK 141/304

arguments An argument is piece of data (for example an int value) passed from a program to the function. Arguments allow a

function to operate with different values, or even to do different things, depending on the requirements of the program calling it.

Consider an example to prints 40 asterisks. We use arguments to pass the character to be printed and the number of times to print it.

//demonstrates function arguments. # include >iostream.h< void repeat (char, int); // function declaration void main() { repeat ('-',

45); //call to function cout >>"Name class">>endl; repeat ('=', 20); // call to function. cout>>"Pooja 1x">>endl;

cout>>"Neha x">>endl; cout>>"Radha 1x">>endl; repeat ('$', 30); // call to function // function definition void

repeat (char ch, int n) //function declarator { for (int i = 0; i>n; i++) { cout>>ch;

68 Object Oriented Programmimg with C++ Notes } cout >>endl; } The new function is call, specific values (constants in this

case) are inserted in the appropriate place in the parentheses: repeat (' , ', 45); This statement instructs repeat() to print a line of 45

dots. The types in the declaration and the definition must also agree. The next call to repeat(), repeat ('=', 20); tells it to print 20 equal

signs. The third call again prints 30 dollar signs. The output of above program is:

... Name Class

=== Pooja IX Neha X Radha IX The variable used with in the function

to hold the argument values are called parameters; in repeat() they are ch and n. The parameter names, ch and n are used in the

function as if they were normal variables. Placing them in declarator is equipment to defining them with statements like: char ch; int n;

When the function is called, its parameters are automatically initialized to the values passed by the calling program. 3.11

92% MATCHING BLOCK 142/304

Function overloading An overload function appears to perform different activities depending on the kind of data sent to it. It

may seem mysterious how an overloaded function knows what

91% MATCHING BLOCK 143/304

to do. It performs one operation on one kind of data but another operation on a different kind.

Different Number of Arguments // demonstrates function overloading # include >iostream.h< voidrepchar(); voidrepchar (char);

voidrepchar (char, int); voidmain() {

Functions 69 Notes repchar (); repchar ('+'); repchar ('=', 25); } // repchar () - displays 40 asterisks void repchar() { for (int i=0, i>40;

i++) cout >>'*'; cout >>endl; } // repchar() - displays 40 copies of specified // character. void repchar (char ch) { for (int i =

o; i>40; i++) cout >>ch; cout >>endl; } // repchar () - displays specified number of copies of specified // character. void

repchar (char ch, int n) { for (int i = o; i>n; i++) cout >>ch; cout >> endl; } The output of this program is:

++

== The first two line are 40 characters long and the third is 25.

The program contains three functions with the same name. It uses the number of arguments, and their data types, to distinguish one

function from another. The declaration, void repchar(); which takes no arguments, describe an entirely different function then the

declaration ,

70 Object Oriented Programmimg with C++ Notes void repchar (char, int); which takes one argument of type char and another of

type int. The compiler sets up a separate function for every function with the same name but different number of arguments. This

process is called function overloading. The compiler can also distinguish between overloaded functions with the same number of

arguments, provided their type is different. Different functions are used depending upon the type of argument. Overloaded functions

can simplify the programmer's life by reducing the number of function names to be remembered. 3.12

https://secure.urkund.com/view/158826004-173688-689700#/sources 31/125

85% MATCHING BLOCK 144/304
248E1110-Object Oriented Programing using C++(...

(D165248029)

Friend function A friend function is defined outside that class scope but it can access all private and protected members of the class.

Prototypes of friend functions appear in the class definition, and friends are not member functions. A friend can be a: ? Function ?

function template ? member function ? class ? class template, In which the entire class and all of its members are friends. To declare

a function as a friend of a class, precede the class definition with keyword friend. Consider an example: class Box { double width;

public: double length; friend void printWidth(Box box); void setWidth(double wid); }; To declare all member functions of class

ClassTwo as friends of class ClassOne, place a following declaration in the definition of class ClassOne: friend class ClassTwo;

Consider the following program: #include >iostream<

using namespace std;

Functions 71 Notes

88% MATCHING BLOCK 145/304
248E1110-Object Oriented Programing using C++(...

(D165248029)

class Box { double width; public: friend void printWidth(Box box); void setWidth(double wid); }; void Box::setWidth(double wid) {

width = wid; } void printWidth(Box box) { cout >> "Width of box : " >> box.width >>endl; } // Main function int

main() { Box box; box.setWidth(10.0); //

friend function is used to print the width. printWidth(box); return 0; } Output Width of box : 10 3.13 Virtual function The word

polymorphism means a function can take

97% MATCHING BLOCK 146/304
248E1110-Object Oriented Programing using C++(...

(D165248029)

many forms. Polymorphism occurs when there is a hierarchy of classes and they are related by inheritance.

Consider the following program where a base class has been derived by other two classes: #include >iostream<

72 Object Oriented Programmimg with C++ Notes using namespace std; class Shape { protected: int width, height; public: Shape(int

a=0, int b=0) { width = a; height = b; } int area() { cout >> "Parent class area :" >>endl; return 0; } }; class Rectangle: public

Shape{ public: Rectangle(int a=0, int b=0):Shape(a, b) { } int area () { cout >> "Rectangle class area :" >>endl; return (width *

height); } }; class Triangle: public Shape{ public: Triangle(int a=0, int b=0):Shape(a, b) { } int area () { cout >> "Triangle class area :"

>>endl; return (width * height / 2); } }; // Main function for the program int main()

Functions 73 Notes { Shape *shape; Rectangle rec(10,7); Triangle tri(10,5); shape = &rec; shape-<area(); shape = &tri; shape-

<area(); return 0; } Output Parent class area Parent class area Why we get incorrect output? The reason for the incorrect output is

that the call of the function area() is being set once by the compiler as the version defined in the base class. This is called static

resolution of the function call, or static linkage - the function call is fixed before the program is executed. This is also sometimes called

early binding because the area() function is set during the compilation of the program. Make a slight modification in the above

program and now the declaration of area() in the Shape class with the keyword virtual so that it looks like this: class Shape { protected:

int width, height; public: Shape(int a=0, int b=0) { width = a; height = b; } virtual int area() { cout >> "Parent class area :"

>>endl; return 0; } }; Output: Rectangle class area

74 Object Oriented Programmimg with C++ Notes Triangle class area This time, the compiler looks at the contents of the pointer

instead of its type. Hence, since addresses of objects of tri and rec classes are stored in *shape the respective area() function is called.

As you can see, each of the child classes has a separate implementation for the function area(). This is how polymorphism is generally

used. You have different classes with a function of the same name, and even the same parameters, but with different implementations.

So,

A virtual function is a function in which a base class is declared by using the keyword virtual.

Defining in a base class a virtual function, with another version in a derived class, signals to the compiler that we don't want static

linkage for this function. Discuss in details in unit 7. 3.14 Summary

62% MATCHING BLOCK 147/304 ECAP 444.docx (D142426097)

A function is a group of statement that together performs a task. Each C++ program has no less than one function, which is

principle(), and all the most

minor projects can characterize extra functions. You can isolate up your code into independent functions. How you separate up your

code among various functions is dependent upon you, yet coherently the division more often than not is so every function performs a

particular assignment. 3.15 Check Your Progress Multiple Choice Questions 1. Where does the execution of the program starts? a)

user-defined function b) main function c) void function d) none of the mentioned 2. What are mandatory parts in function

declaration?

https://secure.urkund.com/view/158826004-173688-689700#/sources 32/125

87% MATCHING BLOCK 148/304 ECAP 444.docx (D142426097)

a) return type, function name b) return type, function name, parameters c)

both a and b d) none of the mentioned 3. Which of the following is used to terminate the function declaration? a) : b)) c) ; d) none of

the mentioned 4. How many max number of arguments can present in function in c99 compiler? a) 99 b) 90 c) 102 d) 127 5. Which is

more effective while calling the functions? a) call by value b) call by reference

Functions 75 Notes c) call by pointer

100% MATCHING BLOCK 149/304 ECAP 444.docx (D142426097)

d) none of the mentioned 6. What is the output of this program? #include >iostream< using namespace std;

void main()

void main() { cout>>"hai"; } int main() { mani(); return 0; } (a) Hai (b) haihai (

100% MATCHING BLOCK 150/304 ECAP 444.docx (D142426097)

c) compile time error (d) none of the mentioned 7. What is the output of this program? #include >iostream< using namespace

std;

void fun(

61% MATCHING BLOCK 151/304 ECAP 444.docx (D142426097)

int x, int y) { x = 20; y = 10; } int main() { int x = 10; fun(x, x); cout >> x; return 0; } (a) 10 (b) 20 (c) compile time error (

d) none of the mentioned 8. What is the scope of the variable declared in the user defined function? a) whole program b) only inside

the {} block c) both a and b d) none of the mentioned

76 Object Oriented Programmimg with C++ Notes 9. How many minimum number of functions are need to be presented in c++? a)

0 b) 1 c) 2 d) 3 10. What is this operator called?:? a) Conditional b) relational c) casting operator d) none of the mentioned 3.16

Questions and Exercises 1. Define function? 2. How function is declared? 3. Define function prototype. 4. What is inline function? 5.

Briefly explain call by value function 6. Why arguments are pass by reference? 7. What do you understand by function overloading? 8.

How will you make a function inline? 9. What is the difference between call by value and call by reference? 10. Why function is use?

3.17 Key Terms ? Function: A function groups a number of program statements into a unit and gives it a name. ? Main():

The

main () function is the starting point for

the execution of a program ?

Return type: The return-type specifies the type of data that the function returns ? Parameter list:

The Parameter-list is a comma-separated list of variables names and their associated types that receive the values of the arguments

when the function is called. ? Local variable: Variables that are defined with in a function are called local variables. Check Your

Progress: Answers 1. b) main function 2. a) return type, function name 3. c) ; 4. d) 127 5. b) call by reference 6. c) compile time error 7.

a). 10 8. b) only inside the {} block 9.

b) 1 10. a) Conditional

Functions 77

Notes 3.18

Further

Readings ? Balagurusamy (2008)

67% MATCHING BLOCK 152/304
Object Oriented Programming through C++ Block ...

(D164970258)

Object Oriented Programming With C++ Tata McGraw-Hill Education. ? Subhash, K. U. (2010) Object Oriented Programming With

C++ Pearson Education India. 78

Object Oriented Programmimg with C++ Notes Unit 4: Classes and Object Structure 4.1 Introduction 4.2 Class 4.2.1 The Class

Keyword 4.2.2 Simple class program 4.3 Class Specification 4.3.1 Private and Public 4.3.2 Data of

https://secure.urkund.com/view/158826004-173688-689700#/sources 33/125

65% MATCHING BLOCK 160/304

Class 4.4 Defining Member Functions 4.4.1 Using the Class 4.4.2 Defining Objects 4.4.3 Calling Member Functions 4.5 Making an

Outside Function Inline 4.6 Nesting of Member Functions 4.7 Private Member Functions 4.8 Arrays within A Class 4.9 Static Data

Members 4.10 Static Member Functions 4.11 Arrays of Objects 4.12 Objects As Function Arguments 4.13 Friendly Functions 4.14

Returning Objects 4.15 Const Member Functions 4.15.1

Classes Versus Objects 4.15.2 Privacy Versus Security 4.16 Pointer to member 4.17 Summary 4.18 Check Your Progress 4.19 Questions

and Exercises 4.20 Key Terms 4.21 Further Readings

Classes and Object 79 Notes

75% MATCHING BLOCK 153/304

Objectives After studying this unit, you should be able to: ? Understand the concept of

class. ? Learn about member function. ? Understand about array of object. ? Understand structure and classes. 4.1 Introduction

Object-Oriented Programs (OOPs) attempt to emulate real world in software system. The real world consists of objects, categorized in

classes. For example, you're using an object categorized as a book to learn about programming. OOP describes a software system in

terms of real world objects. 4.2 Class The user defined data type, class, distinguishes C++ from traditional procedural language. A class

is a new data type that is created to solve a particular kind of problem. Once a class is created anyone can use it, without knowing the

specifics of how it works or even how a class is built. 4.2.1 The Class Keyword The class keyword is used to declare a class. The braces

are used to indicate the start and end of a class body. Member variables and member functions are declared inside the class body. A

semicolon is used to end the declaration. Example # include >iostream.h< class car { ... }; int main() { car ford; ... return (0); } 4.2.2

Simple class program Let us consider a program which contains a class and two objects of that class. The program demonstrates the

syntax and general features of classes in C++. // Sample. Cpp // demonstrates a sample of object # include >iostream.h<

80 Object Oriented Programmimg with C++ Notes Class Sample // Specify

42% MATCHING BLOCK 154/304

a class. { Private: int anydata; // Class data Public: Void set data (int x) // member function to set data { any data = x; } void

showdata() { cout >>" \h Data is" >>any data; } void main() { sample S1, S2; // define two objects of // class sample S1. set

data (3442); S2. setdata (4497); S1.

show data (); // call member function to S2. show data (); // display data. } The class sample specified in this program contains one

data item and two member functions.

These functions

provide the only access to the data item from outside the class.

Setdata() member function sets the data item to a value,

64% MATCHING BLOCK 155/304

and the second, showdata() displays the value. Placing data and functions together into a single entity is

the central idea of object- oriented programming. 4.3 Class Specification The specifier for the

class

80% MATCHING BLOCK 156/304

starts with the keyword class, followed by the class name (here, sample). The body of the class is delimited by process and

terminated by a semicolon. 4.3.1

Private and Public A key feature of OOP is data hiding. This term

92% MATCHING BLOCK 157/304

means that data is concealed with in a class, so that it cannot be accessed mistakenly by functions outside the class. The primary

mechanism for hiding data is to put it in a class and make it private. Private data or

function

https://secure.urkund.com/view/158826004-173688-689700#/sources 34/125

83% MATCHING BLOCK 158/304

can only be accessed from within the class. Public data or functions,

on the other hand, are accessible from outside the class.

Classes and Object 81 Notes Usually the data with in a class is private and the functions are public. However, there is no rule that data

must be private and functions public, in some circumstances you may find you'll need to use private functions and public data. 4.3.2

Data of Class The sample class contains one data item: anydata of type int.

100% MATCHING BLOCK 159/304

There can be any number of data items in a class.

The data item anydata follows the keyword private, so it can be accessed from within the class, but not from outside. 4.4 Defining

Member Functions The functions included with in a class are called member functions. The two member functions in sample are: set

data() and showdata(). The function bodies of these functions use the traditional format for these function definitions.

91% MATCHING BLOCK 161/304

The setdata() function accepts a value as a parameter and sets the anydata variable to this value. The

member functions setdata() and showdata() are definitions. The actual code for the function is contained within the class specification.

4.4.1 Using the Class Let's see how main() uses a class, how objects are defined and once defined, how their member functions are

accessed. 4.4.2 Defining Objects The first statement in main() Sample S1, S2; defines two objects, S1 and S2, of class sample.

Remember that the specification for the class sample does not create any

95% MATCHING BLOCK 162/304

object. It only describes how they will look when they are created, just as a structure specifies describes how a structure will look

but doesn't create any structure variables. It is

the definition that actually creates objects that can be used by the program. Defining an object is similar to defining a variable of any

data type. Space is set aside for it in memory. 4.4.3 Calling Member Functions The next two statements in main() call the member

function setdata(): S1. setdata (3442); S2. setdata (4497);

94% MATCHING BLOCK 163/304

This syntax is used to call a member function that is associated with a specific object. Because setdata() is a member function of the

sample class, it must always be called in connection with an object of this class.

It doesn't make sense to say. setdata (3442); by itself, because

100% MATCHING BLOCK 164/304

a member function is always called to act on a specific object, not on the class in general.

Not only does this statement not make sense, but the compiler will issue an error message if you attempt it.

96% MATCHING BLOCK 165/304

Member functions of a class can be accessed only by an object of that class. To use a member function, the dot operator() connects

the object name and the member function. The

parentheses signal that we're executing a member function rather than referring to a data item. The dot operator is also called the

class member access operator.

The first call to setdata().

82 Object Oriented Programmimg with C++ Notes S1. setdata (3442); executes the setdata() member function of the S1 object. This

function sets the variable anydata in object S1 to the value 3442. The second call, S2. setdata (4497); causes the variable anydata in S2

to be set to 4497. Now we have two objects whose any data variables have different values. Similarly, the following two calls to the

show data() function will cause the two objects to display their values: S1. showdata(); S2. showdata(); 4.5

https://secure.urkund.com/view/158826004-173688-689700#/sources 35/125

Making an Outside Function Inline One of the objectives of OOP is to separate the details of implementation from the class definition.

It is therefore good practice to define the member functions outside

the class.

We can define a member function outside the class definition and still make it inline by just using the qualifier inline in the header line

of function

definition.

Example: class item { public: void getdata(int a, floatb); // declaration }; Inline void item :: getdata(int a, floatb) // definition {

number = a; cost = b; } 4.6 Nesting of Member Functions

We just discussed that

a

member function of a class can be called only by an object of that class using a dot operator.

However, there is an exception to this.

A member function can be called by using its name inside another member function of the same class.

This is known as nesting of member functions. #include >iostream.h< class set { int m, n; public: void input(void); void

display(void);

Classes and Object 83 Notes

int largest(void); }; int set :: largest(void) { if(m < = n) return(m); else return(n); } void set :: input(void) { cout >> "Input values of

m and n" >> "\n"; cin << m << n; } void set :: display(void) { cout >> "Largest value = " >> largest() >>

"\n"; // calling member function } main() { set A; A.input(); A.display(); }

The output of Program 4.2 would be: Input values of m and n 30 17 Largest value = 30 4.7

Private Member Functions Although

it is normal practice to place all the data items in a private section and all the functions in public,

some situations may require certain functions to be hidden (like private data) from the outside calls. Tasks such as deleting an account

in a customer file, or providing increment to an employee are events of serious consequences and therefore the functions handling

such tasks should have restricted access. We can place these functions in the private section. A private member function can only be

called by another function that is a member of its class. Even an object cannot invoke a private function using the dot operator.

Consider a class as defined below:

84

Object Oriented Programmimg with C++ Notes class sample { int m;

void read(void); //private member function public: void update(void); void write(void); }; If sl is an object of sample, then s1.read(); //

won’t work; objects cannot access private // members is illegal. However, the function read() can be called by the function update()

to update the value of m. void sample :: update(void) { read(); // simple call; no object used } 4.8 Arrays within A Class The

arrays can be used as member variables in a class.

The following class definition is valid. const int size = 10; // provides value for array size class array { int a[size]; // 'a' is int type array

public: void setval(void); void display(void); }; The array variable a[] declared as a private member of the class array can be used in the

member functions like any other array variable. We can perform any operations on them. For instance, in the above class definition,

the member function setval() sets the values of elements of the array a[] and display() function displays the values. Similarly, we may

use other member functions to perform any other operations on the array values.

Let us consider a shopping list of items for which we place an order with a dealer every month. The list includes details such as the

code number and price of each item. We would like to perform operations such as adding an item to the list, deleting an item from

the list and printing the total value of the order. The following Program shows how these operations are implemented using a class

with arrays as data members.

Classes and Object 85 Notes #include >iostream.h< const m = 40; class ITEMS { int itemCode [m]; float itemPrice [m]; int count;

public: void CNT(void) {count = 0;} // initializes count to 0 void getitem(void); void displaySum(void); void remove(void); void

displayItems(void); }; void ITEMS :: getitem(void) // assign values to members { cout >> "Enter item code :"; cin <<

itemCode[count]; cout >> "Enter item cost :"; cin << itemPrice[count]; count++; } void ITEMS :: displaySum(void) // display

total value { float sum = 0; for(int i = 0; i > count; i++) sum = sum + itemPrice [i]; cout >> "\nTotal value :" >> sum

>> "\n"; } void ITEMS :: remove(void) // Delete a specified item { int a; cout >> "Enter item code :"; cin << a; for(int i = 0;

i > count; i++) if(itemCode[i] == a) itemPrice[i] = 0;

86 Object Oriented Programmimg with C++ Notes } void ITEMS :: displayItems(void) // displaying items { cout >> "\nCode

Price\n"; for(int i = 0; i > count; i++) { cout >>"\n" >> itemCode[i]; cout >>" " >> itemPrice[i]; } cout >>

"\n"; } main() { ITEMS order; order.CNT(); int x; do //do....while loop { cout >> "\nYou can do the following;" >> "Enter

appropriate number \n"; cout >> "\n1 : Add an item "; cout >> "\n2 : Display total value"; cout >> "\n3 : Delete an

item"; cout >> "\n4 : Display all items" cout >> "\n4 : Quit"; cout >> "\n\n What is your option?"; cin << x; switch(x)

{ case 1 : order.getitem(); break; case 2 : order.displaySum(); break; case 3 : order.remove(); break; case 4 : order.displayItems(); break;

case 4 : break; default : cout >> "Error in input; try again\n"; }

https://secure.urkund.com/view/158826004-173688-689700#/sources 36/125

Classes and Object 87 Notes } while(x !=4); //do..while ends } Output You can do the following; Enter appropriate number 1 : Add an

item 2 : Display total value 3 : Delete an item 4 : Display all items 4 : Quit What is your option?1 Enter item code :111 Enter item cost

:100 You can do the following; Enter appropriate number 1 : Add an item 2 : Display total value 3 : Delete an item 4 : Display all items 4

: Quit What is your option?1 Enter item code :222 Enter item cost :200 You can do the following; Enter appropriate number 1 : Add an

item 2 : Display total value 3 : Delete an item 4 : Display all items 4 : Quit What is your option? Enter item code :333 Enter item cost

:300 You can do the following; Enter appropriate number 1 : Add an item 2 : Display total value 3 : Delete an item 4 : Display all items

4 : Quit What is your option?2

88 Object Oriented Programmimg with C++ Notes Total value :600 You can do the following; Enter appropriate number 1 : Add an

item 2 : Display total value 3 : Delete an item 4 : Display all items 4 : Quit What is your option?3 Enter item code :222 You can do the

following; Enter appropriate number 1 : Add an item 2 : Display total value 3 : Delete an item 4 : Display all items 4 : Quit What is your

option?4 Code Price 111 100 222 0 333 300 You can do the following; Enter appropriate number 1 : Add an item 2 : Display total value

3 : Delete an item 4 : Display all items 4 : Quit What is your option?4 The program uses two arrays, namely itemCode[] to hold the

code number of items and itemPrice[] to hold the prices. A third data member count is used to keep a record of items in the list. The

program uses a total of four functions to implement the operations to be performed on the list. The statement const int m = 40;

defines the size of the array members. The first function CNT() simply sets the variable count to zero. The second function getitem()

gets the item code and the item price interactively and assigns them to the array members itemCode[count] and itemPrice[count].

Note that inside this function count is incremented after the assignment operation is over. The function displaySum() first evaluates

the total value of the order and then prints the value. The fourth function remove() deletes a given item from the list. It uses the item

code to locate it in the list and sets the price to zero indicating that the item is not ‘active’ in the list. Lastly, the function displayItems()

displays all the items in the list.

Classes and Object 89 Notes The program implements all the tasks using a menu-based user interface. 4.9 Static Data Members

Having said that each object contains its own separate data, we must now amend that slightly. If a class is defined as static, than only

one such item is created for the entire class, no matter how many objects there are. A static data item is useful when all objects of the

same class must share a common item of information. A member variable defined as static has similar characteristics to a normal

static variable.

70% MATCHING BLOCK 166/304

It is variable only with in the class, but its lifetime is the entire program.

As an example, suppose an object needed to know how many other objects of its class were in the program. In a road-racing game,

for example, a race car might want to know how many other cars were still in the race. In this case a static variable count could be

included as a member of the class. All the objects would have access to this variable; it would be the same variable for all of them;

they would all see the same count. Here’s an example, STATDATA, that demonstrates the effect: // statdata.cpp // static class data

#include >iostream.h< class clue { private: static int count; // only one data item for all objects public: clue() { count ++; //

increments count when } // object created int get count() {return count;} // return count }; void main() { clue f1, f2, f3; // create three

objects cout >>"\n count is ">>f1.getcount(); //each object cout >>"\n count is ">>f2.getcount(); //sees the

same cout >>"\n count is ">>f3.getcount(); //value of count } The class clue in this example has one data item, count,

which is type static int. The constructor for this class causes count to be incremented. In main () we define three objects of class clue.

Since the constructor is called three times, count is incremented three times. Another member function, get count (), returns the

value in

90 Object Oriented Programmimg with C++ Notes count. We call this function from all three objects, and–as we expected–each

prints the same value. Here’s the output: count is 3 ¬ static data count is 3 count is 3 If we had used an ordinary automatic variable, as

opposed to a static variable for count, each constructor would have incremented its own private copy of count once, and the output

would have been count is 1 ¬ automatic data count is 1 count is 1 Static class variable are not used often, but they are important in

special situations, and knowing about them helps to clarify how the more common automatic variables work. 4.10

Static Member Functions Like static member variable, we can also have static functions. A

member

functions. A member function that is declared static has the following properties: ? A static function can have access to only other

static members (functions or variables) declared in the same class. ? A static member function

can be called using

the class name (instead of its objects) as follows: class-name :: function-name;

The example given below illustrates the implementation of these characteristics. The static function show count () displays the

number of objects created fill that moment. A count of number of objects created is maintained by the static variable count. The

function show code () displays the code number of each object.

Note that the statement code = ++ count; is executed whenever set code ()

function is invoked and the current value of count is assigned to code. Since each object has its own copy of code, the value

contained in code represents a unique number of its object.

Example: #

include >iostream.h< class test { int code; static int count; //static member variable public: void set code(void) { code = ++ count;

Classes and Object 91 Notes }

void showcode(void) { cout >>" object number :" >>code>>"\n"; } static void

https://secure.urkund.com/view/158826004-173688-689700#/sources 37/125

show count(

void) // static member // function {

cout >>"count :" >>count>>"\n"; } }; int test :: count; main() { test t1,t2; t1.setcode(); t2.setcode() test ::

show count(); //accessing static function test t3; t3.setcode(); test :: show count(); t1.show code(); t2.show code(); t3.show code(); }

Output of Program: count: 2 count: 3 object number: 1 object number: 2 object number: 3

Remember, the following function definition will not work: static void show count() { cout >> code; //code is not static }

92 Object Oriented Programmimg with C++ Notes 4.11 Arrays

of Objects We know that an array can be of any data type including struct. Similarly, we can also have

arrays of variables that are of the type class. Such variables are called arrays

of objects. Consider the following class definition: class books { char name[30]; float price; public: void

get data(void); void put data(

void); }; The identifier books is a user-defined data type and can be used to create objects that relate to different categories of

the books. Example: books computer[3]; //array of computer books management[14]; //array of management books economics[74];

//array of economics. The array computer contains three objects (computers), namely, computer[0], computer[1] and computer[2], of

type books class. Similarly, the management array contains 14 objects (management) and

the economics

array contains 74 objects (economics). Since an array of objects behave like any other array, we can use the usual array- accessing

methods to access individual elements and then the dot member operator to access the member functions. For example, the

statement

computer[i].put data();

will display the data of the ith element of the array manager. That is, this statement requests the object computer[i] to invoke the

member function put data().

An array of objects is stored inside the memory in the same way as a

multi- dimensional array.

The array computer is represented in figure given below. Note the

only the space for data item of the objects is created. Member functions are stored separately and will be used by all the objects. #

include >iostream.h< class books { char name[30]; //string as class member float price; public: void getdata(void); void

getdata(void); }; void books :: getdata(void)

Classes and Object 93 Notes {

cout >>" Enter name:"; cin << name; cout >>" Enter price:"; cin <<

price; } void books :: putdata(void) { cout >>" Name :" >>name>> "\n"; cout >>"

Price :" >>price>>"\n"; } const int

size = 3; main() {

books computer[size]; //array of computers for(int i = 0; i>size; i++) { cout >>"\n Details of computer

book>>i+1>>"\n"; computer[i].get data(); } cout >>"\n"; for (i=0; i>size; i++) { cout >>"\n computer book"

>> i+1 >>"\n"; computer[i].put data(); } }

This being an interactive program, the input data and the program output are as shown below: Interactive input: Details of computer

book1 Enter name: xxx Enter price: 102 Details of computer book2 Enter name:

yyy

94 Object Oriented Programmimg with C++ Notes Enter price: 140 Details of computer book3

Enter name: zzz Enter price: 180 Program output: Computer book1 Name: xxx Price: 102 Computer book2 Name: yyy Price: 140

Computer book3 Name: zzz Price: 180 4.12 Objects As Function

Arguments Like any other data type,

an object may be used as

a

function argument. This can be done in two ways: ?

A copy of the entire object is passed to the function. ? Only the address of the object is transferred to the function.

The first method is called

pass-

by-

value.

Since

a copy of

the

object is passed to the function, any changes made to the object inside the function

do not affect the object

used to call the function.

The

second method is called pass-by-reference. When

an

address of the

object is passed, the called function works directly on

https://secure.urkund.com/view/158826004-173688-689700#/sources 38/125

the actual object

used in

the call.

This means that any changes made to

function works directly on

the actual object

used in the

call. This means that

any changes made to

the

object inside the function will reflect in the actual object.

The

pass-by-reference

method is more efficient

since it requires

to pass

only the address of the object and not the entire object.

The

example given below illustrates the use of objects as function arguments. If performs the addition of time in the hour and minutes

format.

Since the member function sum() is invoked by the object T3, with

in the hour

and minutes format. Since the member function sum() is invoked by the object T3, with the objects T1 and T2 as arguments, it can

directly access the hours and minutes variables of T3. But, the members of T1 and T2 can be accessed only by using the dot operator

(like T1hours and T1minutes). Therefore, inside the function sum(), the variables hours and minutes refer to T3, T1hours and T1minutes

refer to T1, and T2.hours and T2.minutes refer to T2.

Classes and Object 95 Notes Example #include >iostream.h< class time {

int hours;

int minutes; public: void gettime(int h, int m) { hours = h; minutes = m;} void puttime(void) { cout >>hours>> " hours and";

cout >>minutes>>" minutes">>"\n"; } void sum(time, time); //

objects are

arguments }; void time :: sum(timet1, timet2) //t1, t2 are objects {

minutes = t1.minutes + t2.minutes hours = minutes/60; minutes = minutes%60; hours = hours + t1.hours + t2.hours; } main() { time

T1, T2, T3; T1.gettime(2, 44); //getT1 T2.gettime(3, 30); //getT2 T3.sum(T1, T2); //T3 = T1+T2 cout >>" T1 = "; T1.puttime();

//display T1 cout >>" T2 = "; T2.puttime(); //display T2 cout >>" T3 = "; T3.puttime(); //

display T3 The output of program would be: T1 = 2 hours and 44 minutes T2 = 3 hours and 30 minutes T3 = 6 hours and 14 minutes

96

Object Oriented Programmimg with C++ Notes

An object can also be passed as an argument to a non-member function. However, such functions can have access to the public

member functions only through

the objects passed as arguments to it. These functions cannot have access to the private data members. 4.13 Friendly Functions We

have been emphasizing throughout this chapter that the

private members cannot be accessed from outside the class. That

is,

100% MATCHING BLOCK 167/304

a non-member function cannot have an access to the private data of a class.

However, there could be a situation where we would like two classes to share a particular function. For example, consider a case

where two classes, manager and scientist, have been defined. We would like to use a function income_tax() to operate on the objects

of

both

these classes. In such situations, C++ allows the common function to be made friendly with both the classes, thereby allowing the

function to have access to the private data of these classes. Such a function need not be a member of any of these classes. To make

an outside function “friendly” to a class, we have to simply declare this function as a friend of the class as shown below: class.ABC {

.... public: friend voidxyz(void); //declaration };

The function declaration should be

preceded by the keyword friend.

The function is defined elsewhere in the program like a normal C++ function.

The function definition does not use either the keyword friend or

the scope

https://secure.urkund.com/view/158826004-173688-689700#/sources 39/125

operator :: .

The functions that are declared with the keyword friend are known as friend functions.

A function can be

declared as friend in any number of classes.

A friend function, although not a member function, has

full access rights to the private members of

the class.

A

friend function possesses certain special characteristics: ?

It

is not in the scope of the class to which it has been declared as

friend. ?

Since

it is not in the scope of the class, it cannot be

called

using the object of that class.

It

can be invoked

like a normal function without the

help of any object. ?

Unlike member functions,

it cannot access the member names directly and has to use an object name and dot membership operator with each member name. (

e-g. A.x). ?

It can be declared either in public or private part of

a class without affecting its meaning. ? Usually, it has the objects as arguments.

The friend function is often used in operator overloading

which will be discussed later. Example: #include >iostream.h< class sample

Classes and Object 97 Notes { intx; inty; public: void setvalue() { x = 10; y = 40; } friend float mul(samples); //FRIEND declared }; float

mul(samples) { return float(s.x * s.y); } main() { sample S1; //objectS1 S1.setvalue(); cout >>" Multiplied value =

">>mul(S1)>>"\

n"; } The output of the example would be: Multiplied value = 400 Note that the friend function accesses the class variables x and y by

using the dot operator and the object passed to it. The function call mul(S1) passes the object S1 by value to the friend function.

Member functions of one class can be friend functions of another class. In such cases, they are defined using the scope resolution

operator

as shown below: class x { int fun1(); //member function of x }; class y {

98

Object Oriented Programmimg with C++ Notes

friend int x :: fun1(); //fun1() of x is //friend of y }; The function fun1() is a member of class x and a friend of class y. We can also

declare all the member functions of one class as the friend functions of another class.

In such cases, the class is a

called a friend class. This can be specified

as follows: class z { friend class x: //all member functions of x are/friends to z };

The following example demonstrates

how friend functions work as a bridge between the classes. Note that

the function max() has arguments from both XYZ and ABC. When the function max() is declared as a friend in XYZ for the first time,

the compiler will not acknowledge the presence of ABC unless its name is declared in the beginning as class ABC; This is known as

‘forward’ declaration.

Example:

class ABC; //Forward declaration class XYZ { int x; public: void setvalue(inti) { x = i; } friend void mase (XYZ, ABC); }; class ABC { int a

public: void setvalue(int

i)

Classes and Object 99 Notes {

a = i; } friend void mase(XYZ, ABC); }; void max(XYZ m, ABC n) //

Definition of //friend { if(

m.x < n.a) cout >> m.x; else cout >> n.a; } main() { ABC abc; abc.setvalue(10); XYZ xyz; xyz.setvalue(20); max(xyz, abc); }

The output of example would be 20.

As pointed out earlier, a friend function can be called by reference. In this case, local copies of the objects are not made. Instead, a

pointer to

the

address of the object is passed and the called function directly works on the actual object used in the call.

This

https://secure.urkund.com/view/158826004-173688-689700#/sources 40/125

method can be used to alter the values of the private members of a class. Remember, altering the values of private members is against

the basic principles of data hiding. It should be used only when absolutely necessary. The following program shows how to use a

common friend function to exchange the private values of two classes. The function is called by reference.

Example: class class_2; class class_1 { int value1; public: void indat a(int a) {

100 Object Oriented Programmimg with C++ Notes

value1 = a; } void display(void) { cout >> value1 >>"\n"; } friend void exchange(class_1 &, class_2&); }; class class_2 { int

value2; public: void indata(inta) { value 2 = a; } void display(void) { cout >> value2 >>"\n"; } friend void exchange(class_1 &,

class_2&); }; void exchange(class_1 & x, class_2 &y) { int temp = x.value1; x.value1 = y.value2; y.value2 = temp; } main() { class_1 C1;

class_2 C2; C1. indata(100); C2. indata(200); cout >>" values before exchange ">>"\n"; C1.display(); C2.display();

Classes and Object 101 Notes

exchange(C1, C2); //SWAPPING cout >>" values after exchange ">>"\n"; C1.display(); C2.display(); } The objects x and y are

aliases of C1 and C2 respectively. The statements int temp = x.value1; x.value1 = y.value2; y.value2 = temp; directly modify the values

of value1 and value2 declared in class_1 and class_2. Here in the output of example: values before exchange 100 200 values after

exchange 200 100 4.14 Returning Objects A function can not only receive objects as arguments but also can return them. The

following example illustrates how an object can be created (within a function) and returned to another function. Example: #include

>iostream.h< class complex //x + iy form { float x; //real part float y; //imaginary part public: void input(float real, float image) { x =

real; y = image; } friend complex sum(complex, complex) void show(complex); }; complex sum(complex C1, complex C2)

102 Object Oriented Programmimg with C++ Notes { complex C3; //object C3 is created C3.x = C1.x + C2.x; C3.y = C1.y + C2.y;

return(C3); //returns object C3 } void complex :: show (complex C) { cout >> c.x >>" + " >> c.y >>"\n"; } main() {

complex A, B, C; A.input(3.1, 4.64); B.input(2.74, 1.2); C = sum(A, B); //C = A+B cout >>" A = "; A.show(A); cout >>" B = ";

B.show(B); cout >>" C = "; C.show(C); } Upon execution, Example would generate the following output: A = 3.1 + i 4.64 B = 2.74

+ i 1.2 C = 4.84 + i 6.84 The program adds two complex numbers A and B to produce a third complex number C and displays all the

three numbers. 4.15 Const

Member Functions If a member function does not alter any data in the class, then we may declare

it as a const member function as follows: void mul(int, int) const; double get_balance() const; The qualifier const is appended to the

function proto types (in both declaration and definition). The compiler will generate an error message if such functions try to alter the

data values. 4.15.1

Classes Versus Objects You never pet the definition of a cat; you pet individual cats. You draw a distinction between the idea of a cat

and the parcider cat that right now is shedding all over your living room. In the same way, C++ differentiates between the class cat

which is the idea of a cat and each individual cat object. Thus, Frisky is an object of type cat in the same

Classes and Object 103 Notes way in which gross weight is a variable of type unsigned int. An object is an individual instance of a

class. 4.15.2 Privacy Versus Security Declaring methods or data private enable the compiler to find programming mistakes before they

become bugs. Any programmer worth his consulting fees can find a way around privacy if he wants. Stroustrup the inventor of C++

said, “The C++ access control mechanisms provide protection against accident-not against fraud. 4.16 Pointer to member We can

have pointers to class member functions and member variables. We can define pointer of class type, which can be used to point to

class objects. class Simple { public: int a; }; int main() { Simple obj; Simple* ptr; // Pointer of class type ptr = &obj; cout >> obj.a;

cout >> ptr-<a; // Accessing member with pointer } Here you can see that we have declared a pointer of class type which

points to class's object. We can access data members and member functions using pointer name with arrow -< symbol. Pointer to

Data Members of class ? Declaration: datatype class_name :: *pointer_name ; ? Assignment: pointer_name = &class_name ::

datamember_name ; 4.17 Summary When you define a class, you define

100% MATCHING BLOCK 169/304
248E1110-Object Oriented Programing using C++(...

(D165248029)

a blueprint for a data type. This doesn't actually define any data, but it does define what the class name means, that is, what an

object of the class will consist of and what operations can be performed on such an object. A class definition starts with the

keyword class followed by the class name; and the class body, enclosed by a pair of curly braces. A class definition must be followed

either by a semicolon or a list of declarations. 104

Object Oriented Programmimg with C++ Notes 4.18 Check Your Progress

Multiple Choice Questions 1. Class hold ________ a) data b) functions c) both a & b d) none of

the mentioned 2. How many specifiers are present in access specifiers in class? a) 1 b) 2 c) 3 d) 4 3. Which is used to define the

member of a class externally? a) : b) :: c) # d) none of the mentioned 4. Which other keywords are also used to declare the class other

than class? a) struct b) union c) object d) both

a & b 4.

What is the output

of this program? #

50% MATCHING BLOCK 168/304

include >iostream< using namespace std; class rect { int x, y; public: void val (int, int); int area () { return (x * y); } }; void rect::val

(int a, int b) { x = a; y = b; } int main () {

https://secure.urkund.com/view/158826004-173688-689700#/sources 41/125

Classes and Object 105 Notes rect rect; rect.val (3, 4); cout >> "rect area: " >> rect.area(); return 0; } a) rect area:12 b) rect

area: 12 c) rect area:24

100% MATCHING BLOCK 170/304 ECAP 444.docx (D142426097)

d) none of the mentioned 6. What is the output of this program? #include >iostream< using namespace std;

class CDummy { public: int isitme (CDummy& param); }; int CDummy::isitme (CDummy& param) { if (¶m == this) return true; else

return false; } int main () { CDummy a; CDummy *b = &a; if (b-<isitme(a)) { cout >> "execute"; } else { cout>>"not

execute"; } return 0; } a) execute b) not execute c) none of the mentioned d) both a & b 7. Which of the following is a valid class

declaration? a) class A { int x; };

106 Object Oriented Programmimg with C++ Notes b) class B { } c) public class A { } d) object A { int x; }; 8. The fields in the class in

c++ program are by default a) protected b) private c) public d) none of the mentioned 9. Constructors are used to a) initialize the

objects b) construct the data members c) both a & b d) none of the mentioned 10. When struct is used instead of the keyword class

means, what will happen in the program? a) access is public by default b) access is private by default c) access is protected by default

d) none of the mentioned 4.19 Questions and Exercises 1. What is a class? 2. What are objects? 3. Briefly explain inline function. 4. How

is a member-function of a class defined? 5. What is friend function? 6. How class is specified? 7. What is Const member function 8.

What is the difference between member function and private member function? 9. How can be outside function can make inline. 10.

Define array within class. 4.20 Key Terms ? Real world: The real world consists of objects like books, tables, chairs and TV. ?

Information encapsulation (Hiding): Objects provide the benefit of information hiding. ? Abstraction: It allows us to focus only on

those parts of an object that concern us. ? Inheritance: Adding a new functionality to the existing class without creating a new one

from the scratch. ? Class: The class keyword is used to declare a class. The braces are used to indicate the start Check Your Progress:

Answers: 1. c) both a & b 2. a) 1

Classes and Object 107 Notes 3. d) none of the mentioned 4. d) both a & b 4. b) rect area: 12 6. c) none of the mentioned 7. d) object A

{ int x; }; 8. a) protected 9. b) construct the data members 10. c) access is protected by default 4.21 Further Readings ? Subhash, K. U.

(2010) Object Oriented Programming With C++ Pearson Education India. Ramesh Vasappanavara, Anand Vasappanavara, Gautam

Vasappanavara, Pearson Education India. ?

100% MATCHING BLOCK 172/304 INF_1016.pdf (D164968061)

Balagurusamy (2008) Object Oriented Programming With C++ Tata McGraw-Hill Education. ?

C++ programming: from problem analysis to program design, fifth edition, D.S.malok.

108 Object Oriented Programmimg with C++ Notes Unit 5: Constructors and Destructors Structure 5.1 Introduction 5.2 Constructors

5.2.1 Need for constructor 5.3

81% MATCHING BLOCK 171/304

Parameterized constructors 5.4 Multiple constructors in a class 5.5 Default constructors 5.6 Dynamic initialization of Object 5.7 Copy

Constructor 5.8 Dynamic constructor 5.9 Constructing Two Dimensional Arrays 5.9.1

Two Dimensional Arrays 5.10 Const Object 5.11 Destructors 5.12 Summary 5.13 Check Your Progress 5.14 Questions and Exercises 5.15

Key Terms 5.16

89% MATCHING BLOCK 176/304
DECAP444_OBJECT_ORIENTED_PROGRAMMING_USING_C++.pdf

(D142327140)

Further Readings Objectives After studying this unit, you should be able to: ? Understand the

constructors. ? Learn about Default, copy, parameterized constructor. ? Understand the concept of destructor. 5.1 Introduction In this

lesson, we will discuss about classes and its implementation with special emphasis on the concept of constructor and destructor,

static member and This Pointer. 5.2 Constructors When an object of a class is created, its member variables are in uninitialized state,

loaded with any arbitrary values. It is desirable to have the member variables initialized to some legal values at the time of object

creation.

100% MATCHING BLOCK 173/304

A constructor is a member function of a class, having the same name as its class and which is called automatically each time an

object of that class

is

https://secure.urkund.com/view/158826004-173688-689700#/sources 42/125

100% MATCHING BLOCK 174/304

created. It is used for initializing the member variables with desired initial values.

Constructors and Destructors 109 Notes Example: class student { private: int rollno; float marks; public: . . . student() //constructor of

class student { rollno = 0; marks = 0.0; } . . } In this code, the class student has a member function student() that will be called each

time an object of this class is created, thereby initializing the member variables with appropriate values. 5.2.1 Need for constructor

92% MATCHING BLOCK 175/304

A variable (including structure and array types) in C++ may be initialized with a value at the time of its declaration.

Example: int I = 4; //Integer I has been initialized with 4 float p = 9.1; //Float p has been initialized with 9.1 int a[3] = {2, 7,9}; //Array

elements a[0], a[1] and a[2] have been initialized with 2, 7 and 9 respectively struct student { int rollno; float marks; }; int main() {

student s1 = {0, 0.0}; }

110 Object Oriented Programmimg with C++ Notes But no such initialization is possible with objects of a class because the private

members are not accessible form outside the class. 5. class student { private: int rollno; float marks; }; int main() { student s1 =

{0, 0.0}; //Illegal!! //Private data members not //accessible from non- //member function main() } Declaration A constructor

is defined like any other member function. However, ?

43% MATCHING BLOCK 180/304 OOP through C++ (Block 2).pdf (D148964031)

It has same name as the name of the class it belongs to ? It does not have any return type (not even void)

Example: class abc { private: int i; public: int j, k; abc() //constructor (same //name as class, //i.e. abc) { //no return type i=0; j=0;k=0; }

..... }; In this example, constructor abc::abc() was defined inline. It may also be defined outline.

Constructors and Destructors 111 Notes Example: class abc { private: int i; public: int j, k; abc(); //constructor (same name as class, i.e.

abc) }; abc::abc() { //outline definition i=0; j=0;k=0; } In the examples given above, the constructors have been defined as a

public member so that any function of any object may create this object. However, it can be defined as private or protected as well,

but in those cases not all functions can create this object. In later cases the object cannot be created in non-member functions but

can be created only in member and friend functions. Example: class abc { private: int i; abc(){ i=0; j=0;k=0; } //constructor defined

//private inline public: int j, k; void aaa(void); friend void bbb(void); //friend function : }; void aaa(void) { abc a; //create an instance a of

class //abc; valid here aaa being : //member function } void bbb(void) { abc b; //create an instance b of class abc; //valid here bbb

being : //friend function } int main() {

112 Object Oriented Programmimg with C++ Notes abc c; //create an instance b of class abc; //invalid here main being : //non-

member function abc::abc() not accessible from here } Generally, therefore, constructors are defined as

100% MATCHING BLOCK 177/304

public member unless otherwise there is a good reason against. 5.3

Parameterized constructors

100% MATCHING BLOCK 178/304

A constructor may also have parameter(s) or argument(s), which can be provided at the time of creating an object of that class.

Example: class abc { private: int i; public: int j, k; abc(int aa, int bb, int cc); //constructor with //parameters aa, bb and cc { i= aa; j=bb;

k=cc; } : }; int main(){ abc abc1(5, 8, 10); //create an instance abc1 of class abc; : //initialize i, j, and //with 5, 8, and //10 respectively abc

abc2(100, 200, 300);//create an instance //bc2 of class abc; : //initialize i, j, and // k with 100, 200, //and 3000 respectively } Evidently,

with parameterized constructor, the correct number and valid argument values must be passed to it at the time of object instantiation.

This can be done in two different ways in C++. ? Implicit call: calling the constructor without mentioning its name. ? Explicit call:

calling the constructor by mentioning its name explicitly. Example: class abc { private: int i; public:

Constructors and Destructors 113 Notes int j, k; abc(int aa, int bb, int cc); //constructor with //parameters aa, bb and cc { i = aa; j = bb;

k = cc; } : : }; int main(){ abc abc1(5, 8, 10); //implicit call: constructors // has not //been called by its name : abc abc2 =

abc(100,200,300); //explicit call to the constructor of //abc : } Implicit call to the constructor also allows one to create a temporary

instance of a class that and the object thus created does not have any name. It is anonymous. It exists in the memory as long as its

member(s) is(are) executing after which it is destroyed. Example: class abc { private: int i; public: int j, k; abc(int aa, int bb, int cc);

//constructor with //parameters aa, bb and cc { i = aa; j = bb; k = cc; } void show() { cout>>i>>j>>k; } : : };

114 Object Oriented Programmimg with C++ Notes int main() { abc(5, 8, 10).show(); //create a temporary instance, initialize the

members //with 5, 8 and 10 and execute the function show. : //when the execution is over destroy the instance }

https://secure.urkund.com/view/158826004-173688-689700#/sources 43/125

100% MATCHING BLOCK 179/304

C++ classes are derived data types and so they have constructor(s).

Similarly, the primitive data types also have constructors. If the programmer does not supply the argument, default constructor is

called else the value supplied by the programmer is used to initialize the variables of that data type. int aa, bb, cc; //default constructor

used int aa(5), k(89); //aa is initialized with 5 and k with 89 float xx(4.3) //xx is initialized with 4.3 5.4 Multiple constructors in a class

Constructors Overloading are used to increase the flexibility of a class by having more number of constructor for a single class.

Initializing objects by more than one constructor can be done using overloading constructors. Example: #include >iostream.h<

class Overclass { public: int x; int y; Overclass() { x = y = 0; } Overclass(int a) { x = y = a; } Overclass(int a, int b) { x = a; y = b; } }; int

main() { Overclass A; Overclass A1(4); Overclass A2(8, 12); cout >> "Overclass A's x,y value:: " >> A.x >> " , ">> A.y

>> "\n";

Constructors and Destructors 115 Notes cout >> "Overclass A1's x,y value:: ">> A1.x >> " ,">> A1.y >> "\n";

cout >> "Overclass A2's x,y value:; ">> A2.x >> " , ">> A2.y >> "\n"; return 0; } Result: Overclass A's x,y

value:: 0 , 0 Overclass A1's x,y value:: 4 ,4 Overclass A2's x,y value:; 8 , 12 In the above example the constructor "Overclass" is

overloaded thrice with different initialized values. 5.5 Default constructors

97% MATCHING BLOCK 181/304

A constructor may take argument(s). A constructor taking no argument(s) is known as default constructor.

If the programmer does not provide any constructor to a class, the compiler automatically provides one with no argument(s). Default

constructor provided by the compiler does nothing more than initializing the data members with dummy values. However, if a

constructor is defined for the class the default constructor is no more available, it goes into hiding. Example: class abc { private: int i;

public: int j, k; //no explicit constructor defined : }; int main() { abc c; //create an instance c of class //abc; valid the constructor :

//abc() is provided by the //compiler } 5.6 Dynamic initialization of Object The dynamic initialization of object means that the initial

values may be provided during run time. Even class objects can be initialized dynamically, by providing values at run time. The

following example explains it.

52% MATCHING BLOCK 183/304 INF_1016.pdf (D164968061)

Example: A Program to find the factorial of an integer by using constructor. #include>iostream.h< #include>conio.h< 116

Object Oriented Programmimg with C++ Notes Class factorial { Private: Int n; Public: Factorial (int number) { N=number; } Void display

() { Int fact=1; If (n==0) Cout>>”\n factorial=1”; Else For (int i=1; i>=n; i++) { Fact=fact *I; } Cout>>”\n

factorial=”>>fact; } }; Void main () { Int x; Clrscr (); Cout>>”\n enter the number to find its factorial “; Cin<<x; Obj.dispay

(); getch (); } 5.7 Copy Constructor A copy constructor is a constructor of the form classname (classname &). The compiler will use the

copy constructor whenever you initialize an instance using values of another instance of same type. Example: student st1; // default

constructor used

Constructors and Destructors 117 Notes student st2 = st1; // copy

92% MATCHING BLOCK 182/304

constructor used Copy constructor is called whenever an instance of same type is assigned to another instance of the same class.

The copy constructor copies the data contents of the instance being assigned to the other instance member by member. If a copy

constructor is not defined explicitly, the compiler automatically, creates it and it is public. However, the programmer may define

his/her own copy constructor for the class in which case the default copy constructor becomes unavailable.

100% MATCHING BLOCK 184/304 ODL Learning Materials (ALL 5 UNITS).pdf (D109014230)

A copy constructor takes a reference to an object of the same class as

argument. Example: class student { int rollno; float marks; public : student (int a, float b) // constructor { rollno = a; marks = b }

student(student &s) // copy constructor { rollno = s.rollno; marks = s.marks + 5; } : : }; These constructors may be used as follows:

student s1(5, 78.5); //constructor used to initialize s1.rollno to //5 and s1.marks to 78.5 student s2(s1); //copy constructor used to

initialize //s2.rollno to 5 and s2.marks to //s1.marks+5, i.e. 78.5+5=83.5 student s3 = s1; //copy constructor used to initialize //s3.rollno

to 5 and s3.marks to //s1.marks+5, i.e. 78.5+5=83.5 5.8

https://secure.urkund.com/view/158826004-173688-689700#/sources 44/125

100% MATCHING BLOCK 185/304
DECAP444_OBJECT_ORIENTED_PROGRAMMING_USING_C++.pdf

(D142327140)

Dynamic constructor Dynamic constructor is used to allocate the memory to the objects at the run time. Memory is allocated at run

time with the help of 'new' operator. By using this constructor, we can dynamically initialize the objects. Example: # include

>iostream.h< # include >conio.h< #

include >string.h< class

str {

118 Object Oriented Programmimg with C++ Notes

char *name;

int len; public: str() { len=0; name=newchar[len+1]; } str(char *s) { len=strlen(s); name=newchar[len+1]; strcpy(name,s); } void show() {

cout>>"NAME

IS:-<">>

name>>endl; } void join(str &a,str &b); }; void str::

join(str &a,str &b) { len=a.len+b.len; delete new; name=newchar[len+1]; strcpy(name,a.name); strcat(name,b.name); }; main() {

clrscr(); char *first="

HARSHIL"; str n1(first),n2("NINAD"),n3("PRATIK"),n4,n5;

Constructors and Destructors 119 Notes n4.join(n1,n2); n5.join(n4,n3); n1.show(); n2.show(); n3.show(); n4.show(); n5.show(); } 5.9

Constructing Two Dimensional

71% MATCHING BLOCK 189/304 C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

Arrays The least complex type of the multidimensional array is the two-dimensional array. A two-dimensional array is, basically, a list

of one-dimensional array. To pronounce a two- dimensional integer array of size

x,y, you would compose something as : type arrayName [x][y]; Where type can be any substantial C++ data type and arrayName will

be a legitimate C++ identifier. A two-dimensional array can be think as a table, which will have x number of rows and y number of

columns. A 2-dimensional array a, which contains three rows and four columns can be appeared as below: 5.9.1 Two Dimensional

Arrays Accordingly, every element in array is recognized by an element name of the structure a[i][j], where a is the name of the array,

and i and j are the subscripts that extraordinarily distinguish every element in a. Introducing Two-Dimensional Arrays Multidimensional

array might be initialized by determining sectioned qualities for every row. Taking after an array with 3 rows and every row have 4

columns. int a[3][4] = { {0, 1, 2, 3} , {4, 5, 6, 7} , {8, 9, 10, 11} }; The nested braces, which indicate the intended row, are optional. The

following initialization is equivalent to previous example: int a[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11}; 5.10 Const Object When an object is

declared or created with const, its data members can never be changed, during object's lifetime. Syntax : const class_name object;

120 Object Oriented Programmimg with C++ Notes 5.11 Destructors Just as objects are created, they are destroyed.

95% MATCHING BLOCK 186/304

The function that is automatically called when an object is no more required is known as destructor. It is also a member function

very much like constructors but with an opposite intent.

Its name is same as that of the class but is preceded by tilde (~). The destructor for class student will be ~student(). A destructor takes

no argument and returns no values. Example: class student { int rollno; float marks; public: student() { cout>>”Constructing

Student\n”; rollno = 0; marks = 0.0; } ~student() { cout>>”\nDestroying Student”; } }; int main() { student s1; } The output will be:

Constructing Student Destroying Student During construction of an object by the constructor, resources may be allocated for use. For

example, a constructor may have opened a file and a memory may be allocated to it. Similarly, a constructor may have allocated

memory to some other objects. These allocated resources must be deallocated before the object is destroyed. Whose responsibility is

this? A destructor performs this cleaning-up task. Therefore, destructor is as useful as constructor. Syntax string () The function creates

a default string object of zero size. Example #include >iostream.h< #include >string.h< int main() { string obj;

Constructors and Destructors 121 Notes cout >> "obj [0] contains :" >> obj[0] >>end1; {if (obj[0] == '\0') { cout

>> "empty" >> end1; else { cout >> "NOT empty" >> end1; return 0; } The output of the program is: obj[0]

contains: empty 5.12 Summary When an object of a class is created, its member variables are in uninitialized state, loaded with any

arbitrary values. It is desirable to have the member variables initialized to some legal values at the time of object creation.

100% MATCHING BLOCK 187/304

A constructor may also have parameter(s) or argument(s), which can be provided at the time of creating an object of that class.

Constructors Overloading are used to increase the flexibility of a class by having more number of constructor for a single class.

Initializing objects by more than one constructor can be done using overloading constructors.

https://secure.urkund.com/view/158826004-173688-689700#/sources 45/125

97% MATCHING BLOCK 188/304

A constructor may take argument(s). A constructor taking no argument(s) is known as default constructor.

If the programmer does not provide any constructor to a class, the compiler automatically provides one with no argument(s). The

dynamic initialization of object means that the initial values may be provided during run time. Even class objects can be initialized

dynamically, by providing values at run time. A copy constructor is a constructor of the form classname (classname &). The compiler

will use the copy constructor whenever you initialize an instance using values of another instance of same type.

100% MATCHING BLOCK 190/304
DECAP444_OBJECT_ORIENTED_PROGRAMMING_USING_C++.pdf

(D142327140)

Dynamic constructor is used to allocate the memory to the objects at the run time. Memory is allocated at run time with the help of

'new' operator. 5.13

Check Your Progress Multiple Choice Questions 1. Which value we cannot assign to reference? a) integer b) floating c) unsigned d) null

2. Identify the incorrect statement a) Reference is the alternate name of the object b) A reference value once defined can be

reassigned c) A reference value once defined cannot be reassigned d) None of the mentioned 3. Which reference modifier is used to

define reference variable? a) &

122 Object Oriented Programmimg with C++ Notes

b) $ c) # d) None of the mentioned 4. What is the output of

this program? #

include >iostream< using namespace std; void swap(

int &a, int &b); int

75% MATCHING BLOCK 191/304 010E2340-Programming in C and C++.pdf (D165445451)

main() { int a = 5, b = 10; swap(a, b); cout >> "In main " >> a >> b; return 0; } void swap(int &a, int &b) { int temp;

temp = a; a = b; b = temp;

cout >> "In swap " >> a >> b; } a) In swap 105 In main 105 b) In swap 105 In main 510 c) In swap 510 In main 105 d)

None of the mentioned 5. What does a reference provide? a) Alternate name for the class b) Alternate name for the variable c)

Alternate name for the pointer

100% MATCHING BLOCK 192/304 ECAP 444.docx (D142426097)

d) None of the mentioned 6. What is the output of this program? #include >iostream< using namespace std;

int main() { int

a = 9;

int & aref = a; a++; cout >> "The value of a

is " >>

aref; return 0; } a) 9

Constructors and Destructors 123 Notes b) 10 c) error

63% MATCHING BLOCK 194/304 ECAP 444.docx (D142426097)

d) 11 7. What is the output of this program? #include >iostream< using namespace std; void print (char * a) { cout >> a

>> endl; } int main () {

const char * a = "Hello world"; print(const_cast>char *< (a)); return 0; } a) Hello world b) Hello c) World d) Compile time error 8.

Identify the correct sentence regarding inequality between reference and pointer. a) we can not create the array of reference. b) we

can create the Array of reference. c) we can use reference to reference. d) none of the mentioned 9. Which of the following correctly

declares an array? a) int array[10]; b) int array; c) array{10}; d) array array[10]; 10. What is the index number of the last element of an

array with 9 elements? a) 9 b) 8 c) 0 d) Programmer-defined 5.14 Questions and Exercises 1. Does default constructor have any

parameter? 2. Define destructor. 3. Define constructor 4. What is the difference between constructor and destructor? 5. What do you

mean by static function members? 6. Explain class constructor.

124 Object Oriented Programmimg with C++ Notes 7. What is parameterized constructor 8. What is the use of multiple constructors?

9. How objects can be initialized dynamically. 10. Define Const object 5.15 Key Terms ?

Constructor:

https://secure.urkund.com/view/158826004-173688-689700#/sources 46/125

100% MATCHING BLOCK 193/304

A constructor is a member function of a class, having the same name as its class and which is called automatically each time an

object of that class

is created. ? Implicit call: It is calling the constructor without mentioning its name. ? Explicit call: It is calling the constructor by

mentioning its name explicitly. ? Constant function: A member function of a class in which the heading contains the reserved word

const at the end ? Default constructor: The constructor without parameters or a constructor that has default values for all parameters

that is called when a class object comes into scope in a program. Check Your Progress: Answers: 1. d) null 2. c) A reference value once

defined cannot be reassigned 3. a) & 4. a) In swap 105 In main 105 5. b) Alternate name for the variable 6. b) 10 7. a) Hello world 8. a)

we can not create the array of reference. 9.

a) 8 10. b) int array[10]; 5.16

Further

Readings ? Balagurusamy (2008)

67% MATCHING BLOCK 196/304
Object Oriented Programming through C++ Block ...

(D164970258)

Object Oriented Programming With C++ Tata McGraw-Hill Education. ? Subhash, K. U. (2010) Object Oriented Programming With

C++ Pearson Education India.

Ramesh Vasappanavara, Anand Vasappanavara, Gautam Vasappanavara, Pearson Education India.

Operator Overloading and Type Conversion 125 Notes

82% MATCHING BLOCK 195/304

Unit 6: Operator Overloading and Type Conversion Structure 6.1 Introduction 6.2 Defining Operator Overloading 6.3 Overloading

Unary Operators 6.4

Overloading Binary Operators 6.5 Rules for overloading operators 6.6 Typecasting 6.7 Summary 6.8 Check Your Progress 6.9

Questions and Exercises 6.10 Key Terms 6.11

81% MATCHING BLOCK 197/304 ECAP 444.docx (D142426097)

Further Readings Objectives After studying this unit, you should be able to: ? Understand the Operator overloading. ?

Learn about data conversion. 6.1 Introduction

Operator overloading is one of the most exciting features

80% MATCHING BLOCK 202/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

of object oriented programming. It can transform complex, obscure program listings into intuitively obvious ones. 6.2

Defining Operator Overloading

To define an additional task to an operator we must specify what it

means

in

relation to the class to which the operator is applied.

This

is done with the help of a special function, called

operator function,

which describes the task.

The general form of an operator function is: returntype classname :: operator

op (arg-list) { Function body //

task defined } where returntype

is the type of value returned by the specified operation

and op is the operator being overloaded.

The

op is preceded by the keyword operator. operator op is the function name. Operator functions must be either member functions

(non-static) or friend functions. A basic difference between them is that a friend function will

have

only

https://secure.urkund.com/view/158826004-173688-689700#/sources 47/125

one argument for unary operators and two for binary operators,

while a member function has no arguments for unary operators and only one for binary operators.

This is because the object used to invoke the member function is r_sed implicitly and therefore

126

Object Oriented Programmimg with C++ Notes

is available for the member function. This is not the

case with friend functions. Arguments may be passed either by value or by reference.

Operator functions are declared in the class using prototypes as follows: vector operator + (vector); //vectc_ addition vector operator

- (); //unary minus friend vector operator + (vector,

vector); //vector addition friend vector operator- (vector); //unary minus vector operator - (vector & a); //subtraction int operator ==

(vector); //comparison friend int operator == (vector, vector) //comparison

vector is a data type of class and may represent both magnitude and direction (as in physics and engineering) or a series of points

called elements (as in mathematics). The

process of

overloading involves the following steps: 1. First, create

a class that defines the data type that is to be used in the

overloading operation. 2. Declare

the

operator function operator op () in the public part of

the class.

It may be either a member function or a friend function. 3. Define the operator function to implement the required operations. 6.3

Overloading Unary

Operators Let's start off by overloading a

unary operator. Unary operators act on only one operand. Examples of unary operators are the increment and decrement operators

++ and --, and the unary minus,

as in -33. Let's consider a program showing how the unary minus operator is overloaded: #

include >iostream.h< class unary { intx; inty;

60% MATCHING BLOCK 198/304

intz; public: void getdata (int a1, int b1, int C1); void display (void); void operator-(); // overload unary minus }; void unary/ :: getdata

(intal, intb1, intC1) { x = a1; y = b1; z = c1;

Operator Overloading and Type Conversion 127 Notes void unaryl :: operator -() display (

58% MATCHING BLOCK 199/304

void) { cout >> x >> " "; cout >> y >>" ": cout >> j >>" \n"; } void unary :: operators -() // Defining

operator -() { x = -x; y = -y;

j = j; } main () { unaryl u; u.getdata (45, -60, 60); cout >>" u: "; u. display(); -u; // activates operator -() cout >> "u: "; u. display

(); } The program produces the following output: u : 45 -60 60 u : -45 60 -60

Note that the function operator -() takes no arguments. Then when does this operator function do? It changes the sign of data

members of the object u. Since this function is a member function of the same class, it can directly access the members of the object

which activated it. Remember, a statement like u2 = -u1; will not work because, the function operator -() does not return any value. It

can work if the function is modified to return an object. It is possible to overload a unary minus operator using a friend function as

follows: Friend void operator -(unary & u); // declaration void operator -(unary & u) // definition { u.x = -4.x;

128

Object Oriented Programmimg with C++ Notes u.y = -u.y; u.z = -u.j; }

Note that the argument is passed by reference. It will not work if we pass argument by value

because only a copy of the object that activated the call is passed to

operator - (). Therefore, the changes make inside the operator function will not reflect in the called object. 6.4 Overloading Binary

Operators We have just seen how to overload

a

unary operator. The same mechanism can be used to overload a binary operator. A statement like C = A+B; //arithmetic notation

overloads the + operator using an operator +() function. The program given below illustrates how this is accomplished. #

include >iostream.h< class complex { float x; // real part flaot y; // imaginary part public: complex // constructor/ { } complex

(float real, float imag) // constructor2 { x = real; y = image; } complex operator + (complex); void display (void); }; complex

complex :: operator + (complex() { complex temp; // temporary temp, x = x+ c-x; // float addition temp,y = y + c-y; // float addition

return (temp); } void

complex ::

display (void)

https://secure.urkund.com/view/158826004-173688-689700#/sources 48/125

Operator Overloading and Type Conversion 129 Notes {

47% MATCHING BLOCK 200/304

cout >> x >>" + i " >> y >> "\h"; } main () { complex C1, C2, C3; // invokes constructor 1 C1= complex (2.5, 3.5);

// invokes constructor 2 C2= complex (1.6, 2.6) // invokes constructor 3 C3= C1 + C2; //

invokes operator +()

100% MATCHING BLOCK 201/304

cout >> " C1 = " ; C1. display (); cout >> " C2 = " ; C2. display (); cout >> " C3 = " ; C3. display (); }

The output of program would be: C1 = 2.5 + i 3.5 C2 = 1.6 + i 2.6 C3 = 4.1 + i 6.2 We should note the following features of the

function operator +(): 1.

It receives only one complex type argument explicitly. 2. It returns a complex type value. 3. It is a member function of complex

The function is expected to add two complex values and return a complex value as the result but receives only one value as argument.

Where does the other value come from? Now let us look at the statement that invokes this function: c3 = C1 + C2; // invokes operator

+ () function. We know that a member function can be invoked only by an object of the same class. Here, the object C1 takes the

responsibility of invoking the function and C2 plays to the function. The above invocation statement is equivalent to C3 = C1. operator

+(

C2); //

usual function // call syntax Therefore, in the

operator +() function, the data members of C1 are accessed directly and the data members of C2 (

that is passed as an argument) are accessed using the dot operator. Thus, both the objects are available for the function. 6.5 Rules for

overloading operators

There are some restrictions and limitation in overloading the operators.

Some of them are listed below: 1.

Only existing operators

can be overloaded. 2. The overloaded operator must have at least one operand

which must be user defined type.

130 Object Oriented Programmimg with C++ Notes 3. You

cannot change the basic meaning of an operator. 4.

Overloaded operators

must follow the syntax rules of the original operators. 6. “

friend” functions must not be use

to overload certain operators.

However, member function

can

be used to overload them. 6.

Unary

operators, overloaded

by means

of

a member function, take no explicit arguments

and return no explicit values. 7.

Binary

operators

overloaded through a member function take one explicit argument and

those which are overloaded through

a friend function take two

explicit

arguments. 8.

When using binary operators overloaded through a member function, the left hand operand must be an object of the relevant class. 9.

Binary arithmetic operators such as +,-,* and / must explicitly return a value.

They must not attempt to change their own arguments. 6.6

https://secure.urkund.com/view/158826004-173688-689700#/sources 49/125

Typecasting Casts are used to convert the type of an object, expression, function arguments, or return value to that of another type.

Some conversions are performed automatically by the compiler that is called implicit conversions. The standard C++ conversions and

user-defined conversions are performed implicitly by the compiler where needed. Conversions which are explicitly specified by the

programmer and are called explicit conversions. The C++ draft standard includes the following four costing operators: ? static–cast ?

const–cast ? dynamic–cast, and ? reinterpert–cast Standard conversions are used for integral promotions (e.g., float to double),

floating-integral conversions (e.g., int to float), floating point conversions (e.g. float to double), arithmetic conversions (e.g., converting

operands to the type of the widest operand before evaluation), pointer conversions (e.g., derived class pointer to base class pointer),

reference conversions (e.g., derived class reference to base class reference), and pointer-to-member conversions. You can provide a

user-defined conversion from a class X to a class Y by providing a constructor for Y that takes an X as an argument: Y(const X& x) or by

providing a class Y with a conversion operator: operator X() When a type is needed for an expression that cannot be obtained through

an implicit conversion or when more than one standard conversion creates an ambiguous situation, the programmer must explicitly

specify that target type of the conversion. C++ Introduces Four New Casting Operators 1. Static–cast, to convert one type to another

type. 2. Const–cast, to cost away the "const-ness" or "volatile–ness" of a type. 3. dynamic–cast, for safe navigation of an inheritance

hierarchy. 4. reinterpret–cast, to perform type conversions on un-related types. All of the casting operators have the same syntax. For

example, to perform a static- cost of Ptr to a Type T we write:

Operator Overloading and Type Conversion 131 Notes ?* t = static–cost >T< (ptr); The Static–cast Operator The Static-cast

operator takes the form Static–cost >T< (enpr) to convert the expression expr to type T. Such conversions rely on static

(compile–time) type information. Internally, static–costs are used by the compiler to perform implicit type conversions such as the

standard conversions are user-defined conversions. The down cost of a base class pointer x to a derived class pointer y can be

statically only if the conversion is unambiguous and x is not a virtual base class. Consider this class hierarchy: class Bank Acct. { }

class savings Acct : Public Bank Acct. { } Given a base class pointer, we can cast it to a derived class pointer: void f(Bank

Acct*acct) { Savings Acct*d1 = static–cost>savings Acct*<(acct), } This is a down cost. The static–cost operator allows you to

perform safe down casts for non polymorphic classes. One of the more common uses of this type of casting is to perform arithmetic

conversions, such as from int to double. For example, to avoid the truncation in the following computation: int total = 500; int days =

9; double rate = total/days; we can write: double rate = static–cost>double<(total)(days; A static–cost may also be used to

convert an integral type to an enumeration. Consider: enum fruit{apple = 0, orange, banana};

132 Object Oriented Programmimg with C++ Notes int i/ = 2; fruit f1 = static–cost>fruit<(i/); The Const–cast Operator The

const–cast operator takes the form const–cast>T< (enpr) Consider a function, f, which takes a non-const argument: double

f(double & d); However, we wish to call f from another function g: voidg(const double & d) { val = f(d); } Since d is const and should

not be modified, the compiler will complain because f may potentially modify its value. To get around this dilemma, we can use a

const-cast: voidg(const double & d) { val = f(const-cost>double &< (d)); } Another scenario where const-cost is useful is inside

const functions. For example, consider class B: class B { public: B() { } ~B() { } voidf() const; private: int_count; }; suppose that, f(),

which is declared to be const, must modify-count whenever it is called: void B::f() const

Operator Overloading and Type Conversion 133 Notes { –count+ = 1; } The compiler will not allow-count to be changed because the

function is const. It turns out that the type of the internal this pointer helps the compiler perform this check. Every non-static member

function of a class C has this pointer. For non-const member functions of class C, this has type C*const This means that this is a

constant pointer. In other words, you cannot change what the pointer this points to, after all, that would be disastrous. We can,

however, use const-cost to cost away the "const-ness" of this: void B::f() const { B*const local this = const-cost>B*const<(this);

local this –<–count+ = 1; } The Dynamic-cast Operator The dynamic-cost operator takes the form dynamic-cost >T< (expr)

and can be used only for pointer or reference types to navigate a class hierarchy. This operator is actually part of C++’s run time type

information, or RTTI, sub-system. All of the derived-to-base conversions are performed using the static (compile- time) type

information. These conversions may, therefore, be performed on both, non- polymorphic and polymorphic types. These conversions

will produce the same result if they are converted using a static-cost. Let’s look at the power of run-time type conversion by revisiting

the bank account hierarchy introduced above with static-cost. Recall that when acct. does not actually point to a savings Acct. object,

the result of the static-cost is undefined. Since Bank Acct. has at least one virtual function, it is a polymorphic class. We can use a

dynamic- cost instead to check that the cost was successful: void f(Bank Acct*acct) { Savings Acct*d1 = dynamic-cost>Savings

Acct*<(acct); if(d1) { // d1 is a savings account } } Let’s expand our bank account hierarchy to include a few more types of accounts,

such as a checking account and a money market account. Let’s suppose we also want to extend the functionality so that we can

credit the interest for all savings and money market accounts in our data base. Suppose further that Bank Acct. is part of a vendor

134 Object Oriented Programmimg with C++ Notes library; we are not able to add new members functions to Bank Acct. since we do

not have the source code. Clearly, the best way to incorporate the needed functionality would be to add a virtual function, credit

interest() to the base class, Bank Acct. But since we are not able to modify Bank Acct, we are unable to do this. Instead, we can

employ a dynamic-cost to help us. We add the method credit interest() to both Savings Acct. and MM Acct. classes. The resulting

class hierarchy looks like: class Bank Acct { } class Savings Acct : Public Bank Acct { public: // void compute interest(); } class

MM Acct : Public Bank Acct { public: // void compute interest(); } We can now compute interest for an array of Bank Acct*S: void Do

Interest(Bank Acct* a[], int num_accts) { for(int i = 0; i>num-accts; i++) // check for savings Savings Acct*aa = dynamic-

cost>Savings Acct*<(accts[i]; if(sa) { sa-<credit interest(); } MM Acct*mm = dynamic-cost>MM Acct*<(accts[i]); if(mm) {

mm–< credit interest();

https://secure.urkund.com/view/158826004-173688-689700#/sources 50/125

Operator Overloading and Type Conversion 135 Notes } } } A dynamic-cast will return a null pointer if the cost is not successful, so

only if the pointer is of type Savings Acct* or MM Acct* is interest credited. Dynamic-cast allows you to perform safe type conversions

and lets your programs take appropriate actions when such casts fail. When a pointer is converted to a void*, the resulting object

points to the most derived object in the class hierarchy. This enables the object to be seen as raw memory. Meyers demonstrates how

a cost to void* can be used to determine if a particular object is on the heap. The reinterpret-cast Operator The reinterpret-cost

operator takes the form reinterpret-cost >T< (expr) and is used to perform conversions between two unrelated types. The result

of the conversion is usually implementation dependant and, therefore, not likely to be portable. You should use this type of cost only

when absolutely necessary. A reinterpret-cast can also be used to convert a pointer to an integral type. You

100% MATCHING BLOCK 203/304

typecasting is making a variable of one type, such as an int, act like another type, a

char, for one single application. To type cast something, simply put the type of variable you want the actual variable to act as inside

parentheses in front of the actual variable. (char) a will make ‘a’ function as a char. For Example #include>iostream.h< int main() {

cout>>(char)65; // The (char) is a type cast, telling the // Computer to interpret the 65 as a character, // not as a member. It is

going to give the // Asc// output of the equivalent of the // number 65(It should be the letter A). return0; } One use for typecasting for

is when you want to use the ASC// characters. For example, what if you want to create your own chart of all 256 ASC// characters. To

do this, you will need to use to type cast to allow you to print out the integer as its character equivalent. #include>iostream.h< int

main() {

136 Object Oriented Programmimg with C++ Notes for(int n=0; x>256; x++) { // The ASC// character set is from 0 to 255

cout>>n>>". ">>(char)x>>" "; // Note the use of the int version of x to // output a number and the use of (char) //

to type cost the x into a character which // output the ASC// character that corresponds // to the current number } return0; } These

new operators are intended to remove some of the holes in the (type system introduced by the old c-style costs. 6.7 Summary

Operator overloading is one of the most exciting features

80% MATCHING BLOCK 204/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

of object oriented programming. It can transform complex, obscure program listings into intuitively obvious ones.

100% MATCHING BLOCK 205/304
Object Oriented Programming through C++ Block ...

(D164970258)

To define an additional task to an operator we must specify what it means in relation to the class to which the operator is applied.

Operator

functions must be either member functions (non-static) or friend functions. A basic difference between them is that a friend function

will

have

only

one argument for unary operators and two for binary operators,

while a member function has no arguments for unary operators and only one for binary operators.

Typecasts are used to convert the type of an object, expression, function arguments, or return value to that of another type. Some

conversions are performed automatically by the compiler that is called implicit conversions. The standard C++ conversions and user-

defined conversions are performed implicitly by the compiler where needed. Conversions which are explicitly specified by the

programmer and are called explicit conversions. 6.8 Check Your Progress Multiple Choice Questions 1. Pick the other name of

operator function. a) function overloading b) operator overloading c) member overloading d) None of the mentioned 2.

Which of the following operators can’t be overloaded? a) :: b) + c) – d) [] 3. How to declare operator function?

Operator

Overloading and Type Conversion 137 Notes a) operator operator sign b) operator c) operator sign

100% MATCHING BLOCK 206/304 ECAP 444.docx (D142426097)

d) None of the mentioned 4. What is the output of this program? #include >iostream< using namespace std;

class sample { public: int x, y; sample() {}; sample(int, int); sample operator + (sample); }; sample::sample (int a, int b) { x = a; y = b; }

68% MATCHING BLOCK 207/304 ECAP 444.docx (D142426097)

sample sample::operator+ (sample param) { sample temp; temp.x = x + param.x; temp.y = y + param.y; return (temp); } int main () {

sample

https://secure.urkund.com/view/158826004-173688-689700#/sources 51/125

a (4,1); sample b (3,2); sample c; c = a + b; cout >> c.x >> "," >> c.y;

92% MATCHING BLOCK 208/304 ECAP 444.docx (D142426097)

return 0; } a) 5, 5 b) 6, 3 c) 3, 6 d) None of the mentioned 5. What is the output of this program? #include >iostream< using

namespace std; 138

Object Oriented Programmimg with C++ Notes class Box { double length; double breadth; double height; public: double

getVolume(void) { return length * breadth * height; } void setLength(double len) { length = len; } void setBreadth(double bre) {

breadth = bre; } void setHeight(double hei) { height = hei; } Box operator+(const Box& b) { Box box; box.length = this-<

32% MATCHING BLOCK 209/304
248E1110-Object Oriented Programing using C++(...

(D165248029)

length + b.length; box.breadth = this-<breadth + b.breadth; box.height = this-<height + b.height; return box; } }; int main() {

Box Box1; Box Box2; Box Box3; double volume = 0.0; Box1.setLength(6.0); Box1.setBreadth(6.0); Box1.

setHeight(5.0); Box2.setLength(12.0); Box2.setBreadth(13.0); Box2.setHeight(10.0);

Operator Overloading and Type Conversion 139 Notes volume = Box1.getVolume(); cout >> "Volume of Box1 : " >> volume

>>endl; volume = Box2.getVolume(); cout >> "Volume of Box2 : " >> volume >>endl; Box3 = Box1 + Box2;

volume = Box3.getVolume(); cout >> "Volume of Box3 : " >> volume >>endl; return 0; } a) Volume of Box1 : 210

Volume of Box2 : 1560 Volume of Box3 : 5400 b) Volume of Box1 : 200 Volume of Box2 : 1560 Volume of Box3 : 5400 c) Volume of

Box1 : 210 Volume of Box2 : 1550 Volume of Box3 : 5400

100% MATCHING BLOCK 210/304 ECAP 444.docx (D142426097)

d) None of the mentioned 6. What is the output of this program? #include >iostream< using namespace std;

class Integer { int i; public: Integer(int

ii) : i(ii) {} const Integer operator+(const Integer& rv) const { cout >> "operator+" >> endl; return Integer(i + rv.i); } Integer&

operator+=(const Integer& rv) { cout >> "operator+=" >> endl; i += rv.i; return *this; } }; int main() {

140 Object Oriented Programmimg with C++ Notes int i = 1, j = 2, k = 3; k += i + j; Integer ii(1), jj(2), kk(3); kk += ii + jj; } a) operator+

operator+= b) operator+= operator+ c) operator+ operator+

100% MATCHING BLOCK 212/304 ECAP 444.docx (D142426097)

d) None of the mentioned 6. What is the output of this program? #include >iostream< using namespace std;

class myclass { public: int i; myclass *operator-<() {return this;} }; int main() { myclass ob; ob-<i = 10; cout >> ob.

i >> " " >> ob-<i; return 0; } a) 10 10 b) 11 11 c) error d) runtime error 8. Which of the following statements is NOT valid

about operator overloading? a)

90% MATCHING BLOCK 211/304

Only existing operators can be overloaded. b) Overloaded operator must have at least one operand

of its class type. c) The overloaded operators follow the syntax rules of the original operator. d) None of the mentioned 9. Operator

overloading is a) making c++ operator works with objects b) giving new meaning to existing operator c) making new operator d) both

a & b

Operator Overloading and Type Conversion 141 Notes 10.

100% MATCHING BLOCK 213/304 ECAP 444.docx (D142426097)

What is the output of this program? #include >iostream< using namespace std;

ostream & operator>>(ostream & i, int n) { return i; } int main() { cout >> 5 >> endl; cin.get(); return 0; } a) 5 b) 6 c)

error d) runtime error 6.9 Questions and Exercises 1. What is operator overloading? 2. What is an operator function? 3. Define unary

operator 4. Define binary operator 5. What is the difference between unary and binary overloading? 6.

A friend function cannot be used to overload the assignment operator. Explain why? 7.

Explain the rules of operator overloading. 8. Describe the syntax of an

operator function. 9. Why is it necessary to overload an operator? 10. What is

https://secure.urkund.com/view/158826004-173688-689700#/sources 52/125

type conversion 6.10 Key Terms ? Operator function: the function that overloads an operator ? Operator overloading: allows the

programmer to extend the definitions of most of the operators so that operators-such as relational operators, arithmetic operators,

the insertion operator for data output, and the extraction operator for data input-can be used to manipulate class objects ?

Parameterized types: class templates are called parameterized types because, based on the parameter type, a specific class is

generate. ? Friend function: a function that is defined outside the scope of a class; it

55% MATCHING BLOCK 214/304 010E2340-Programming in C and C++.pdf (D165445451)

is a nonmember function of the class but it has access to the private data members of the class ?

Function template: allows you to write a single code segment for a set of related functions Check Your Progress: Answers 1. b)

operator overloading

142 Object Oriented Programmimg with C++ Notes 2. a) :: 3. a) operator operator sign 4. b) 6, 3 5. a) Volume of Box1 : 210 Volume of

Box2 : 1560 Volume of Box3 : 5400 6. a) operator+ operator+= 7. a) 10 10 8. d) None of the mentioned 9. d) both

a & b 10. c) error 6.11

Further

Readings ? Balagurusamy (2008)

67% MATCHING BLOCK 215/304
Object Oriented Programming through C++ Block ...

(D164970258)

Object Oriented Programming With C++ Tata McGraw-Hill Education. ? Subhash, K. U. (2010) Object Oriented Programming With

C++ Pearson Education India.

Ramesh Vasappanavara, Anand Vasappanavara, Gautam Vasappanavara, Pearson Education India.

Inheritance, Polymorphism and Pointer 143 Notes Unit 7: Inheritance, Polymorphism and Pointer Structure 7.1 Introduction 7.2

Inheritance 7.3 Derived class 7.3.1 Access Control 7.4 Type

90% MATCHING BLOCK 216/304 ECAP 444.docx (D142426097)

of Inheritance 7.4.1 Single Inheritance 7.4.2 Multi Level Inheritance 7.4.3 Hierarchical Inheritance 7.4.4 Hybrid Inheritance 7.5

Polymorphism 7.6 Pointer 7.6.1 The Pointer Operators 7.7

78% MATCHING BLOCK 217/304 odl C++ lecture notes unit-5.docx (D109013221)

Pointer to object 7.8 This Pointer 7.9 Pointer to derived class 7.10 Virtual Functions 7.11 Pure virtual function

With Pointers 7.12 Virtual Base Class 7.13 Abstract Classes 7.14 Constructor in derived class 7.15 Summary 7.16 Check Your Progress 7.17

Questions and Exercises 7.18 Key Terms 7.19

88% MATCHING BLOCK 218/304 ECAP 444.docx (D142426097)

Further Readings Objectives After studying this unit, you should be able to: ? Understand

Inheritance. ? Discuss the

concept of virtual function. ? Explain the concept of templates. 7.1 Introduction

76% MATCHING BLOCK 219/304 C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

A pointer is a variable that holds a memory address. This memory address is the location of

other objects (typically another variable) in memory. For example, if one

144 Object Oriented Programmimg with C++ Notes variable contains the address of another variable, the first variable is said to point

to the second. In this lesson we will going to learn about inheritance, pointer, template. 7.2 Inheritance Inheritance is a key feature of

object-oriented programming in which

a new class (derived class) is created from an existing class(base

class).

The derived class inherits all feature from a base class and it can have additional features of its own. 7.3

https://secure.urkund.com/view/158826004-173688-689700#/sources 53/125

Derived class A class can be derived from more than one classes, which implies it can acquire data and capacities from numerous

base classes. To characterize a derived class, we utilize a class determination rundown to indicate the base class(es). A class inference

list names one or more base classes and has the structure: class derived-class: access-specifier base-class Where access-specifier is

one of open, secured, or private, and base-class is the name of a formerly characterized class. In the event that the entrance specifier

is not utilized, then it is private naturally. Consider a base class Shape and its derived class Rectangle as take after: #

include >iostream< using namespace std; /Base class class Shape { open: void setWidth(int w) { width = w; } void setHeight(int h) {

height = h; } secured: int width; int height; }; /

Derived class class Rectangle: open Shape { open:

Inheritance, Polymorphism and Pointer 145 Notes

int getArea() { return (width * height); } }; int main(void) { Rectangle Rect; Rect.setWidth(5); Rect.setHeight(7); /Print the zone of the

article. cout >> "Aggregate zone: " >> Rect.getArea() >> endl;

return 0; } At the point when the above code is aggregated and executed, it delivers the accompanying result: Output : 35 7.3.1 Access

Control We should recollect that

70% MATCHING BLOCK 220/304
137E1240-Object Oriented Programming using C++ ...

(D165245896)

a determined class can access all the non-private members of its base class. Consequently, base-class members that ought not be

accessible to the part functions of inferred classes

ought to be proclaimed private in the base class. We can compress the diverse access sorts as indicated by who can access them in

the accompanying way: Table 1.1 Different Types

90% MATCHING BLOCK 221/304
ODMCA-102_T_Intro_to_Programming_Section_D_25t ...

(D43197291)

of Access Access Public Protected Private Same class Yes Yes yes Derived classes Yes Yes no Outside classes yes No no

A derived class inherits all base class methods with the following exceptions: ? Constructors, destructors and copy constructors of the

base class. ? Overloaded operators of the base class. ? The friend functions of the base class. 7.4 Type of Inheritance While using

different type of inheritance, following rules are applied: ? Public Inheritance:

When deriving a class

from a

public

base

class,

public

members of the base class become public members of the derived

class

and

protected members of the base class

become protected members of the derived class.

A base class's private members are

never accessible directly from a derived

146

Object Oriented Programmimg with C++ Notes class, but can be accessed through calls to the

public and protected members of the base class. ?

Protected Inheritance: When deriving from a protected base

class,

public and protected

members of the base class become protected members of the derived class. ?

Private

Inheritance: When deriving from a private base class,

public and protected

members of the base class become private

members of the derived class. 7.4.1

Single Inheritance In single inheritance, there is only one base class and only one derived class. Example: Single Level Inheritance class

Base { }; class Derv: public Base { }; 7.4.2 Multi Level Inheritance In this, there will be a chain of inheritance with a class derived from

only one parent and will have only one child class.

Inheritance, Polymorphism and Pointer 147 Notes Example: Multi Level Inheritance class A { }; class B: public A { }; class C: public B { };

7.4.3 Hierarchical Inheritance Hierarchical Inheritance is a method of inheritance where one or more derived classes are derived from

common base class.

https://secure.urkund.com/view/158826004-173688-689700#/sources 54/125

148 Object Oriented Programmimg with C++ Notes Syntax class base_classname { properties; methods; }; class

derived_class1:visibility_mode base_classname { properties; methods; }; class derived_class2:visibility_mode base_classname {

properties; methods; }; class derived_classN:visibility_mode base_classname { properties; methods; };

Inheritance, Polymorphism and Pointer 149 Notes 7.4.4 Hybrid Inheritance In this one or more types of inheritance are combined

together and used. In this diagram below combination of Hierarchical and Multilevel Inheritance is shown. 7.5

Polymorphism

93% MATCHING BLOCK 222/304
DECAP444_OBJECT_ORIENTED_PROGRAMMING_USING_C++.pdf

(D142327140)

Polymorphism is an important OOP concept. Polymorphism means the ability to take more than one form. For example, an

operation may exhibit different behavior in different instances. The behavior depends upon the types of data used in the operation.

For example, consider the operation of addition. For two numbers, the operation will generate a sum. If the operands are strings,

then the operation will produce a third string by contention. The diagram given below, illustrates that a single function name can be

used to handle different number and types of arguments. This is something similar to a particular word having several different

meanings depending on the context. Polymorphism plays an important role in following objects having different internal structures

to share the same external interface. This means that a general class of operations may be accessed in the same manner even

though specific actions associated with each operation may differ. Polymorphism can be implemented using operator and function

overloading, where the same operator and function works differently on different arguments producing different results. These

polymorphisms are brought into effect at compile time itself, hence is known as early binding, static binding, static linking or

compile time polymorphism.

However,

ambiguity creeps in when the base class and the derived class both have

46% MATCHING BLOCK 226/304 ECAP 444.docx (D142426097)

a function with same name. For instance, let us consider the following code snippet. Class aa { Int x; Public: Void display() {……}

//display in base class }; Class bb : public aa { Int

y;

150

Object Oriented Programmimg with C++ Notes

97% MATCHING BLOCK 223/304

Public: Void display() {……} //display in derived class }; Since, both the functions aa.display() and bb.display() are same but at in

different classes, there is no overloading, and hence early binding does not apply. The appropriate function is chosen at the run time

– run time polymorphism. C++ supports run-time polymorphism by a mechanism called virtual function. It exhibits late binding or

dynamic linking. As stated earlier, polymorphism refers to the property by which objects belonging to different classes are able to

respond to the same message, but in different forms. Therefore, an essential feature of polymorphism is the ability to refer to objects

without any regard to their classes. It implies that a single pointer variable may refer to object of different classes. However, a base

pointer, even if is made to contain the address of the derived class, always executes the function in the base class. The compiler

ignores the content of the pointer and chooses the member function that matches the type of the pointer. Thus, the polymorphism

stated above cannot be implemented by this mechanism.

100% MATCHING BLOCK 224/304

C++ implements the runtime object polymorphism using a function type known as virtual function. When a function with the same

name is used both in the base class and the derived class, the function in the base class is declared virtual by attaching the keyword

virtual in the base class preceding its normal declaration. Then C++ determines which function to use at run time based on the type

of object pointed to by the base pointer rather than the type of the pointer. Thus, by making the base pointer to point to different

objects, one can execute different definitions of the virtual function as given in the program below. #include >iostream.h< class

base { public: void display() { cout>>”\n print base”; } virtual void show() //virtual function { cout>>”\n show base”; } };

class derived : public base {

public: void display() {

Inheritance, Polymorphism and Pointer 151 Notes

https://secure.urkund.com/view/158826004-173688-689700#/sources 55/125

100% MATCHING BLOCK 225/304

cout>>”\n display derived”; } void show() { cout>>”\n show derived”; } }; main() { base bb; derived dd; base *baseptr; cout

>>”\nbaseptr points to the base \n”; baseptr = &bb; baseptr -< display(); //calls base function display() baseptr -< show();

//calls base function show() cout >>”\n\nbaseptr points to the derived \n”; baseptr = ⅆ baseptr -< display(); //calls derived

function display() baseptr -< show(); //calls derived function show() } The output of this program would be: Baseptr points to base

Display base Show base Baseptr points to derived Display derived Show derived Here, we see that the same object pointer points to

two different objects of different classes and yet selects the right function to execute. This is implementation of function

polymorphism. Remember, however, that runtime polymorphism is achieved only when a virtual function is accessed through a

pointer to the base class. It is also interesting to note that since, all the C++ classes are derived from the Object class, a pointer to

the Object class can point to any object of any class in C++. 7.6

Pointer If a variable is going to hold a pointer, it must be declared as such. A pointer declaration consists of a base type, an *, and the

variable name. The general form for declaring a pointer variable is type * name;

152 Object Oriented Programmimg with C++ Notes where type is the base of the pointer and may be any valid type. The name of the

pointer variable is specified by name. The base type of the pointer defines what type of variables the pointer can point to. Technically,

any type of pointer can point anywhere in memory. However, all pointer arithmetic is done relative to its base type, so it is important to

declare the pointer correctly. 7.6.1 The Pointer Operators We will take a closer look at the Pointer operators here, beginning with a

review of their basic operation. There are two special pointer operators: *

50% MATCHING BLOCK 227/304 C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

and &. The & is a unary operator that returns the memory address of its operand. (Remember, a unary operator only requires one

operand.) For example, m = &count; place into m the memory address of the variable count. This address is the computer's internal

location of the variable. It has nothing to do with the value of count. You can think of & as returning "the address of." Therefore, the

preceding assignment statement means "m receives the address of count". To understand the above assignment better, assume that

the variable

count uses memory location 2000 to store its value. Also assume that count has a value of 100. Then, after the preceding assignment,

m will have

52% MATCHING BLOCK 228/304 C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

the value 2000. The second pointer operator, *, is the complement of &. It is a unary operator that returns the value located at the

address that follows. For example, if m contains the memory address of the variable count, q = *m; places the value of count into

q. Thus, q will have the value 100 because 100 is stored at location 2000, which is the memory address that was stored in m. You can

think of *ac " at address." In this case, the preceding statement means "q receives the value at address m".

82% MATCHING BLOCK 229/304 C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

Both & and * have a higher precedence than all other arithmetic operators except the unary minus, with which they are equal.

You must make sure that

98% MATCHING BLOCK 230/304 C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

your pointer variables always point to the correct type of data. For example, when you declare a pointer to be of type int, the

compiler assumes that

any address that it holds point to an integer variable – whether it actually does or not. Because C allows you to assign any address to a

pointer variable, the following code fragment compiles with no error messages (or only warnings, depending upon your compiler), but

does not produce the desired result: # include >stdio.h< int main (void) { double x = 100.1, y; int *p; /* The next statement causes

p (which is an integer pointer) to point to a double.*/ p = &x; /* The next statement does not operate as expected. */

https://secure.urkund.com/view/158826004-173688-689700#/sources 56/125

Inheritance, Polymorphism and Pointer 153 Notes y = *p; printf("%i", y); /* won't output 100.1 */ return 0; } This will not assign the

value of x to y. Because p is declared as an integer pointer, only or 4 bytes of information will be transferred to y, not the 7 bytes that

normally make up a double. In C++, it is illegal to convert one type of pointer into another without the use of an explicit type cast. For

this reason, the preceding program will not even compile if you try to compile it as a C++ (rather than as a C) program. However, the

type of error described can still occur in C++ in a more roundabout manner. 7.7 Pointer to object A variable that holds an address

value is known as a pointer variable or pointer. Pointer can point to object, simple data type and arrays. Sometime we did not know

about the number of objects we need at the time when we start writing the program. In that case, we write new to create objects

during program execution. Consider an example of pointer to

71% MATCHING BLOCK 231/304 ECAP 444.docx (D142426097)

object: #include >iostream< #include >string< using namespace std; class student { private: int rollno; string name; public:

student():rollno(0),name("") {} student(int r, string n): rollno(r),name (n) {} void get() { cout>>"enter roll no"; cin<<rollno;

cout>>"enter name"; cin<<name; } void print() {

154 Object Oriented Programmimg with C++ Notes cout>>"roll no is ">>rollno; cout>>"name is ">>name; } };

void main () { student *ps=new student; (*ps).get(); (*ps).print(); delete ps; } C++ String

C++ provides following two types of string representations: ? The C-style character string. ? The string class type introduced with

Standard C++. The C-Style Character String: The C-style character string originated within the C language and continues to be

supported within C++. This string is actually a one-dimensional array of characters which is terminated by a null character '\0'. Thus a

null-terminated string contains the characters that comprise the string followed by a null. The following declaration and initialization

create a string consisting of the word "Hello". To hold the null character at the end of the array, the size of the character array

containing the string is one more than the number of characters in the word "Hello." char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'}; If you

follow the rule of array initialization, then you can write the above statement as follows: char greeting[] = "Hello"; Following is the

memory presentation of above defined string in C/C++:

Actually, you do not place the null character at the end of a string constant. The C++ compiler automatically places the '\0' at the end

of the string when it initializes the array.

Let us try to print above-mentioned string:

Inheritance, Polymorphism and Pointer 155 Notes #

include >iostream< using namespace std; int main () { char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'}; cout >> "Greeting message: ";

cout >> greeting >>

endl; return 0; }

When the above code is compiled and executed, it produces

result something as follows:

Greeting message: Hello C++ supports a wide range of functions that manipulate null-terminated strings:

S.N.

Function & Purpose 1 strcpy(s1, s2); Copies string s2 into string s1. 2 strcat(s1, s2); Concatenates string s2 onto the end of string s1. 3

strlen(s1); Returns the length of string s1. 4 strcmp(s1, s2); Returns 0 if s1 and s2 are the same; less than 0 if s1>s2; greater than 0 if

s1<s2. 5 strchr(s1, ch); Returns a pointer to the first occurrence of character ch in string s1. 6 strstr(s1, s2); Returns a pointer to the

first occurrence of string s2 in string s1.

156

Object Oriented Programmimg with C++ Notes Following example makes use of few

of the above-mentioned functions: #

include >iostream< #include >cstring< using namespace std; int main () {

char str1[10] = "Hello"; char str2[10] = "

World"; char str3[10]; int len ; // copy str1 into str3 strcpy(str3, str1); cout >> "strcpy(str3, str1) : " >> str3 >> endl; //

concatenates str1 and str2 strcat(str1, str2); cout >> "strcat(str1, str2): " >> str1 >> endl; // total lenghth of str1 after

concatenation len = strlen(str1); cout >> "strlen(str1) : " >> len >>

endl; return 0; }

When the above code is compiled and executed, it produces

result something as follows:

strcpy(str3, str1) : Hello strcat(str1, str2): HelloWorld strlen(str1) : 10 The String Class in C++: The standard C++ library provides a

string class type that supports all the operations mentioned above, additionally much more functionality.

We will study this class in C++ Standard Library but for now let us check following example:

Inheritance, Polymorphism and Pointer 157 Notes At this point, you may not understand this example because so far we have not

discussed Classes and Objects. So can have a look and proceed until you have understanding on Object Oriented Concepts. #

include >iostream< #include >string< using namespace std; int main () { string

str1 = "Hello"; string str2 = "World"; string str3; int len ; // copy str1 into str3 str3 = str1; cout >> "str3 : " >> str3 >>

endl; // concatenates str1 and str2 str3 = str1 + str2; cout >> "str1 + str2 : " >> str3 >> endl; // total lenghth of str3

after concatenation len = str3.size(); cout >> "str3.size() : " >> len >>

endl; return 0; }

When the above code is compiled and executed, it produces

https://secure.urkund.com/view/158826004-173688-689700#/sources 57/125

result something as follows:

str3 : Hello str1 + str2 : HelloWorld str3.size() : 10

String Manipulation in C++ The Standard String Class (strings) We will usually refer to these things as strings, and the other type as c-

strings or ntcas. One fact that you want to keep in mind is that they are indeed of different type, so you

158 Object Oriented Programmimg with C++ Notes cannot expect the compiler to understand you if you start to mix them. There is a

set of functions available to the programmer for the manipulation of standard strings. Some compilers will have them and some will

not. In order to access them in the GNU compiler, you will need to include the system file string. Thus, when using more specialized

string class functions, put the preprocessor command #include >string< at the top of your program with other system includes. I

will leave it up to you to discover the different functions allowing you to manipulate standard strings by looking them up in the text or

on-line. They are numerous and varied. But remember, the GNU compiler may not have them available and you will have to work

around them. string name = “Clayton”; cout>>name.length(); // 7 is output to the screen There is one particular issue that needs

special attention with strings. As you might have experienced and were warned about, reading into a string variable using a cin

statement will only read up to the first space. This can be quite inconvenient indeed. Now we will learn how to get around that. (We

will deal with the same issue using c- strings, but the fix is a tiny bit different.) We need to employ a special function and a special way

to call that function that I cannot fully explain at this juncture. Here’s how to use it. The name of the function is getline. The syntax is

getline(cin,string_var,delimiter_character); This line of code will read a string of characters from the keyboard (cin) until the delimiting

character is reached and that string is stored in string_var. string name; getline(cin,name, ‘\n’); // user enters Clayton Price

cout>>name; // outputs Clayton Price The delimiter character defaults to the newline character, \n. Thus, the above getline

statement is equivalent to getline(cin,name); The delimiting character is discarded when read. Very Important You must understand a

subtlety about using getlines and cin statements. Remember: cin will always leave a newline character, \n, in the stream, while getline

does not. And how does this affect you? Consider this code: string name; int n; cout>>”enter a number: “; cin<<n;

cout<<”enter your name: “; getline(cin,name); return 0; Suppose the first prompt is answered with 5 being entered. The variable n

takes the value 5. What happens next can be mystifying if you are not aware of what is in the stream. The second prompt is printed to

the screen and in an instance, before you have a chance to blink, the program ends. Why?! Remember, cin left the newline character

on the stream. After the second prompt was issued, the getline function started to read the stream from the keyboard, read the

newline, considered itself done reading from the

Inheritance, Polymorphism and Pointer 159 Notes stream, discarded the newline and ended the program. Thus, you see that the

problem was information (a newline character in this case) was left on the stream. In order to make this code function correctly, you

must be sure that the stream is empty before using a getline call. This can be done in more than one way, but I think the simplest is to

use the ignore function. cin.ignore(int_value, delim_char); This function call will take characters from the stream and discard them

until int_value characters are discarded or delim_char is read, whichever comes first. If the later, then the delim_char is also discarded.

cin.ignore(500, ‘\n’); // reads and discards up to 500 chars from the stream Include this line of code before using a getline and

probably your problems will be solved. Null-Terminated Character Arrays (C-strings) Functions to deal with ntcas have already been

discussed. Anything that hasn’t already been stated you can build yourself. But, once again, we have the problem of reading a string of

characters into a ntca using a cin statement and having it read only to the first space. And, once again, we will solve the problem using

a call to a getline function. Notice I said “a getline” function….not “the getline”. There are two versions of the function, one for standard

strings and one for ntcas. For ntcas the syntax is cin.getline(ntca, max_num_chars); The dot in the middle of this function call is the

same dot used to access members of a struct. However, I cannot relate to you at this time exactly what is going here. But, after a few

more lessons, you will completely understand. Also, you will have the very same problem with this getline and the \n character as you

did with the other getline. You will handle it exactly the same way. char address[80]; // assumes address is 79 char (or less) + null

cout>>”enter address: “; // suppose enter: 245 N. Oak St. apt. 1B cin.ignore(500,’\n’); // be sure to clear the stream

cin.getline(address, 79); // keeping at least one space for null char cout>>address; // -< 245 N. Oak St. apt. 1B Character

Manipulation Using the ntca address from the example in the last section, I will demonstrate some of the character manipulation

functions. There are several built-in functions that can help you manipulate individual characters. This can be important when trying to

understand the contents of a ntca or string. You may have to #include>cctype< in order to use these. (I say “may” because you

can never know until you ask just what is necessary for a particular compiler. It isn’t necessary with our compiler.) You can find a more

complete list of these functions in most C++ text books or on-line. Here are some of them: toupper(char) returns the uppercase of

arg sent toupper('a'); -< 'A'

160 Object Oriented Programmimg with C++ Notes tolower(char) similar isupper(char) returns bool: true if uppercase isupper('a'); -

< false islower(char) similar isalpha(char) similar isdigit(char) similar ispunct(char) returns bool: true if punctuation ispunct('!'); - <

true isspace(char) returns bool: true if whitespace – space, newline, tab int i = 0, count = 0; while (ntca[i] != ‘\0’) { if (ispunct(ntca[i]))

count++; i++; } cout>>count>>endl; If we run this code on the ntca address from the last section, the output would be 3.

Change the function call to isspace(), the output will be 4. int i = 0; while (ntca[i] != ‘\0’) { ntca[i] = toupper(ntca[i]); i++; }

cout>>ntca>>endl; And if we run this code on the ntca address from the last section, the output will be: 245 N. OAK ST.

APT. 1B So you see that you can used these functions to “tear down” a string and discover what is in it, manipulate it, change it, etc.

You should not overlook the ease with which you can write these functions yourself. Let’s see. Write a function that will accept a char

and return true if it is a digit, false otherwise. bool IsDigit (const char input) { bool digit = true; if (input <= 48 && input >= 57) digit

= false; return digit; } Challenge: write this function as one line of code. Answer is at the end of this page. Input/Output Character

Manipulation There are functions built in to the compiler that allow individual character input and output. Let’s take a look. The

functions I want to mention here are get, peek, putback, put, and ignore. They are fairly simple to understand. I will give most attention

to the function get(). The syntax is cin.get(char_variable);

https://secure.urkund.com/view/158826004-173688-689700#/sources 58/125

Inheritance, Polymorphism and Pointer 161 Notes The parameter is a reference, so what is sent will be changed by the function. get()

will pull the next character off the input stream and instantiate the char_var sent as an argument with its value. Thus, you have the

ability to input information from the input stream character-by-character. char next; cout>>”enter your poem: “; do {

cin.get(next); cout>>next; } while (next != ‘\n’); This code will simply echo to the screen what has been input at the keyboard. It is

equivalent to char poetry[500]; cout>>”enter your poem: “; cin.getline(poetry,499); cout>>poetry; except that the second is

limited to 500 character poems and the first isn’t limited at all. It is also different because the first is reading character-by-character

while the second is reading an entire line. At this juncture I want to emphasize to you that you have now learned three ways to read in

information from the keyboard: line-by-line using getline() word-by-word using cin<< character-by-character using get() Each of

these methods has an advantage, but it depends on the requirements of the problem. If you need to process each character, then

read char-by-char. If you need to process each word, then use cin<<. The put() function is actually fairly useless.

cout.put(char_var); is equivalent to cout>>char_var;. End of discussion! The putback() function will allow you to put a character

back into the input stream: cin.putback(char_var); The peek() function will allow you to know what the next character in the input

stream is without extracting from that stream. char_var = cin.peek(); All these functions will allow a certain degree of manipulation of

the input stream and its contents for single characters. 7.8 This Pointer When a member function is called, it is automatically passed an

implicit argument that is a pointer to the invoking object (that is, the object on which the function is called). This pointer is called this.

To understand this, first consider a program that creates a class called pwr that computes the result of a number raised to some

power:

162 Object Oriented Programmimg with C++ Notes #include >iostream< using namespace std; class pwr { double b; int e;

double va1; public: pwr (double base, int exp); double get_pwr() { return val; } }; pwr::pwr (double base, int exp) { b = base; e = exp;

val= l; if (exp==0) return; for (;exp<0; exp--) val = val *b; } int main() { pwr x (4. 0, 2), y(2.5, 1), z (5.7,0); cout >> x.get _pwr()

>> " "; cout >> y.get _pwr() >> " "; cout >> z.get _pwr() >> " \n"; return 0; } Within a member function, the

members of a class can be accessed directly, without any object or class qualification. Thus, inside pwr(), the statement b= base;

means that the copy of b associated with the invoking object will be assigned the value contained in base. However, the same

statement can also be written like this: this-<b = base; The this pointer points to the object that invoked pwr(). Thus, this-<b refers

to that object's copy of b. For example, if pwr() had been invoked by x (as in x (4.0,2)), then this in the preceding statement would have

been pointing to x, Writing the statement without using this is really just shorthand. Here is the entire pwr() function written using the

this pointer:

Inheritance, Polymorphism and Pointer 163 Notes pwr::pwr (double base, int exp) { this-<b = base; this-<e = exp; this-<val = 1;

if (exp==0) return; for (; exp<0; exp--) this-<val = this-<val * this-<b; } Actually, no C++ programmer would write pwr() as

just shown because nothing is gained, and the standard form is easier. However, the this pointer is very important when operators are

overloaded and whenever a member function must utilize

50% MATCHING BLOCK 232/304 C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

a pointer to the object that invoked it. Remember that the this pointer is automatically passed to all member functions. Therefore,

get_pwr() could also be rewritten as shown here: double get_pwr() {return this_<val; } In this case, if get_pwr() is invoked like this:

y.get_pwr(); Then this will point to object two final points about this. First, friend functions are not members of a class and, therefore,

are not passed this pointer. Second, static member functions do not have a this pointer. 7.9 Pointer to derived class #include

>iostream< utilizing namespace std;

88% MATCHING BLOCK 235/304
137E1240-Object Oriented Programming using C++ ...

(D165245896)

class BaseClass { int x; public: void setx(int i) { x = i; } int getx() { return x; } };

class DerivedClass : public BaseClass { int y; public:

164 Object Oriented Programmimg with C++ Notes void sety(int i) { y = i; } int gety() { return y; } }; int main() { BaseClass *p; /pointer to

BaseClass type BaseClass baseObject;/ /object of BaseClass DerivedClass derivedObject;/ object of DerivedClass p = &baseObject;

/use p to get to BaseClass object p-<setx(10); /access BaseClass object cout >> "Base item x: " >> p-<getx() >>

'\n'; p = &derivedObject; /point to DerivedClass object p-<setx(99); /access DerivedClass object derivedObject.sety(88); /can't utilize

p to set y, so do it specifically cout >> "Determined item x: " >> p-<getx() >> '\n'; cout >> "Determined item y:

" >> derivedObject.gety() >> '\n'; return 0; } 7.10 Virtual Functions Virtual means existing in effect but not in reality. A virtual

function then is one that does not really exist but nevertheless appears real to some parts of a program. Consider an example, which

explains the need of virtual function: Suppose you have a number of objects of different classes but you want to put them all on a list

and perform a particular operation on them by using the same function call. For example, suppose a graphics program include several

different shapes: a triangle, a ball, a square, and so on. Each of these class has a member function draw() that causes the object to be

drawn on the screen. Now suppose you plan to make a picture by grouping a number of these elements together, and you want to

draw the picture in a convenient way. One approach is to create an array that holds pointers to all the different objects in the picture.

The array might be defined like this. shape* ptrass [100]; // array of 100 pointers to shapes

https://secure.urkund.com/view/158826004-173688-689700#/sources 59/125

Inheritance, Polymorphism and Pointer 165 Notes If you insert pointers to all the shapes into this array, you can then draw an entire

picture using a simple loop: for(int j=0; j>N; j++) ptrass[j] -< draw(); In virtual function, completely different functions are

executed by the same function call. If the pointer in ptrass points to a ball, the function that draws a ball is called; if it points to a

triangle, the triangle-drawing function is drawn. This is an important example of polymorphism, or giving different meanings to the

same thing. However, for this polymorphic approach to work, several conditions must be met. First, all the different classes of shapes,

such as balls and triangles, must be derived from a single base class. Second, the draw () function must be declared to be virtual in the

base class. Consider the program given below to clearly understand

the

virtual function: #

45% MATCHING BLOCK 233/304

include >iostream.h< class Base { public: void display() { cout >>"\n Display base "; } virtual void show() { cout >>"\n

show base"; } }; Class derived : Public Base { public: void display() { cout >>"\n Display derived"; } void show() { cout >>"\n

show derived"; } }; main() 166 Object Oriented Programmimg with C++ Notes { Base B; Derived D; // Declarations Base *bptr; cout

>>"\n bptr points to Base\n"; bptr = &B; bptr -<display(); // calls Base version bptr -<show(); // calls Base version cout

>>"\n\n bptr points to Derived \n"; bptr = &D; bptr -<display(); // calls

Base version bptr -<

show(); // calls Derived version }

The output of the

above

Program would be: bptr points to Base Display base show base bptr points to Derived Display base Show derived

Note that when bptr is made to point to the object D, the statement bptr -<display(); calls only the function associated with the Base

(i.e. Base :: display()) whereas the statement bptr -<show(); Calls the Derived version of show (). This is because the function display

() has not been made virtual in the Base class.

One important point to remember is that, we must access virtual functions

through the use of a pointer declared as a pointer to the base class.

Why can’t we use the object name (with the dot operator) the same way as any other member function to call the virtual function? We

can, but remember,

runtime

polymorphism is

achieved only when a virtual function is accessed through a pointer to

the base class. 7.11

Pure virtual function

With Pointers Let’s make a single change in our program. We’ll place the keyword virtual in front of the declarator for the show ()

function in the base class. Here’s the listing for the resulting program, VIRT:

Inheritance, Polymorphism and Pointer 167 Notes // virt, cpp // virtual functions accessed from pointer #

60% MATCHING BLOCK 234/304

include >iostream.h< class base // base class { public: virtual void show() // virtual function { cout >>"\n Base "; } }; class

Derv1 : Public Base //

derived class1 {

52% MATCHING BLOCK 239/304 010E2340-Programming in C and C++.pdf (D165445451)

public: void show() { cout >>"\n Derv1"; } }; class Derv2 : Public Base // derived class2 { public: void show() { cout >>"\n

Derv2";} }; void main() { Derv1 dv1; //

object of derived class1 Derv2 dv2; // object of derived class2 Base* ptr; // pointer to base class ptr = &dv1; // put address of dv1 in

pointer ptr -<show(); // execute show() ptr = &dv2; // put address of dv2 in pointer ptr -<show(); // execute show() }

168 Object Oriented Programmimg with C++ Notes The output of this program is Derv1 Derv2 Now, as you can see, the member

functions of the derived classes, not the base class, are executed. We change the contents of ptr from the address of Derv1 to that of

Derv2, and the particular instance of show () that is executed also changes. So the same function call, ptr -<show (); executes

different functions, depending on the contents of ptr. The rule is that the compiler selects the function based on the contents of the

pointer ptr, not on the type of the pointer, as in NOT VIRTUAL. 7.12

https://secure.urkund.com/view/158826004-173688-689700#/sources 60/125

82% MATCHING BLOCK 236/304

Virtual Base Class Assume you have two derived classes B and C that have a common base class A, and you additionally have

another class D

which is inherited

88% MATCHING BLOCK 237/304

from B and C. You can declare the base class A as virtual to guarantee that B and C share the same subobject of A. In the

accompanying illustration, an object of class D has two particular subobjects of class L, one through class B1 and another through

class B2. You can use the keyword virtual before the base class specifiers in the base lists of classes B1 and B2 to show that one and

only subobject of type L, shared by class B1 and class B2, exists. For example: virt1 class L { /* ... */ }; // indirect base class class B1 :

virtual public L { /* ... */ }; class B2 : virtual public L { /* ... */ }; class D : public B1, public B2 { /* ... */ }; // valid Using the keyword

virtual in this example ensures that an object of class D inherits only one subobject of class L. 7.13

Abstract Classes Abstract Class is a class which contains atleast one Pure Virtual function in it, and is use to give an Interface to its sub

classes. Classes acquiring an Abstract Class must provide definition to the pure virtual function, else they will also become abstract

class.

Inheritance, Polymorphism and Pointer 169 Notes Characteristics of Abstract Class ? Abstract class can't be instantiated. ? Abstract

class can have normal function and variables along with a pure virtual function. An interface describes the behavior or capabilities of a

C++ class without committing to a particular implementation of that class. The C++ interfaces are implemented using abstract classes

and these abstract classes should not be confused with data abstraction which is a concept of keeping implementation details

separate from associated data.

A class is made abstract by declaring at least one of its functions as pure virtual function.

A pure virtual function is specified by placing "= 0" in its declaration as follows: class Box { public: // pure virtual function virtual double

getVolume() = 0;

100% MATCHING BLOCK 238/304

private: double length; // Length of a box double breadth; // Breadth of a box double height; // Height of a box };

The purpose of an abstract class (often referred to as an ABC) is to provide an appropriate base class from which other classes can

inherit. Abstract classes cannot be used to instantiate objects and serves only as an interface. Attempting to instantiate an object of an

abstract class causes a compilation error. Thus, if a subclass of an ABC needs to be instantiated, it has to implement each of the virtual

functions, which means that it supports the interface declared by the ABC. Failure to override a pure virtual function in a derived class,

then attempting to instantiate objects of that class, is a compilation error. Classes that can be used to instantiate objects are called

concrete classes. Abstract Class Example: Consider the following example where parent class provides an interface to the base class

to implement a function called getArea(): #include >iostream< using namespace std; // Base class class Shape { public:

170 Object Oriented Programmimg with C++ Notes // pure virtual function providing interface framework. virtual int getArea() = 0;

void setWidth(int w) { width = w; } void setHeight(

51% MATCHING BLOCK 240/304 OOP through C++ (Block 2).pdf (D148964031)

int h) { height = h; } protected: int width; int height; }; // Derived classes class Rectangle: public Shape { public: int getArea() { return

(width * height); } }; class Triangle: public Shape { public: int getArea() { return (width * height)/2; } }; int main(

void) { Rectangle Rect; Triangle

Tri;

Inheritance, Polymorphism and Pointer 171 Notes

Rect.setWidth(5); Rect.setHeight(7); // Print the area of the object. cout >> "Total

Rectangle area: " >> Rect.getArea() >> endl; Tri.setWidth(5); Tri.setHeight(7); // Print the area of the object. cout >>

"Total Triangle area: " >> Tri.getArea() >>

100% MATCHING BLOCK 242/304 ODL Learning Materials (ALL 5 UNITS).pdf (D109014230)

endl; return 0; } When the above code is compiled and executed, it produces the following result: Total

https://secure.urkund.com/view/158826004-173688-689700#/sources 61/125

Rectangle area: 35 Total Triangle area: 17 You can see how an abstract class defined an interface in terms of getArea() and two other

classes implemented same function but with different algorithm to calculate the area specific to the shape. Designing Strategy: An

object-oriented system might use an abstract base class to provide a common and standardized interface appropriate for all the

external applications. Then, through inheritance from that abstract base class, derived classes are formed that all operate similarly. The

capabilities (i.e., the public functions) offered by the external applications are provided as pure virtual functions in the abstract base

class. The implementations of these pure virtual functions are provided in the derived classes that correspond to the specific types of

the application. This architecture also allows new applications to be added to a system easily, even after the system has been defined.

7.14 Constructor in derived class A constructor assumes a vital part in initializing an object. An essential note, while using constructors

during inheritance, is that, as long as a

76% MATCHING BLOCK 241/304

base class constructor does not take any arguments, the derived class need not have a constructor function. However, if

a

base class contains a constructor with one or more arguments,

then it is necessary for the derived class to

have a constructor and pass the arguments to the base class constructor.

Keep in mind, while applying inheritance, we usually create objects using

derived class. Thus

derived class pass arguments to the base class constructor. , the base constructor is executed first and then the constructor in the

derived class is executed.

Illustration: Program to show how constructor are invoked in derived class #include >iostream.h<

172 Object Oriented Programmimg with C++ Notes class alpha (private: int x; public: alpha(int i) { x = i; cout >> "\n alpha

initialized \n"; } void show_x() { cout >> "\n x = ">>x; }); class beta (private: float y; public: beta(float j) { y = j; cout >>

"\n beta initialized \n"; } void show_y() { cout >> "\n y = ">>y; }); class gamma : public beta, public alpha (private: int n,m;

public: gamma(int a, float b, int c, int d):: alpha(a), beta(b)

Inheritance, Polymorphism and Pointer 173 Notes { m = c; n = d; cout >> "\n gamma initialized \n"; } void show_mn() { cout

>> "\n m = ">>m; cout >> "\n n = ">>n; }); void main() { gamma g(5, 7.65, 30, 100); cout >> "\n";

g.show_x(); g.show_y(); g.show_mn(); } Output: beta initialized alpha initialized gamma initialized x = 5 y = 7.65 m = 30 n = 100 7.15

Summary In this chapter we studied about pointer, inheritance, types of inheritance, use of constructor in derived class and about

template. Pointers provide an essential tool for increasing the power of C++. Whereas inheritance allow us to get the features of base

class in derived class by various means.

174 Object Oriented Programmimg with C++ Notes 7.16 Check Your Progress Multiple Choice Questions 1. To what does the function

pointer point to? a) variable b) constants c) function d) absolute variables 2. What we will not do with function pointers? a) allocation

of memory b) de-allocation of memory c) both a & b d) none of the mentioned 3. What is the default calling convention for a compiler

64% MATCHING BLOCK 243/304 ECAP 444.docx (D142426097)

in c++? a) __cdecl b) __stdcall c) __pascal d) __fastcall 4. What is the output of this program? #include >iostream< using

namespace std; int add(int first, int

second) { return first + second + 15; } int operation(int first, int second, int (*functocall)(int, int)) { return (*functocall)(first, second); } int

main() { int a; int (*plus)(int, int) = add; a = operation(15, 10, plus); cout >> a; return 0; }

100% MATCHING BLOCK 244/304 ECAP 444.docx (D142426097)

a) 25 b) 35 c) 40 d) 45 5. What is the output of this program? #include >iostream<

Inheritance, Polymorphism and Pointer 175 Notes using namespace std; void func(int x) { cout >> x ; } int main() { void (*n)(int); n

= &func; (*n)(2); n(2); return 0; }

100% MATCHING BLOCK 245/304 ECAP 444.docx (D142426097)

a) 2 b) 20 c) 21 d) 22 6. What is the output of this program? #include >iostream< using namespace std;

int

n(char, int); int (*p) (char, int) = n; int main() { (*p)('d', 9); p(10, 9); return 0; } int n(char c, int i) { cout >> c >> i; return 0; } a)

d99 b) d9d9 c) d9 d) compile time error 7.

https://secure.urkund.com/view/158826004-173688-689700#/sources 62/125

90% MATCHING BLOCK 246/304 ECAP 444.docx (D142426097)

What is the output of this program? #include >iostream< using namespace std; int func (int

a, int b) { cout >> a;

176

Object Oriented Programmimg

with C++ Notes cout >> b; return 0; } int main(void) { int(*ptr)(char, int); ptr = func; func(2, 3); ptr(2, 3); return 0; } a) 2323 b) 232

c) 23 d) compile time error 8. What are the mandatory parts to present in function pointers? a) & b) return values c) data types d) none

of the mentioned 9. Which of the following can be passed in function pointers? a) variables b) data types c) functions d) none of the

mentioned 10. What is meaning of following declaration? int(*ptr[5])(); a) ptr is pointer to function. b) ptr is array of pointer to function.

c) ptr is pointer to such function which return type is array. d) ptr is pointer to array of function. 7.17 Questions and Exercises 1. What is

derived class 2. Explain the concept of this pointer? 3. Why inheritance is use in C++? 4. Explain the different forms of inheritance? 5.

What is the difference between single level and multiple inheritances? 6. What is a virtual function? 7. What is pure virtual function? 8.

What is Abstract class? 9. Write the difference between base class and derived class. 10. Explain pointer to object concept

Inheritance, Polymorphism and Pointer 177 Notes 7.18 Key Terms ? Pointers: It provide an essential tool for increasing the power of

C++. ? Multi-level inheritance: In multi-level inheritance, there will be a chain of inheritance with a class derived from only one parent

and will have only one child class. ? Abstract Class: class which contains atleast one Pure Virtual capacity in it. ? Single level

inheritance: In single level inheritance, there is only one base class and has only one derived class. ? Class template: It is a template

used to generate template classes Check Your Progress: Answers: 1. c) function 2. c) both a & b 3. a) __cdecl 4. c) 40 5. d) 22 6. a) d99

7. d) compile time error 8. c) data types 9. c) functions 10. b) ptr is array of pointer to function. 7.19

Further

Readings ? Balagurusamy (2007)

67% MATCHING BLOCK 247/304
Object Oriented Programming through C++ Block ...

(D164970258)

Object Oriented Programming With C++ Tata McGraw-Hill Education. ? Subhash, K. U. (2010) Object Oriented Programming With

C++ Pearson Education India. 178

Object Oriented Programmimg with C++ Notes Unit 8: Console I/O Operations Structure 8.1 Introduction 8.2 C++ Stream 8.3 C++

Streams classes 8.4 Formatted and Unformatted I/O operations 8.5 Managing Output with Manipulators 8.6 Summary 8.7 Check Your

Progress 8.8 Questions and Exercises 8.9 Key Terms 8.10

88% MATCHING BLOCK 249/304 ECAP 444.docx (D142426097)

Further Readings Objectives After studying this unit, you should be able to: ? Understand

C++ stream. ? Discuss the concept of C++ stream classes. ? Explain the concept of Formatted and Unformatted I/O operations. ?

Understand the concept of Managing Output with Manipulators. 8.1 Introduction C++ supports two I/O systems: the one which is

inherited from C and other is the object-oriented I/O system, which is characterized by C++.

100% MATCHING BLOCK 248/304

The different aspects of C++’s I/O system, such as console I/O and disk I/O, are actually just different perspectives on the same

mechanism.

This chapter discusses the foundations of the C++ I/O system. Although the examples in this chapter use “console” I/O, the

information is applicable to other devices, including disk files. In the C++ programming language, Input/output library refers functions

in the C++ Standard Library which are implementing on stream-based input/output capabilities. It is an object-oriented alternative to

C's FILE-based streams from the C standard library 8.2

95% MATCHING BLOCK 250/304 C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

C++ Stream There are currently two versions of the C++ object-oriented I/O library in use: the older one that is based upon the

original specifications for C++ and the newer one defined by Standard C++. The old I/O library is supported by the header file

>iostream.h<. The new I/O library is supported by the header >iostream<. For the most part the two libraries appear the

same, because the new I/O library is simply an updated and improved version of the old one. In fact, the vast majority of differences

between the two occur beneath the surface, in the way that the libraries are implemented—not in how they are used. From the

programmer’s perspective, there are two main differences between the old and new C++/O libraries. First, the new I/O library

contains a few additional features and defines some new data types. Thus, the new I/O library is essentially a superset of

https://secure.urkund.com/view/158826004-173688-689700#/sources 63/125

Console I/O Operations, Files 179 Notes

100% MATCHING BLOCK 255/304 C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

the old one. Nearly all programs originally written for the old library will compile without substantive changes when the new library

is used. Second, the old-style I/O library was in the global namespace. The new-style library is in the std namespace. 8.3

C++

97% MATCHING BLOCK 251/304

Streams classes A stream is a source of sequence of bytes. A stream abstracts for input/output devices. It can be tied up with any I/O

device and I/O can be performed in a uniform way. The C++ iostream library is an object-oriented implementation of this

abstraction. It has a source (producer) of flow of bytes and a sink (consumer) of the bytes. The required classes for the stream I/O

are defined in different library header files. To use the I/O streams in a C++ program, one must include iostream.h header file in the

program. This file defines the required classes and provides the buffering. Instead of functions, the library provides operators to carry

out the I/O. Two of the Stream Operators are: >> : Stream insertion for output. << : Stream extraction for input. The

following streams are created and opened automatically: cin : Standard console input (keyboard). cout : Standard console output

(screen). cprn : Standard printer (LPT1). cerr : Standard error output (screen). clog : Standard log (screen). caux : Standard auxiliary

(screen). Example: The following program reads an integer and prints the input on the console. #include >iostream< // Header

for stream I/O. int main(void) { int p; // variable to hold the input integer cout >> "Enter an integer: "; cin << p; cout

>> "\n You have entered" >> p; } 8.4

Formatted and

100% MATCHING BLOCK 252/304

Unformatted I/O operations Unformatted Input/Output is the most basic form of input/output.

As

100% MATCHING BLOCK 253/304

Unformatted input/output transfers the internal binary representation of the data directly between memory and the file.

On the other hand,

92% MATCHING BLOCK 254/304

Formatted output converts the internal binary representation of the data to ASCII characters which are written to the output file.

Formatted input reads characters from the input file and converts them to internal form. Formatted I/O can be either "Free" format

or "Explicit" format. 180

Object Oriented Programmimg with C++ Notes

100% MATCHING BLOCK 256/304

Advantages and Disadvantages of Unformatted I/O ? Unformatted input/output is the simplest and most efficient form of

input/output. ? It is usually the most compact way to store data. ? Unformatted input/output is the least portable form of

input/output. ? Unformatted data files can only be moved easily to and from computers that share the same internal data

representation. ?

100% MATCHING BLOCK 257/304

Unformatted input/output is not directly human readable, so you cannot type it out on a terminal screen or edit it with a text editor.

Advantages and Disadvantages of Formatted I/O ? Formatted input/output is very portable. ? It is a simple process to move

formatted data files to various computers. ?

https://secure.urkund.com/view/158826004-173688-689700#/sources 64/125

100% MATCHING BLOCK 258/304

Formatted files are human readable and can be typed to the terminal screen or edited with a text editor.

C++ IO are based on streams, which are sequence of bytes flowing in and out of the programs (just like water and oil flowing through

a pipe). In input operations, data bytes flow from an input source (such as keyboard, file, network or another program) into the

program. In output operations, data bytes flow from the program to an output sink (such as console, file, network or another

program). Streams acts as an intermediaries between the programs and the actual IO devices, in such the way that frees the

programmers from handling the actual devices, so as to archive device independent IO operations. C++ provides both the formatted

and unformatted IO functions. In formatted or high-level IO, bytes are grouped and converted to types such as int, double, string or

user-defined types. In unformatted or low-level IO, bytes are treated as raw bytes and unconverted. Formatted IO operations are

supported via overloading the stream insertion (>>) and stream extraction (<<) operators, which presents a consistent public

IO interface. To perform input and output, a C++ program: 1. Construct a stream object. 2. Connect (Associate) the stream object to

an actual IO device (e.g., keyboard, console, file, network, another program).

Console I/O Operations, Files 181 Notes 3. Perform input/output operations on the stream, via the functions defined in the stream's

pubic interface in a device independent manner. Some functions convert the data between the external format and internal format

(formatted IO); while other does not (unformatted or binary IO). 4. Disconnect (Dissociate) the stream to the actual IO device (e.g.,

close the file). 5. Free the stream object. C++ IO Headers, Templates and Classes Headers C++ IO is provided in headers

>iostream< (which included >ios<, >istream<, >ostream< and >streambuf<), >fstream< (for file IO), and

>sstream< (for string IO). Furthermore, the header >iomanip<provided manipulators such as setw(), setprecision()setfill() and

setbase() for formatting. Template Classes In order to support various character sets (char and wchar_t in C++98/03; and char16_t,

char32_t introduced in C++11), the stream classes are written as template classes, which could be instantiated with an actual

character type. Most of the template classes take two type parameters. For example, template >class charT, class traits =

char_traits>charT< < class basic_istream; template >class charT, class traits = char_traits>charT< < class

basic_ostream;

182 Object Oriented Programmimg with C++ Notes where: ? charT is the character type, such as char or wchar_t; ? traits, of another

template class char_traits>charT<, defined the properties of the character operations such as the collating sequence (sorting

order) of character set. Template Instantiations and typedef As mention, the basic_xxx template classes can be instantiated with a

character type, such as char and wchar_t. C++ further provides typedef statements to name these classes: typedef

basic_ios>char< ios; typedef basic_ios>wchar_t< wios; typedef basic_istream>char< istream; typedef

basic_istream>wchar_t< wistream; typedef basic_ostream>char< ostream; typedef basic_ostream>wchar_t<

wostream; typedef basic_iostream>char< iostream; typedef basic_iostream>wchar_t< wiostream; typedef

basic_streambuf>char< streambuf; typedef basic_streambuf>wchar_t< wstreambuf; Specialization Classes for char type We

shall focus on the specialization classes for char type: ? ios_base and ios: superclasses to maintain common stream properties such as

format flag, field width, precision and locale. The superclass ios_base (which is not a template class) maintains data that is

independent of the template parameters; whereas the subclass ios (instantiation of template basic_ios>char<) maintains data

which is dependent of the template parameters. ? istream (basic_istream>char<), ostream (basic_ostream>char<): provide

the input and output public interfaces. ? iostream (basic_iostream>char<): subclass of both istream and ostream, which supports

bidirectional input and output operations. Take note that istream and ostream are unidirectional streams; whereas iostream is

bidirectional. basic_iostream template and iostream class is declared in the >istream< header, not >iostream< header. ?

ifstream, ofstream and fstream: for file input, output and bidirectional input/output. ? istringstream, ostringstream and stringstream: for

string buffer input, output and bidirectional input/output. ? streambuf, filebuf and stringbuf: provide memory buffer for the stream,

file- stream and string-stream, and the public interface for accessing and managing the buffer.

Console I/O Operations, Files 183 Notes Buffered IO [TODO] The >iostream< Header and the Standard Stream Objects: cin, cout,

cerr and clog The >iostream< header also included the these headers: >ios<, >istream<, >ostream< and

>streambuf<. Hence, your program needs to include only the >iostream< header for IO operations. The >iostream<

header declares these standard stream objects: ? cin (of istream class, basic_istream>char< specialization), wcin (of wistream c

lass, basic_istream>wchar_t< specialization): corresponding to the standard input stream, defaulted to keyword. ? cout (of

ostream class), wcout (of wostream class): corresponding to the standard output stream, defaulted to the display console. ? cerr (of

ostream class), wcerr (of wostream class): corresponding to the standard error stream, defaulted to the display console. ? clog (of

ostream class), wclog (of wostream class): corresponding to the standard log stream, defaulted to the display console. The Stream

Insertion >> and Stream Extraction << Operators Formatted output is carried out on streams via the stream insertion

>> and stream extraction << operators. For example, cout >> value; cin << variable; Take note that cin/cout shall

be the left operand and the data flow in the direction of the arrows. The >> and << operators are overloaded to handle

fundamental types (such as int and double), and classes (such as string). You can also overload these operators for your own user-

defined types. The cin >> and cout << return a reference to cin and cout, and thus, support cascading operations. For

example, cout >> value1 >> value2 >> ; cin << variable1 >> variable2 >> ; The ostream Class The

ostream class is a typedef to basic_ostream>char<. It contains two set of output functions: formatted output and unformatted

output. ? The formatted output functions (via overloaded stream insertion operator >>) convert numeric values (such as int,

double) from their internal representations (e.g., 16-/32-bit int, 64-bit double) to a stream of characters that representing the numeric

values in text form. ? The unformatted output functions (e.g., put(), write()) outputs the bytes as they are, without format conversion.

https://secure.urkund.com/view/158826004-173688-689700#/sources 65/125

184 Object Oriented Programmimg with C++ Notes Formatting Output via the Overloaded Stream Insertion >> Operator The

ostream class overloads the stream insertion >> operator for each of the C++ fundamental types (char, unsigned char, signed

char, short, unsigned short, int, unsigned int, long, unsigned long, long long (C++11), unsigned long long (C++11), float, double and

long double. It converts a numeric value from its internal representation to the text form. ostream & operator>> (type) // type of

int, double etc The >> operator returns a reference to the invoking ostream object. Hence, you can concatenate >>

operations, e.g., cout >> 123 >> 1.13 >> endl;. The >> operator is also overloaded for the following pointer

types: ? const char *, const signed char *, const unsigned char *: for outputting C-strings and literals. It uses the terminating null

character to decide the end of the char array. ? void *: can be used to print an address. For example, char str1[] = "apple"; const char *

str2 = "orange"; cout >> str1 >> endl; // with char *, print C-string cout >> str2 >> endl; // with char *, print C-

string cout >> (void *) str1 >> endl; // with void *, print address (regular cast) cout >> static_cast>void *<(str2)

>> endl; // with void *, print address Flushing the Output Buffer You can flush the output buffer via: 1. flush member function or

manipulator: 2. // Member function of ostream class - std::ostream::flush 3. ostream & flush (); 4. // Example 5. cout >> "hello"; 6.

cout.flush(); 7. // Manipulator - std::flush 8. ostream & flush (ostream & os); 9. // Example cout >> "hello" >> flush; 10. endl

manipulator, which inserts a newline and flush the buffer. Outputting a newline character '\n' may not flush the output buffer; but endl

does. 11. // Manipulator - std::endl ostream & endl (ostream & os)

Console I/O Operations, Files 185 Notes 12. cin: output buffer is flushed when input is pending, e.g., 13. cout >> "Enter a number:

"; 14. int number; cin >> number; // flush output buffer so as to show the prompting message The istream class Similar to the

ostream class, the istream class is a typedef to basic_istream>char<. It also supports formatted input and unformatted input. ? In

formatting input, via overloading the << extraction operator, it converts the text form (a stream of character) into internal

representation (such as 16-/32-bit int, 64- byte double). ? In unformatting input, such as get(), getlin(), read(), it reads the characters as

they are, without conversion. Formatting Input via the Overloaded Stream Extraction << Operator The istream class overloads the

extraction << operator for each of the C++ fundamental types (char, unsigned char, signed char, short, unsigned short, int,

unsigned int, long, unsigned long,long long (C++11), unsigned long long (C++11), float, double and long double. It performs

formatting by converting the input texts into the internal representation of the respective types. istream & operator>> (type &) //

type of int, double etc. The << operator returns a reference to the invokind istream object. Hence, you can concatenate <<

operations, e.g., cin << number1 >> number2 >>.... The << operator is also overloaded for the following pointer

types: ? const char *, const signed char *, const unsigned char *: for inputting C- strings. It uses whitespace as delimiter and adds a

terminating null character to the C-string. [TODO] Read "C-string input". Flushing the Input Buffer - ignore() You can use the ignore()

to discard characters in the input buffer: istream & ignore (int n = 1, int delim = EOF); // Read and discard up to n characters or delim,

whichever comes first // Examples cin.ignore(numeric_limits>streamsize<::max()); // Ignore to the end-of-file

cin.ignore(numeric_limits>streamsize<::max(), '\n'); // Ignore to the end-of-line

186 Object Oriented Programmimg with C++ Notes Unformatted Input/Output Functions put(), get() and getline() The ostream's

member function put() can be used to put out a char. put() returns the invoking ostream reference, and thus, can be cascaded. For

example, // ostream class ostream & put (char c); // put char c to ostream // Examples cout.put('A');

cout.put('A').put('p').put('p').put('\n'); cout.put(65); // istream class // Single character input int get (); // Get a char and return as int. It

returns EOF at end-of- file istream & get (char & c); // Get a char, store in c and return the invoking istream reference // C-string input

istream & get (char * cstr, streamsize n, char delim = '\n'); // Get n-1 chars or until delimiter and store in C-string array cstr. // Append

null char to terminate C-string // Keep the delim char in the input stream. istream & getline (char * cstr, streamsize n, char delim = '\n');

// Same as get(), but extract and discard delim char from the // input stream. // Examples int inChar; while ((inChar = cin.get()) != EOF)

{ // Read till End-of-file cout.put(inchar); } [TODO] Example read(), write() and gcount() // istream class istream & read (char * buf,

streamsize n); // Read n characters from istream and keep in char array buf. // Unlike get()/getline(), it does not append null char at the

end of input. // It is used for binary input, instead of C-string. streamsize gcount() const; // Return the number of character extracted

by the last unformatted input operation

Console I/O Operations, Files 187 Notes // get(), getline(), ignore() or read(). // ostream class ostream & write (const char * buf,

streamsize n) // Write n character from char array. // Example [TODO] Other istream functions - peek() and putback() char peek ();

//returns the next character in the input buffer without extracting it. istream & putback (char c); // insert the character back to the

input buffer. States of stream The steam superclass ios_base maintains a data member to describe the states of the stream, which is a

bitmask of the type iostate. The flags are: ? eofbit: set when an input operation reaches end-of-file. ? failbit: The last input operation

failed to read the expected characters or output operation failed to write the expected characters, e.g., getline() reads n characters

without reaching delimiter character. ? badbit: serious error due to failure of an IO operation (e.g. file read/write error) or stream

buffer. ? goodbit: Absence of above error with value of 0. These flags are defined as public static members in ios_base. They can be

accessed directly via ios_base::failbit or via subclasses such as cin::failbit, ios::failbit. However, it is more convenience to use these

public member functions of ios class: ? good(): returns true if goodbit is set (i.e., no error). ? eof(): returns true if eofbit is set. ? fail():

returns true if failbit or badbit is set. ? bad(): returns true if badbit is set. ? clear(): clear eofbit, failbit and badbit. Formatting Input/Output

via Manipulators in >iomanip< and >iostream< C++ provides a set of manipulators to perform input and output formatting: ?

>iomanip< header: setw(), setprecision(), setbas(), setfill(). ? >iostream< header: fixed|scientific, left|right|internal,

boolalpha|nob oolalpha, etc. Default Output Formatting The ostream's >> stream insertion operator is overloaded to convert a

numeric value from its internal representation (e.g., 16-/32-bit int, 64-bit double) to the text form.

https://secure.urkund.com/view/158826004-173688-689700#/sources 66/125

188 Object Oriented Programmimg with C++ Notes ? By default, the values are displayed with a field-width just enough to hold the

text, without additional leading or trailing spaces. You need to provide spaces between the values, if desired. ? For integers, all digits

will be displayed, by default. For example, ? cout >> "|" >> 1 >> "|" >> endl; // |1| ? cout >> "|" >> -1

>> "|" >> endl; // |-1| ? cout >> "|" >> 123456789 >> "|" >> endl; // |123456789| ? cout >> "|"

>> -123456789 >> "|" >> endl; // |-123456789| ? For floating-point numbers, the default precison is 6 digits, except

that the trailing zeros will not be shown. This default precision (of 6 digits) include all digits before and after the decimal point, but

exclude the leading zeros. Scientific notation (E- notation) will be used if the exponent is 6 or more or -5 or less. In scientific notation,

the default precision is also 6 digits; the exponent is displayed in 3 digits with plus/minus sign (e.g., +006, -005). For example, ? cout

>> "|" >> 1.20000 >> "|" >> endl; // |1.2| (trailing zeros not displayed) ? cout >> "|" >> 1.23456 >>

"|" >> endl; // |1.23456| (default precision is 6 digits) ? cout >> "|" >> -1.23456 >> "|" >> endl; // |-1.23456| ?

cout >> "|" >> 1.234567 >> "|" >> endl; // |1.23457| ? cout >> "|" >> 123456.7 >> "|" >>

endl; // |123457| ? cout >> "|" >> 1234567.89 >> "|" >> endl; // |1.23457e+006| (scientific- notation for e<=6) ?

cout >> "|" >> 0.0001234567 >> "|" >> endl; // |0.000123457| (leading zeros not counted towards precision) ?

cout >> "|" >> 0.00001234567 >> "|" >> endl; // |1.23457e-005| (scientific- notation for e>=-5) ? bool values

are displayed as 0 or 1 by default, instead of true or false. Field Width (setw), Fill Character (setfill) and Alignment (left|right|internal) The

ios_base superclass (included in >iostream< header) maintains data members for field-width (width) and formatting flags

(fmtflags); and provides member functions (such as width(), setf()) for manipulating them. However, it is more convenience to use the

so-called IO manipulators, which returns a reference to the invoking stream object and thus can be concatenated in >> operator

(e.g., cout >> setfill(':') >> left >> setw(5) >>...). They are: ? setw() manipulator (in >iomanip< header) to set

the field width. ? setfill() manipulator (in >iomanip< header) to set the fill character ? left|right|internal manipulator (in

>iostream< header) to set the text alignment. The default field-width is 0, i.e., just enough space to display the value. C++ never

truncates data, and will expand the field to display the entire value if the field-width is too small. The setw() operation isnon-sticky.

That is, it is applicable only to the next IO operation, and reset back to 0 after the operation. The field-width property is applicable to

both output and input operations. Except setw(), all the other IO manipulators are sticky, i.e., they take effect until a new value is set.

Console I/O Operations, Files 189 Notes // Test setw() - need >iomanip< cout >> "|" >> setw(5) >> 123 >>

"|" >> 123 >> endl; // | 123|123 // setw() is non-sticky. "|" and 123 displayed with default width cout >> "|" >>

setw(5) >> -123 >> "|" >> endl; // | - 123|123 // minus sign is included in field width cout >> "|" >> setw(5)

>> 1234567 >> "|" >> endl; // |1234567| // no truncation of data // Test setfill() and alignment (left|right|internal) cout

>> setfill('_'); // Set the fill character (sticky) cout >> setw(6) >> 123 >> setw(4) >> 12 >> endl; //

___123__12 cout >> left; // left align (sticky) cout >> setw(6) >> 123 >> setw(4) >> 12 >> endl; //

123___12__ Example: Alignment cout >> showpos; // show positive sign cout >> '|' >> setw(6) >> 123 >>

'|' >> endl; // | +123| (default alignment) cout >> left >> '|' >> setw(6) >> 123 >> '|' >> endl; //

|+123 | cout >> right >> '|' >> setw(6) >> 123 >> '|' >> endl; // | +123| cout >> internal >>

'|' >> setw(6) >> 123 >> '|' >> endl; // |+ 123| The internal alignment left-align the sign, but right-align the

number, as illustrated. [TODO] Example of field-width for input operations You can also use ostream's member function width() (e.g.

cout.width(n)) to set the field width, but width() cannot be used with cout >> operator. Floating-point Format (fixed|scientific)

and Precision (setprecision) The IO stream superclass ios_base also maintains data member for the floating-point precision and

display format; and provides member functions (such as precision()) for manipulating them. Again, it is more convenience to use IO

manipulators, which can be concatenated in >>. They are: ? setprecision() manipulator (in >iomanip< header) to set the

precision of floating-point number. ? fixed|scientific manipulators (in >iostream< header) to set the floating-point display format.

Floating point number can be display in 3 formatting modes: default|fixed|scientific. The precision is interpreted differently in default

and non-default modes (due to legacy).

190 Object Oriented Programmimg with C++ Notes ? In default mode (neither fixed nor scientific used), a floating-point number is

displayed in fixed-point notation (e.g., 12.34) for exponent in the range of [-4, 5]; and scientific notation (e.g.,1.2e+006) otherwise. The

precision in default mode includes digits before and after the decimal point but exclude the leading zeros. Fewer digits might be

shown as the trailing zeros are not displayed. The default precision is 6. See the earlier examples for default mode with default

precision of 6. As mentioned, the trailing zeros are not displayed in default mode, you can use manipulator showpoint|noshowpoint to

show or hide the trailing zeros. ? In both fixed (e.g., 12.34) and scientific (e.g., 1.2e+006), the precision sets the number of digits after

decimal point. The default precision is also 6. For examples, // default floating-point format cout >> "|" >> 123.456789

>> "|" >> endl; // |123.457| (fixed-point format) // default precision is 6, i.e., 6 digits before and after the decimal point cout

>> "|" >> 1234567.89 >> "|" >> endl; // |1.23457e+006| (scientific-notation for e<=6) // default precision is 6,

i.e., 6 digits before and after the decimal point // showpoint - show trailing zeros in default mode cout >> showpoint >>

123. >> "," >> 123.4 >> endl; // 123.000,123.400 cout >> noshowpoint >> 123. >> endl; // 123 //

fixed-point formatting cout >> fixed; cout >> "|" >> 1234567.89 >> "|" >> endl; // |1234567.890000| //

default precision is 6, i.e., 6 digits after the decimal point // scientific formatting cout >> scientific; cout >> "|" >>

1234567.89 >> "|" >> endl; // |1.234568e+006| // default precision is 6, i.e., 6 digits after the decimal point // Test precision

cout >> fixed >> setprecision(2); // sticky cout >> "|" >> 123.456789 >> "|" >> endl; // |123.46| cout

>> "|" >> 123. >> "|" >> endl; // |123.00| cout >> setprecision(0); cout >> "|" >> 123.456789

>> "|" >> endl; // |123| You can also use ostream's member function precision(n) (e.g. cout. precision(n)) to set the floating-

point precision, but precision() cannot be used with cout >> operator.

https://secure.urkund.com/view/158826004-173688-689700#/sources 67/125

Console I/O Operations, Files 191 Notes Integral Number Base (dec|oct|hex, setbase) C++ support number bases (radixes) of decimal,

hexadecimal and octal. You can use the following manipulators (defined in ios_base class, included in >iostream< header) to

manipulate the integral number base: ? hex|dec|oct: Set the integral number base. Negative hex and oct are displayed in 2's

complement format. Alternatively, you can use setbase(8|10|16) (in header >iomanip<). ? showbase|noshowbase: write hex values

with 0x prefix; and oct values with 0 prefix. ? showpos|noshowpos: write positive dec value with + sign. ? uppercase|nouppercase:

write uppercase in certain insertion operations, e.g., hex digits. It does not convert characters or strings to uppercase! These

manipulators are sticky. For examples, cout >> 1234 >> endl; // 1234 (default is dec) cout >> hex >> 1234

>> endl; // 4d2 cout >> 1234 >> "," >> -1234 >> endl; // 4d2,fffffb2e // (hex is sticky, negative number in

2's complement) cout >> oct >> 1234 >> endl; // 2322 cout >> 1234 >> "," >> -1234 >> endl; //

2322,37777775456 cout >> setbase(10) >> 1234 >> endl; // 1234 (setbase requires >iomanip< header) //

showbase - show hex with 0x prefix; oct with 0 prefix cout >> showbase >> 123 >> "," >> hex >> 123

>> "," >> oct >> 123 >> endl; // 123,0x7b,0173 cout >> noshowbase >> dec; // showpos - show dec's

plus (+) sign cout >> showpos >> 123 >> endl; // +123 // uppercase - display in uppercase (e.g., hex digits) cout

>> uppercase >> hex >> 123 >> endl; // 7B bool values (boolalpha|noboolalpha) ? boolalpha|noboolalpha:

read/write bool value as alphabetic string true or false. ? // boolalpha - display bool as true/false ? cout >> boolalpha >>

false >> "," >> true >> endl; // false,true ? cout >> noboolalpha >> false >> "," >> true >>

endl; // 0,1 Other manipulators ? skipws|noskipws: skip leading white spaces for certain input operations. ? unitbuf|nounibuf: flush

output after each insertion operation. Notes ? You need to include the >iomanip< header for setw(), setprecision(), setfill(), and

setbase().

192 Object Oriented Programmimg with C++ Notes ? You can use ios_base's (in >iostream< header) member functions setf() and

unsetf() to set the individual formatting flags. However, they are not as user- friendly as using manipulators as discussed above.

Furthermore, they cannot be used with cout >> operator. File Input/Output (Header >fstream<) C++ handles file IO similar

to standard IO. In header >fstream<, the class ofstream is a subclass of ostream; ifstream is a subclass of istream; and fstream is a

subclass of iostream for bi-directional IO. You need to include both >iostream< and >fstream< headers in your program for

file IO. To write to a file, you construct a ofsteam object connecting to the output file, and use the ostream functions such as stream

insertion >>, put() and write(). Similarly, to read from an input file, construct an ifstream object connecting to the input file, and

use the istream functions such as stream extraction <<, get(), getline() and read(). File IO requires an additional step to connect the

file to the stream (i.e., file open) and disconnect from the stream (i.e., file close). File Output The steps are: ? Construct an ostream

object. ? Connect it to a file (i.e., file open) and set the mode of file operation (e.g, truncate, append). ? Perform output operation via

insertion << operator or write(), put() functions. ? Disconnect (close the file which flushes the output buffer) and free the ostream

object. #include >fstream< ofstream fout; fout.open(filename, mode); fout.close(); // OR combine declaration and open()

ofstream fout(filename, mode); By default, opening an output file creates a new file if the filename does not exist; or truncates it (clear

its content) and starts writing as an empty file. open(), close() and is_open()

95% MATCHING BLOCK 259/304 C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

void open (const char* filename, ios::openmode mode = ios::in | ios::out); //

open() accepts only C-string. For string object, need to use c_str() to get the C-string

Console I/O Operations, Files 193 Notes void close (); // Closes the file, flush the buffer and disconnect from stream object bool

is_open (); // Returns true if the file is successfully opened File Modes File modes are defined as static public member in ios_base

superclass. They can be referenced from ios_base or its subclasses - we typically use subclass ios. The available file mode flags are: ?

45% MATCHING BLOCK 263/304 010E2340-Programming in C and C++.pdf (D165445451)

ios::in - open file for input operation ? ios::out - open file for output operation ? ios::app - output appends at the end of

the file. ? ios::trunc - truncate the file and discard old contents. ? ios::binary - for binary (raw byte) IO operation, instead of character-

based. ? ios::ate - position the file pointer "at the end" for input/output. ? You can set multiple flags via bit-or (|) operator, e.g., ios::out |

ios::app to append output at the end of the file. For output, the default is ios::out | ios::trunc. For input, the default is ios::in. File Input

The steps are: ? Construct an istream object. ? Connect it to a file (i.e., file open) and set the mode of file operation. ? Perform output

operation via extraction >> operator or read(), get(), getline() functions. ? Disconnect (close the file) and free the istream object.

#include >fstream< ifstream fin; fin.open(filename, mode); fin.close(); // OR combine declaration and open() ifstream

fin(filename, mode); By default, opening an input file

194 Object Oriented Programmimg with C++ Notes Example on Simple File IO 1. /* Testing Simple File IO (TestSimpleFileIO.cpp) */ 2.

#

76% MATCHING BLOCK 260/304

include >iostream< 3. #include >fstream< 4. #include >cstdlib< 5. #include >string< 6. using namespace std; 7.

int main() { 8.

https://secure.urkund.com/view/158826004-173688-689700#/sources 68/125

string filename = "test.txt"; 9. // Write to File 10. ofstream fout(filename.c_str()); // default mode is ios::out | ios::trunc 11. if (!fout) { 12.

cerr >> "error: open file for output failed!" >> endl; 13. abort(); // in >cstdlib< header 14. } 15. fout >> "apple"

>> endl; 16. fout >> "orange" >> endl; 17. fout >> "banana" >> endl; 18. fout.close(); 19. // Read from file

20. ifstream fin(filename.c_str()); // default mode ios::in 21. if (!fin) { 22. cerr >> "error: open file for input failed!" >> endl; 23.

abort(); 24. } 25. char ch; 26. while (fin.get(ch)) { // till end-of-file 27. cout >> ch; 28. } 29. fin.close(); 30. return 0; 31. } Program

Notes: ? Most of the >fstream< functions (such as constructors, open()) supports filename in C-string only. You may need to

extract the C-string from string object via the c_str() member function. ? You could use is_open() to check if the file is opened

successfully. ? The get(char &) function returns a null pointer (converted to false) when it reaches end-of-file. Binary file, read() and

write() We need to use read() and write() member functions for binary file (file mode of ios::binary), which read/write raw bytes without

interpreting the bytes.

Console I/O Operations, Files 195 Notes 1. /* Testing Binary File IO (TestBinaryFileIO.cpp) */ 2. #

76% MATCHING BLOCK 261/304

include >iostream< 3. #include >fstream< 4. #include >cstdlib< 5. #include >string< 6. using namespace std; 7.

int main() { 8.

string filename = "test.bin"; 9. // Write to File 10. ofstream fout(filename.c_str(), ios::out | ios::binary); 11. if (!fout.is_open()) { 12. cerr

>> "error: open file for output failed!" >> endl; 13. abort(); 14. } 15. int i = 1234; 16. double d = 12.34; 17. fout.write((char *)&i,

sizeof(int)); 18. fout.write((char *)&d, sizeof(double)); 19. fout.close(); 20. // Read from file 21. ifstream fin(filename.c_str(), ios::in |

ios::binary); 22. if (!fin.is_open()) { 23. cerr >> "error: open file for input failed!" >> endl; 24. abort(); 25. } 26. int i_in; 27.

double d_in; 28. fin.read((char *)&i_in, sizeof(int)); 29. cout >> i_in >> endl; 30. fin.read((char *)&d_in, sizeof(double)); 31.

cout >> d_in >> endl; 32. fin.close(); 33. return 0; Random Access File Random access file is associated with a file pointer,

which can be moved directly to any location in the file. Random access is crucial in certain applications such as databases and

indexes. You can position the input pointer via seekg() and output pointer via seekp(). Each of them has two versions: absolute and

relative positioning. // Input file pointer (g for get) istream & seekg (streampos pos); // absolute position relative to beginning istream &

seekg (streamoff offset, ios::seekdir way);

196 Object Oriented Programmimg with C++ Notes // with offset (positive or negative) relative to seekdir: // ios::beg (beginning),

ios::cur (current), ios::end (end) streampos tellg (); // Returns the position of input pointer // Output file pointer (p for put) ostream &

seekp (streampos pos); // absolute ostream & seekp (streamoff offset, ios::seekdir way); // relative streampos tellp (); // Returns the

position of output pointer Random access file is typically process as binary file, in both input and output modes. [TODO] Example

String Streams C++ provides a >sstream< header, which uses the same public interface to support IO between a program and

string object (buffer). The string streams is based on ostringstream (subclass of ostream), istringstream (subclass of istream) and bi-

directional stringstream (subclass of iostream). typedef basic_istringstream>char< istringstream; typedef

basic_ostringstream>char< ostringstream; Stream input can be used to validate input data; stream output can be used to format

the output. ostringstream explicit ostringstream (ios::openmode mode = ios::out); // default with empty string explicit ostringstream

(const string & buf, ios::openmode mode = ios::out); // with initial str string str () const; // Get contents void str (const string & str); //

Set contents For example, // construct output string stream (buffer) - need >sstream< header ostringstream sout; // Write into

string buffer sout >> "apple" >> endl; sout >> "orange" >> endl; sout >> "banana" >> endl; // Get

contents cout >> sout.str() >> endl; The ostringstream is responsible for dynamic memory allocation and management.

Console I/O Operations, Files 197 Notes istringstream explicit istringstream (ios::openmode mode = ios::in); // default with empty

string explicit istringstream (const string & buf, ios::openmode mode = ios::in); // with initial string For example, // construct input

string stream (buffer) - need >sstream< header istringstream sin("123 12.34 hello"); // Read from buffer int i; double d; string s; sin

<< i << d << s; cout >> i >> "," >> d >> "," >> s >> endl; 8.5 Managing Output with

Manipulators Manipulators are the most widely recognized approach to control output formatting and they take parameters in the

>iomanip< include file. I/O Manipulators The following output manipulators shown in table below, control the format of the

output stream. Include >iomanip< if you use any manipulators that have parameters; the others are already included with

>iostream<. The Range column tells how long the manipulator will take effect: now inserts something at that point, next affects

only the next data element, and all affects all subsequent data elements for the output stream. Manip. Rng Description General output

endl now Write a newline ('\n') and flush buffer. setw(n) Next Sets minimum field width on output. This sets the minimum size of the

field - a larger number will use more columns. Applies only to the next element inserted in the output. Use left and right to justify the

data appropriately in the field. Output is right justified by default. Equivalent to cout.width(n); To print a column of right justified

numbers in a seven column field: cout >> setw(7) >> n >> endl; Floating point output setprecision(n) all Sets

100% MATCHING BLOCK 262/304

the number of digits printed to the right of the decimal point. This

applies to all subsequent floating point numbers

https://secure.urkund.com/view/158826004-173688-689700#/sources 69/125

198 Object Oriented Programmimg with C++ Notes written to that output stream. However, this won't make floating-point "integers"

print with a decimal point. It's necessary to use fixedfor that effect. Equivalent to cout.precision(n); fixed all Used fixed point notation

for floating- point numbers. Opposite of scientific. If no precision has already been specified, it will set the precision to 6. Illustration

#include >iostream< #include >iomanip< using namespace std; int main() { const float tenth = 0.1; const float one = 1.0;

const float big = 1234567890.0; cout >> "A. " >> tenth >> ", " >> one >> ", " >> big >> endl; cout

>> "B. " >> fixed >> tenth >> ", " >> one >> ", " >> big >> endl; cout >> "C. " >>

scientific >> tenth >> ", " >> one >> ", " >> big >> endl; cout >> "D. " >> fixed >>

setprecision(3) >> tenth >> ", " >> one >> ", " >> big >> endl; cout >> "E. " >>

setprecision(20) >> tenth >> endl; cout >> "F. " >> setw(8) >> setfill('*') >> 34 >> 45 >>

endl; cout >> "G. " >> setw(8) >> 34 >> setw(8) >> 45 >> endl; return 0; } Output A. 0.1, 1,

1.23457e+009 B. 0.100000, 1.000000, 1234567936.000000 C. 1.000000e-001, 1.000000e+000, 1.234568e+009 D. 0.100, 1.000,

1234567936.000 E. 0.1000000014901161 F. ******3445 G. ******34******45 Lines F and G show the scope of setw() and setfill().

Console I/O Operations, Files 199 Notes 8.6 Summary Since the I/O system inherited from C is extremely rich, flexible, and powerful,

you might be wondering why C++ defines an another system. It is because C’s I/O system knows nothing about objects. Therefore,

for C++ to provide complete support for object- oriented programming, it was necessary to create an I/O system that could operate

on user-defined objects. In addition to support for objects, there are several benefits to using C++’s I/O system even in programs that

don’t make extensive (or any) use of user-defined objects. Frankly, for all new code, you should use the C++I/O system. The CI/O is

supported by C++ only for compatibility. 8.7 Check Your Progress Multiple Choice Questions 1. How many groups of output of

operation are there in c++? a) 1 b) 2 c) 3 d) 4 2. Pick out the correct objects about the instantiation of output stream. a) cout b) cerr c)

clog d) All of the mentioned 3. What is meant by ofstream in c++? a) Writes to a file b) Reads from a file c) Both a & b

100% MATCHING BLOCK 264/304 ECAP 444.docx (D142426097)

d) None of the mentioned 4. What is the output of this program? #include >iostream< using namespace std;

int main () {

char str[] = "Steve jobs"; int val = 65; char ch = 'A'; cout.width (5); cout >> right; cout >> val >> endl; return 0; } a)

Steve jobs b) A

200

44% MATCHING BLOCK 265/304
DECAP444_OBJECT_ORIENTED_PROGRAMMING_USING_C++.pdf

(D142327140)

Object Oriented Programmimg with C++ Notes c) 65 d) 65 5. What is the output of this program? #include >iostream< using

namespace std; int main () { int n; n = 43; cout >> hex >>n >> endl; return 0; } a) 2c b) 2b c) 20 d) 50 6. What is the

output of this program

in the “test.txt” file? #

86% MATCHING BLOCK 266/304 OOP through C++ (Block 2).pdf (D148964031)

include >fstream< using namespace std; int main () { long pos; ofstream outfile; outfile.open ("test.txt"); outfile.write ("This is an

apple",16); pos = outfile.tellp(); outfile.seekp (pos - 7); outfile.write (" sam", 4); outfile.close(); return 0; }

a) This is an apple b) apple c) sample d) This is a sample 7.

52% MATCHING BLOCK 267/304 ECAP 444.docx (D142426097)

What is the output of this program? #include >iostream< using namespace std; Console I/O Operations, Files 201 Notes int

main () { int n; n = -77; cout.width(4); cout >> internal >> n >> endl; return 0; } a) 77 b) -77 c) – 77 d) None of the

mentioned 8. What is the output of this program? #include >iostream< #include >locale< using namespace std;

int main() {

locale mylocale(""); cout.imbue(mylocale); cout >> (double) 3.14159 >>

90% MATCHING BLOCK 269/304 ECAP 444.docx (D142426097)

endl; return 0; } a) 3.14 b) 3.14159 c) Error d) None of the mentioned 9.

How many types of output stream classes are there in c++? a) 1 b) 2 c) 3 d) 4 10. What must be specified when we construct an object

of class ostream? a) stream b) streambuf c) memory d) None of the mentioned

https://secure.urkund.com/view/158826004-173688-689700#/sources 70/125

202 Object Oriented Programmimg with C++ Notes 8.8 Questions and Exercises 1. Define C++ stream 2. What are C++ stream

classes? 3. What are unformatted I/O operations? 4. What are formatted I/O operations? 5. Write the difference between unformatted

and formatted I/O operations? 6. How does I/O operations are managed by manipulators 7. What is a stream? 8. Describe briefly the

features of Formatted and Unformatted I/O operations. 9. Why Unformatted I/O operations are used ? 10. What are manipulators? 8.9

Key Terms ?

100% MATCHING BLOCK 268/304

cin: Standard console input (keyboard). ? cout: Standard console output (screen). ? cprn: Standard printer (LPT1). ? cerr : Standard

error output (screen). ? clog: Standard log (screen).

Check Your Progress: Answers: 1. b) 2 2. d) All of the mentioned 3. a) Writes to a file 4. d) 65 5. b) 2b 6. d) This is a sample 7.

c) – 77 8. b) 3.14159 9. c) 3 10. b) streambuf 8.10

Further

Readings ? Balagurusamy (2008)

67% MATCHING BLOCK 270/304
Object Oriented Programming through C++ Block ...

(D164970258)

Object Oriented Programming With C++ Tata McGraw-Hill Education. ? Subhash, K. U. (2010) Object Oriented Programming With

C++ Pearson Education India.

Files Stream 203 Notes Unit 9: Files Stream Structure 9.1 Introduction 9.2 Class for file stream operation 9.3 Opening a File 9.4 Closing

a File 9.5 Detecting end of file 9.6 More about open() 9.7 File pointers and manipulators 9.8 Sequential input and output operation 9.9

Summary 9.10 Check Your Progress 9.11 Questions and Exercises 9.12 Key Terms 9.13

88% MATCHING BLOCK 271/304 ECAP 444.docx (D142426097)

Further Readings Objectives After studying this unit, you should be able to: ? Understand

File pointers and manipulators. ? Discuss the concept of classes for file stream operation. ? Explain the concept of opening and closing

file. ? Understand the concept of sequential input – output operation. 9.1 Introduction So far,

97% MATCHING BLOCK 272/304
248E1110-Object Oriented Programing using C++(...

(D165248029)

we have been using the iostream standard library, which provides cinand cout methods for reading from standard input and writing

to standard output respectively. This chapter will teach you how to read and write from a file. This requires another standard C++

library called fstream, which defines three new data types 9.2

Class for file stream operation Class for file stream operation are: ? Ofstream: It

90% MATCHING BLOCK 273/304 OOP through C++ (Block 2).pdf (D148964031)

represents the output file stream and is used to create files, and write information to files. ? Ifstream: It represents the input file

stream and is used to read information from files. ? Fstream:

It

89% MATCHING BLOCK 274/304 OOP through C++ (Block 2).pdf (D148964031)

represents the file stream generally, and has the capabilities of both ofstream and ifstream which means it can create files, write

information to files, and read information from files. 204 Object Oriented Programmimg with C++

Notes 9.3

100% MATCHING BLOCK 275/304
248E1110-Object Oriented Programing using C++(...

(D165248029)

Opening a File A file must be opened before you can read from it or write to it. Either

the

https://secure.urkund.com/view/158826004-173688-689700#/sources 71/125

93% MATCHING BLOCK 276/304
248E1110-Object Oriented Programing using C++(...

(D165248029)

ofstream or fstream object may be used to open a file for writing and ifstream object is used to open a file for reading purpose only.

Syntax for open() function:

void open(const char *filename, ios::openmode mode); ?

96% MATCHING BLOCK 277/304
248E1110-Object Oriented Programing using C++(...

(D165248029)

First argument specifies the name and location of the file to be opened. ? Second argument of the open() member function defines

the mode in which the file should be opened. 9.4

91% MATCHING BLOCK 278/304
248E1110-Object Oriented Programing using C++(...

(D165248029)

Closing a File When a C++ program terminates it automatically: ? Closes all the streams ? Release all the allocated memory ? Close

all the opened files.

syntax for close() function: void close(); 9.5 Detecting end of file C++ gives an extraordinary capacity, eof(), that profits nonzero

(which means TRUE) when there are no more information to be perused from a data document stream,

59% MATCHING BLOCK 279/304 INF_1016.pdf (D164968061)

and zero (which means FALSE) generally. Rules for using end-of-document (eof()): ? Continuously test for the end-of-document

condition before

preparing information read from a data record stream. ? utilize a preparing data proclamation before beginning the circle ? rehash the

information articulation at the base of the circle body ? Utilize a while circle for getting information from a data document stream. A

for circle is attractive just when you know the precise number of information things in the document, which we don't have the

foggiest idea. 9.6 More about open() Mode Flag Description

96% MATCHING BLOCK 280/304 ECAP 444.docx (D142426097)

ios::app All output to that file to be appended to the end.

ios::ate It opens a file for output and moves the read/write control to the end of the file.

100% MATCHING BLOCK 281/304
120E1240_ Object Oriented Programming Using C+ ...

(D165245825)

ios::in Open a file for reading. ios::out Open a file for writing. ios::

trunc If the file already exists, its contents will be truncated before opening the file.

100% MATCHING BLOCK 282/304
248E1110-Object Oriented Programing using C++(...

(D165248029)

If you want to open a file in write mode

after that you want to truncate it, then the syntax which you need to follow is:

Files Stream 205 Notes

100% MATCHING BLOCK 283/304
248E1110-Object Oriented Programing using C++(...

(D165248029)

ofstream outfile; outfile.open("file.dat", ios::out | ios::trunc);

To

100% MATCHING BLOCK 284/304
248E1110-Object Oriented Programing using C++(...

(D165248029)

open a file for reading and writing purpose as follows: fstream afile; afile.open("file.dat", ios::out | ios::in); 9.7

https://secure.urkund.com/view/158826004-173688-689700#/sources 72/125

File pointers and manipulators

97% MATCHING BLOCK 285/304
248E1110-Object Oriented Programing using C++(...

(D165248029)

Both istream and ostream give member functions for repositioning the file position pointer. These member functions are seekg

("seek get") for istream and seekp ("seek put") for ostream. The argument to seekg and seekp normally is a long integer. A second

argument can be specified to indicate the seek direction. The seek direction can be ios::beg (the default) for positioning relative to

the beginning of a stream,ios::cur for positioning relative to the current position in a stream or ios::endfor positioning relative to the

end of a stream. The file-position pointer is an integer value that specifies the location in the file as a number of bytes from the file's

starting location. Some examples of positioning the "get"

file-position pointer are: /position to the nth byte of fileObject (accept

92% MATCHING BLOCK 286/304
248E1110-Object Oriented Programing using C++(...

(D165248029)

ios::beg) fileObject.seekg(n); /position n bytes forward in fileObject fileObject.seekg(n, ios::cur); /position n bytes once again from

end of fileObject fileObject.seekg(n, ios::end); /position at end of fileObject fileObject.seekg(0, ios::end); 9.8

Sequential input and output operation

95% MATCHING BLOCK 287/304 OOP through C++ (Block 2).pdf (D148964031)

The file stream classes support a number of member functions for performing the input and output operations on files. Functions

such as

100% MATCHING BLOCK 288/304 ODL Learning Materials (ALL 5 UNITS).pdf (D109014230)

get() and put() are capable of handling a single character at a time. The function getline() lets you handle multiple characters at a

time. Another pair of functions i.e., read() and write() are capable of reading and writing blocks of binary data. The get(),

getline() and put() Functions The functions get() and put() are byte-oriented. That is, get() will read a byte of data and put() will write a

byte of data.

93% MATCHING BLOCK 289/304 C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

The get() has many forms, but the most commonly used version is shown here, along with put() : istream & get(char & ch) ; ostream

& put(char ch) ; The get() function reads a single character from the associated stream and puts that value in ch. It returns a

reference to the stream.

The put() writes the value of

100% MATCHING BLOCK 290/304 C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

ch to the stream and returns a reference to the stream.

illustration: /* C++ Sequential Input/Output Operations on Files */

206

Object Oriented Programmimg with C++ Notes #

80% MATCHING BLOCK 291/304 odl C++ lecture notes unit-5.docx (D109013221)

include>iostream.h< #include>stdlib.h< #include>fstream.h< #include>conio.h< void main() { burn fname[20],

ch; ifstream blade;/make an info stream clrscr(); cout>>"Enter the name of the record: "; cin.get(fname, 20); cin.get(ch);

fin.open(fname, ios::in);/open record if(!fin)/if blade stores zero i.e., false esteem { cout>>"Error happened in opening the

file..!!\n"; cout>>"Press any key to exit...\n"; getch(); exit(1); } while(fin)/balance will be 0 when eof is

come to {

https://secure.urkund.com/view/158826004-173688-689700#/sources 73/125

92% MATCHING BLOCK 292/304 odl C++ lecture notes unit-5.docx (D109013221)

fin.get(ch);/read a character cout>>ch;/show the character } cout>>"\nPress any key to exit...\n"; fin.close(); getch(); }

Output

Files Stream 207 Notes 9.9 Summary C++ provides the following classes to perform output and input of characters to/from files: ?

ofstream: Stream class to write on files ? ifstream: Stream class to read from files ? fstream: Stream class to both read and write

from/to files.

100% MATCHING BLOCK 293/304
137E1240-Object Oriented Programming using C++ ...

(D165245896)

These classes are derived directly or indirectly from the classes istream and ostream . We have already used objects whose types

were these classes: cin is an object of class istream and cout is an object of class ostream . Therefore, we have already been using

classes that are related to our file streams. And in fact, we can use our file streams the same way we are already used to use cin and

cout , with the only difference that we have to associate these streams with physical files. 9.10

Check Your Progress Multiple Choice Questions 1. To perform File I/O operations, we must use _____________ header

file. (a) > ifstream< (b) > ofstream< (c) > fstream< (d) Any of these 2.

73% MATCHING BLOCK 294/304 INF_1016.pdf (D164968061)

Which of the following is not a file opening mode ____ . (a) ios::ate (b) ios::nocreate (c) ios::noreplace (d) ios::

truncate 3. Streams

100% MATCHING BLOCK 295/304 OOP through C++ (Block 2).pdf (D148964031)

that will be performing both input and output operations must be declared as class _________ . (

a) iostream (b) fstream (c) stdstream (d) Stdiostream 4.

78% MATCHING BLOCK 296/304 OOP through C++ (Block 2).pdf (D148964031)

To create an output stream, we must declare the stream to be of class ___________ . (

a) ofstream (b) ifstream (c) iostream (d) None of these 5. __________ is return type of is_open() function. (a) int (b) bool (c) float (d)

char * 6. If we have object from ofstream class, then default mode of opening the file is _____ .

208 Object Oriented Programmimg with C++ Notes (a) ios::in (b) ios::out (c) ios::in|ios::trunc (d) ios::out|ios::trunk 7.

71% MATCHING BLOCK 297/304 ECAP 444.docx (D142426097)

By default, all the files are opened in ___________mode . (a) Binary (b) Text (c)

Can’t say (d) Numbers 8. If we have object from fstream class, then what

60% MATCHING BLOCK 298/304 ECAP 444.docx (D142426097)

is the default mode of opening the file? (a) ios::in|ios::out (b) ios::in|ios::out|ios::trunc (c) ios::in|ios::

trunc (d) Default mode depends on compiler 9. Which of the following is not used to seek

58% MATCHING BLOCK 300/304 INF_1016.pdf (D164968061)

a file pointer? (a) ios::cur (b) ios::set (c) ios::end (d) ios::beg 10. It is not possible to combine two or more file opening mode in open

() method. (

a) True (b) False 9.11 Questions and Exercises 1. Define file stream 2. What are Class for file stream operation? 3. Write the steps to

open a file? 4. Write the steps to close the file? 5. How can the end of file can be detected? 6. How does I/O operations are managed

by manipulators 7.

https://secure.urkund.com/view/158826004-173688-689700#/sources 74/125

89% MATCHING BLOCK 299/304

What is a open()? 8. Describe briefly the features of I/O system supported by C++. 9.

What are the different modes of opening a file? 10. What is sequential input operations? 9.12 Key Terms ? Ofstream: It

92% MATCHING BLOCK 301/304 OOP through C++ (Block 2).pdf (D148964031)

represents the output file stream and is used to create files and to write information to files. ? Ifstream: It represents the input file

stream and is used to read information from files. ? Fstream:

It

98% MATCHING BLOCK 302/304 OOP through C++ (Block 2).pdf (D148964031)

represents the file stream generally, and has the capabilities of both ofstream and ifstream which means it can create files, write

information to files, and read information from files. ?

96% MATCHING BLOCK 303/304 ECAP 444.docx (D142426097)

ios::app: All output to that file to be appended to the end.

Files Stream 209 Notes ? ios::ate: It opens a file for output and moves the read/write control to the end of the file. Check Your

Progress: Answers: 1. (c) > fstream< 2. (d) ios::truncate 3. (b) fstream 4. (a) ofstream 5. (b) bool 6. (c) ios::in|ios::trunc 7. (b) Text 8.

(d) Default mode depends on compiler 9. (b) ios::set 10. (b) False 9.13

Further

Readings ? Balagurusamy (2008)

67% MATCHING BLOCK 304/304
Object Oriented Programming through C++ Block ...

(D164970258)

Object Oriented Programming With C++ Tata McGraw-Hill Education. ? Subhash, K. U. (2010) Object Oriented Programming With

C++ Pearson Education India.

Hit and source - focused comparison, Side by Side

Submitted text As student entered the text in the submitted document.

Matching text As the text appears in the source.

1/304 SUBMITTED TEXT 30 WORDS

programming 1.4 Basic Concepts of Object-oriented

Programming 1.5 Benefits of OOP 1.5.1 Others are extended

conventional languages 1.5.2 Applications of OOP 1.6

55% MATCHING TEXT 30 WORDS

Programming Paradigm-Basic concepts of Object Oriented

Programming-Benefits of OOP- Application of OOP.

https://www.msuniv.ac.in/Download/Pdf/a6241a9e41024aa

2/304 SUBMITTED TEXT 16 WORDS

Further Readings Objectives After studying this unit, you should

be able to: Understand the

89% MATCHING TEXT 16 WORDS

DECAP444_OBJECT_ORIENTED_PROGRAMMING_USING_C++.pdf (D142327140)

https://secure.urkund.com/view/158826004-173688-689700#/sources 75/125

3/304 SUBMITTED TEXT 35 WORDS

Data and Functions in OOP The data of an object can be

accessed only by the functions associated with that object.

However, functions of one object can access the functions of

other objects.

89% MATCHING TEXT 35 WORDS

data and functions around these The data of an object can be

accessed only by the functions associated with that object.

However, functions of one object can access the functions of

other objects.

https://www.msuniv.ac.in/Download/Pdf/a6241a9e41024aa

4/304 SUBMITTED TEXT 64 WORDS

data as a critical element in the program development and does

not permit it to flow freely around the system. It ties data more

closely to the functions that operate on it and protects it from

accidental modification from outside functions. OOP allows us

to decompose a problem into a number of entities called

objects and then builds data and functions around these

95% MATCHING TEXT 64 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

5/304 SUBMITTED TEXT 83 WORDS

features of object-oriented programming are: Emphasis is on

data rather than procedure. Programs are divided into what are

known as objects. Data structures are designed such that they

characterize the objects. Functions that operate on the data of

an object are tied together in the data structure. Data is hidden

and cannot be accessed by external functions. Objects may

communicate with each other through functions. New data and

functions can be easily added whenever necessary. Follows

bottom-up approach in program design. 1.3

98% MATCHING TEXT 83 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

6/304 SUBMITTED TEXT 47 WORDS

in object-oriented programming. We shall discuss in this section

the following general concepts: Objects Classes Data

abstraction Data encapsulation Inheritance Polymorphism

Dynamic binding Message passing Objects Objects are the

fundamental run-time entities in an object-oriented system.

They might represent a person, a place,

59% MATCHING TEXT 47 WORDS

In object-oriented parlance, problem is viewed in terms of the

following concepts: 1. Objects 2. Classes 3. Data abstraction 4.

Data encapsulation 5. Inheritance 6. Polymorphism 7. Dynamic

binding 8. Message passing Let us now study the concept in

Objects: Objects are the basic run-time entities in an object-

oriented system. They may represent a person, a place,

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

7/304 SUBMITTED TEXT 46 WORDS

When a program is executed, the objects interact by sending

messages to one another. For example, if "customer" and

"account" are two objects in a program, then the customer

object may send a message to the account object requesting

for the bank balance. Each object

96% MATCHING TEXT 46 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

https://secure.urkund.com/view/158826004-173688-689700#/sources 76/125

8/304 SUBMITTED TEXT 37 WORDS

data. Objects can interact without having to know details of

each other's data or code. It is sufficient to know the type of

message accepted and the type of response returned by the

objects.

98% MATCHING TEXT 37 WORDS

data. Objects can interact without having to know details of

each other’s data or code. It is a sufficient to know the type of

message accepted, and the type of response returned by the

objects.

https://www.ddegjust.ac.in/studymaterial/mca-3/ms-17.pdf

9/304 SUBMITTED TEXT 11 WORDS

Object Class Class is a blueprint for a data type,

100% MATCHING TEXT 11 WORDS

248E1110-Object Oriented Programing using C++(Id 2732).doc (D165248029)

10/304 SUBMITTED TEXT 117 WORDS

definition starts with the keyword class followed by the class

name; and the class body, enclosed by a pair of curly braces. A

class definition must be followed either by a semicolon or a list

of declarations. For example, we defined the Box data type

using the keyword class as follows: class Box { public: double

length; // Length of a box double breadth; // Breadth of a box

double height; // Height of a box }; The keyword public

determines the access attributes of the members of the class

that follow it. A public member can be accessed from outside

the class anywhere within the scope of the class object.

98% MATCHING TEXT 117 WORDS

248E1110-Object Oriented Programing using C++(Id 2732).doc (D165248029)

11/304 SUBMITTED TEXT 14 WORDS

the data, and that keeps both safe from outside interference and

misuse.

91% MATCHING TEXT 14 WORDS

C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

12/304 SUBMITTED TEXT 28 WORDS

the data, and the functions that use them and data abstraction is

a system of uncovering just the interfaces and hiding the

implementation details from the user.

75% MATCHING TEXT 28 WORDS

248E1160-Lab-1_Object Oriented Programming.doc (D165247743)

13/304 SUBMITTED TEXT 14 WORDS

Dynamic binding Dynamic Binding refers to linking a procedure

call to the code

80% MATCHING TEXT 14 WORDS

Dynamic Binding: Binding refers to the linking of a procedure

call to the code

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

https://secure.urkund.com/view/158826004-173688-689700#/sources 77/125

14/304 SUBMITTED TEXT 131 WORDS

Inheritance Inheritance allows us to define a class in terms of

another class, which makes it easier to create and maintain an

application. This also provides an opportunity to reuse the code

functionality and fast implementation time. When creating a

class, instead of writing completely new data members and

member functions, the programmer can designate that the new

class should inherit the members of an existing class. This

existing class is called the base class, and the new class is

referred to as the derived class. Polymorphism Polymorphism

occurs when there is a hierarchy of classes and they are related

by inheritance. C++ polymorphism means that a call to a

member function will cause a different function to be executed

depending on the type of object that invokes the function.

97% MATCHING TEXT 131 WORDS

248E1110-Object Oriented Programing using C++(Id 2732).doc (D165248029)

15/304 SUBMITTED TEXT 18 WORDS

Creating classes that define objects and its behavior. Creating

objects from class definitions Establishing communication

among objects

91% MATCHING TEXT 18 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

16/304 SUBMITTED TEXT 77 WORDS

Message Passing involves specifying the name of objects, the

name of the function, and the information to be sent. 1.5

Benefits of OOP OOP offers several benefits to both the

program designer and the user. Object- orientation contributes

to the solution of many problems associated with the

development and quality of software products. The new

technology promises greater programmer productivity, better

quality of software and lesser maintenance cost. The principal

advantages are: Through inheritance:

97% MATCHING TEXT 77 WORDS

ODL Learning Materials (ALL 5 UNITS).pdf (D109014230)

17/304 SUBMITTED TEXT 15 WORDS

interface descriptions with external systems much simpler.

Software complexity can be easily managed. 1.5.1

100% MATCHING TEXT 15 WORDS

interface descriptions with external systems much simpler. •

Software complexity can be easily managed.

https://www.ddegjust.ac.in/studymaterial/mca-3/ms-17.pdf

https://secure.urkund.com/view/158826004-173688-689700#/sources 78/125

18/304 SUBMITTED TEXT 135 WORDS

We can eliminate redundant code. ? We can extend the use of

existing classes. We can build programs from the standard

working modules that communicate with one another, rather

than having to start writing the code from scratch. The principle

of data hiding helps the programmer to build secure programs

that cannot be invaded by code in other parts of the program. It

is possible to have multiple instances of an object to co-exist

without any interference. It is possible to map objects in the

problem domain to those objects in the program. It is easy to

partition the work in a project based on objects. The data-

centered design approach enables us to capture more details of

a model in implementable form. Object-oriented systems can

be easily upgraded from small to large systems.

93% MATCHING TEXT 135 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

19/304 SUBMITTED TEXT 23 WORDS

AI) and expert systems, Neural networks and parallel

programming, and Computer-Aided Design (CAD) systems. 1.6

C++ C++ is an object-oriented programming language,

71% MATCHING TEXT 23 WORDS

AI and expert systems ? Neural networks and parallel

programming ? CIM/CAM/CAD systems 15. C++. C++ is an

object oriented programming language

https://www.vidyarthiplus.com/vp/attachment.php?aid=46806

20/304 SUBMITTED TEXT 30 WORDS

developed by Bjarne Stroustrup at AT&T Bell Laboratories in

Murray Hill, New Jersey, USA, in the early eighties. C++ is an

extension of C with a major addition of

95% MATCHING TEXT 30 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

21/304 SUBMITTED TEXT 14 WORDS

The program that you typed into the Edit window constitutes

the source file

88% MATCHING TEXT 14 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

22/304 SUBMITTED TEXT 48 WORDS

a source file is not an executable program; it is only the

instructions on how to create a program. Transforming your

source file into an executable program requires two steps: 1.

You must compile the source file into an object file. It has an

‘.OBJ’ extension. 2.

92% MATCHING TEXT 48 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

https://secure.urkund.com/view/158826004-173688-689700#/sources 79/125

23/304 SUBMITTED TEXT 12 WORDS

file. Linking combines the object files into a single executable

program.

100% MATCHING TEXT 12 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

24/304 SUBMITTED TEXT 40 WORDS

menu. A window called Compiling will appear. An entry called

Lines Compiled will change as compiling progresses. When the

process is finished, the window will display ‘Success: Press any

Key’. The entries for Warnings and Errors should be ‘0’.

84% MATCHING TEXT 40 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

25/304 SUBMITTED TEXT 26 WORDS

Simple C++ Program Let’s begin with a simple example of C++

program that prints a string on the screen. // PRINTING A

STRING #include >iostream.

92% MATCHING TEXT 26 WORDS

Simple C++ Program Let us begin with a simple example of a

C++ program that prints a string on the screen. Printing A String

#include>iostream<

https://www.ddegjust.ac.in/studymaterial/mca-3/ms-17.pdf

26/304 SUBMITTED TEXT 78 WORDS

C++ introduces a new comment symbol, // (double slash).

Comments start with a double slash symbol and terminate at

the end of the line. A comment can start at the beginning of the

line or on the same line following a program statement. The

double slash comment is basically a single line comment.

Multiline comments can be written as follows: // This is an

example of // C+ + program to illustrate // some of its features.

68% MATCHING TEXT 78 WORDS

C++ introduces a new comment symbol // (double slash).

Comment start with a double slash symbol and terminate at the

end of the line. A comment may start anywhere in the line, and

whatever follows till the end of the line is ignored. Note that

there is no closing symbol. The double slash comment is

basically a single line comment. Multiline comments can be

written as follows: // This is an example of // C++ program to

illustrate // some of its features

https://www.ddegjust.ac.in/studymaterial/mca-3/ms-17.pdf

27/304 SUBMITTED TEXT 16 WORDS

This is an example of C++ program to illustrate some of its

features */ The #

100% MATCHING TEXT 16 WORDS

This is an example of // C++ program to illustrate // some of its

features The

https://www.ddegjust.ac.in/studymaterial/mca-3/ms-17.pdf

28/304 SUBMITTED TEXT 19 WORDS

program is an output statement. The statement, cout > >

:C++ is better C”.;

95% MATCHING TEXT 19 WORDS

program 1.10.1 is an output statement. The statement

Cout>>”is better C.”;

https://www.ddegjust.ac.in/studymaterial/mca-3/ms-17.pdf

https://secure.urkund.com/view/158826004-173688-689700#/sources 80/125

29/304 SUBMITTED TEXT 19 WORDS

Linking To link your object file, select Link ExE file from the

Compile menu. The FIRST.OBJ file will

100% MATCHING TEXT 19 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

30/304 SUBMITTED TEXT 17 WORDS

the factorial of a number The factorial of a number 'n' is the

product of all

81% MATCHING TEXT 17 WORDS

C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

31/304 SUBMITTED TEXT 16 WORDS

It is subsequently important understand some of the concepts

used extensively in object-oriented programming.

80% MATCHING TEXT 16 WORDS

It is necessary understand some of the concepts used

extensively in object-oriented programming.

https://www.ddegjust.ac.in/studymaterial/mca-3/ms-17.pdf

32/304 SUBMITTED TEXT 27 WORDS

include>iostream< using namespace std; int main() { int

num,factorial=1; cout>>" Enter Number To

85% MATCHING TEXT 27 WORDS

C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

33/304 SUBMITTED TEXT 44 WORDS

Polymorphism occurs when there is a hierarchy of classes and

they are related by inheritance. C++ polymorphism means that

a call to a member function will cause a different function to be

executed depending on the type of object that invokes the

function.

100% MATCHING TEXT 44 WORDS

248E1110-Object Oriented Programing using C++(Id 2732).doc (D165248029)

34/304 SUBMITTED TEXT 30 WORDS

developed by Bjarne Stroustrup at AT&T Bell Laboratories in

Murray Hill, New Jersey, USA, in the early eighties. C++ is an

extension of C with a major addition of

95% MATCHING TEXT 30 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

35/304 SUBMITTED TEXT 26 WORDS

definition starts with the keyword class followed by the class

name; and the class body, enclosed by a pair of curly braces. (a)

Class (

100% MATCHING TEXT 26 WORDS

248E1110-Object Oriented Programing using C++(Id 2732).doc (D165248029)

https://secure.urkund.com/view/158826004-173688-689700#/sources 81/125

36/304 SUBMITTED TEXT 14 WORDS

the data, and that keeps both safe from outside interference and

misuse. (

91% MATCHING TEXT 14 WORDS

C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

37/304 SUBMITTED TEXT 23 WORDS

allows us to define a class in terms of another class, which

makes it easier to create and maintain an application. (

100% MATCHING TEXT 23 WORDS

248E1110-Object Oriented Programing using C++(Id 2732).doc (D165248029)

38/304 SUBMITTED TEXT 17 WORDS

occurs when there is a hierarchy of classes and they are related

by inheritance. C++ (

100% MATCHING TEXT 17 WORDS

248E1110-Object Oriented Programing using C++(Id 2732).doc (D165248029)

39/304 SUBMITTED TEXT 13 WORDS

data: Data is hidden and cannot be accessed by external

functions ??

95% MATCHING TEXT 13 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

40/304 SUBMITTED TEXT 24 WORDS

Operators 2.13.6 Shift Operators 2.13.7 Bit-Wise Operators 2.13.8

Logical Operators 2.13.9 Conditional Operators 2.13.10

100% MATCHING TEXT 24 WORDS

Operators 2.3.5 Shift Operators 2.3.6 Bit-wise Operators 2.3.7

Logical Operators 2.3.8 Conditional Operators 2.4

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

41/304 SUBMITTED TEXT 12 WORDS

Data structures are designed such that they characterize the

objects ??

100% MATCHING TEXT 12 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

42/304 SUBMITTED TEXT 18 WORDS

Object Oriented Programming With C++ Tata McGraw-Hill

Education. 20 Object Oriented Programmimg with

88% MATCHING TEXT 18 WORDS

Object Oriented Programming through C++ Block 1.pdf (D164970258)

https://secure.urkund.com/view/158826004-173688-689700#/sources 82/125

43/304 SUBMITTED TEXT 53 WORDS

As we know, the smallest individual units in a program are

known as tokens. A C++ program is written using these tokens,

white spaces, and the syntax of the language. Most of the C++

tokens are basically similar to the C tokens with the exception of

some additions and minor modifications. 2.2

90% MATCHING TEXT 53 WORDS

As we know, the smallest individual units in a program are

known as tokens. C++ has the following tokens: 1. A C++

program is written using these tokens, white spaces, and the

syntax of the language. Most of the C++ tokens are basically

similar to the C tokens with the exception of some additions

and minor modifications.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

44/304 SUBMITTED TEXT 14 WORDS

The smallest individual units in a program are known as tokens.

The tokens

88% MATCHING TEXT 14 WORDS

the smallest individual units in a program are known as tokens.

the following tokens: 1.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

45/304 SUBMITTED TEXT 17 WORDS

Further Readings Objectives After studying this unit, you should

be able to: ? Understand the

89% MATCHING TEXT 17 WORDS

DECAP444_OBJECT_ORIENTED_PROGRAMMING_USING_C++.pdf (D142327140)

46/304 SUBMITTED TEXT 29 WORDS

Keywords ? Identifiers ? Constants ? Strings ? Operators A C++

program is written using these tokens, white spaces, and the

syntax of the language. 2.3

100% MATCHING TEXT 29 WORDS

Keywords 2. Identifiers 3. Constants 4. Strings 5. Operators A

C++ program is written using these tokens, white spaces, and

the syntax of the language.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

47/304 SUBMITTED TEXT 39 WORDS

Keywords The keywords implement specific C++ language

features. They are explicitly reserved identifiers and cannot be

used as names for the program variables or other user-defined

program elements. Table 2.1 gives the complete set of C++

keywords.

100% MATCHING TEXT 39 WORDS

Keywords The keywords implement specific C++ language

features. They are explicitly reserved identifiers and cannot be

used as names for the program variables or other user-defined

program elements. Table 2.1 gives the complete set of C++

keywords.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

48/304 SUBMITTED TEXT 29 WORDS

asm double new switch auto else operator template break

enum private this case extern protected throw catch float public

try char for register typedet 22

100% MATCHING TEXT 29 WORDS

asm double new switch auto else operator template break

enum private this case extern protected throw catch float public

try char for register typedet

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

https://secure.urkund.com/view/158826004-173688-689700#/sources 83/125

49/304 SUBMITTED TEXT 15 WORDS

class friend return union const goto short unsigned continue if

signed virtual default inline

100% MATCHING TEXT 15 WORDS

class friend return union const goto short unsigned continue if

signed virtual default inline

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

50/304 SUBMITTED TEXT 50 WORDS

void delete int static volatile do long struct while 2.4 Identifiers

Identifiers refer to the names of variables, functions, arrays,

classes, etc., created by the programmer. They are the

fundamental requirement of any language. Each language has

its own rules for naming these identifiers. 2.5

100% MATCHING TEXT 50 WORDS

void delete int static volatile do long struct while 2.1.2 Identifiers

Identifiers refer to the names of variables, functions, arrays,

classes, etc., created by the programmer. They are the

fundamental requirement of any language. Each language has

its own rules for naming these identifiers.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

51/304 SUBMITTED TEXT 17 WORDS

type to another type. Type Conversion is the process of

converting one predefined type into another

71% MATCHING TEXT 17 WORDS

type to another type Introduction It is the process of converting

one type into another.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

52/304 SUBMITTED TEXT 58 WORDS

comprehensibility of the code. The enum keyword (from C)

automatically enumerates a list of words by assigning them

values 0, 1, 2, and so on. This facility provides an alternative

means for creating symbolic constants. The syntax of an enum

statement is similar to that of the struct statement. Examples:

enum shape {circle, square, triangle}; 2.8

94% MATCHING TEXT 58 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

53/304 SUBMITTED TEXT 54 WORDS

Derived Data Types ? Arrays: The application of arrays in C++ is

similar to that in C. The only exception is the way character

arrays are initialized. In C++, the size should be one larger than

the number of characters in the string. char string[3] " "xyz"; //

O.K. for C++ ?

87% MATCHING TEXT 54 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

54/304 SUBMITTED TEXT 24 WORDS

know that, in C, all variables must be declared before they are

used in executable statements. This is true with C++ as well.

100% MATCHING TEXT 24 WORDS

know that, in C, all variables must be declared before they are

used in executable statements. This is true with C++ as well.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

https://secure.urkund.com/view/158826004-173688-689700#/sources 84/125

55/304 SUBMITTED TEXT 21 WORDS

is that we cannot see at a glance all the variables used in a

scope. 30

100% MATCHING TEXT 21 WORDS

is that we cannot see at a glance all the variables used in a

scope. 2.6.3

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

56/304 SUBMITTED TEXT 21 WORDS

Dynamic Initialization of Variables C++, permits initialization of

the variables at run time. This is referred to as dynamic

initialization.

82% MATCHING TEXT 21 WORDS

Dynamic Initialization of Variables One additional feature of C++

is that it permits initialization of the variables at run time. This is

referred to as dynamic initialization.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

57/304 SUBMITTED TEXT 136 WORDS

In this, a variable can be initialized at run time using expressions

at the place of declaration. Consider the following valid

initialization statements: … … int n = strlen(string); … float area =

3.14159 *rad *rad; This means that both the declaration and

initialization of a variable can be done simultaneously at the

place where the variable is used for the first time. The following

two statements in the example of the previous section float

average; // declare where it is necessary average = sum / i; can

be combined into a single statement: float average = sum /i; //

initialize dynamically // at run time Dynamic initialization is

extensively used in object-oriented programming. We can

create exactly the type of object needed using information that

is known only at the run time. 2.12

95% MATCHING TEXT 136 WORDS

in a variable can be initialized at run time using expressions at

the place of declaration. For example, the following are valid

initialization statements: ….. ….. int n = strlen(string); ….. float area

= 3.14159 *rad *rad; This means that both the declaration and

initialization of a variable can be done simultaneously at the

place where the variable is used for the first time. The two

statements in the following example of the previous section

float average; // declare where it is necessary average = sum / i;

can be combined into a single statement: float average = sum

/i; // initialize dynamically // at run time Dynamic initialization is

extensively used in object-oriented programming. We can

create exactly the type of object needed using information that

is known only at the run time. 50

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

58/304 SUBMITTED TEXT 98 WORDS

Reference Variables A reference variable provides an alternative

name for a previously defined variable. For example, if we make

the variable sum a reference to the variable total, then sum and

total can be used interchangeably to represent that variable. A

reference variable is created as follows: data-type & reference-

name * variable-name Example: float total" 100; float & sum =

total; total is a float type variable that has already been declared,

sum is the alternative name declared to represent the variable

total. Both the variables refer to the same data object in the

memory.

97% MATCHING TEXT 98 WORDS

reference variable. A reference variable provides an alias

(alternative name) for a previously defined variable. For example,

if we make the variable sum a reference to the variable total,

then sum and total can be used interchangeably to represent

that variable. A reference variable is created as follows:

data_type & reference_name = variable_name Example: float

total = 100; float &sum = total; total is a float type variable that

has already been declared, sum is the alternative name declared

to represent the variable total. Both the variables refer to the

same data object in the memory.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

59/304 SUBMITTED TEXT 21 WORDS

total; and count >> sum; both print the value 100. The

statement total = total + 10;

87% MATCHING TEXT 21 WORDS

total; and cout >> sum; both print the value 100. The

statement total = total + 10;

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

https://secure.urkund.com/view/158826004-173688-689700#/sources 85/125

60/304 SUBMITTED TEXT 66 WORDS

will change the value of both total and sum to 110. Likewise, the

assignment sum = 0; will change the value of both the variables

to zero. A reference variable must be initialized at the time of

declaration, this establishes the correspondence between the

reference and the data object that it names. Note that the

initialization of a reference variable is completely different from

assignment

100% MATCHING TEXT 66 WORDS

will change the value of both total and sum to 110. Likewise, the

assignment sum = 0; will change the value of both the variables

to zero. A reference variable must be initialized at the time of

declaration. This establishes the correspondence between the

reference and the data object that it names. Note that the

initialization of a reference variable is completely different from

assignment.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

61/304 SUBMITTED TEXT 146 WORDS

Note that C++ assigns additional meaning to the symbol &.

Here, & is not an address operator. The notation floats & means

reference to float. Other examples are: int n[10]; int& x = n[10];

//x is alias for n[10] char & a = n; // initialize reference to a literal

The variable x is an alternative to the array element n[10]. The

variable a is initialized to the new line constant. This creates a

reference to the otherwise unknown location where the new

line constant \n is stored. The following references are also

allowed: i. int x; int *p=&x; int &m = *p; ii. int & n = 50; The first

set of declarations causes m to refer to x which is pointed to by

the pointer p and the statement in (ii) creates an int object with

value 50 and name n.

89% MATCHING TEXT 146 WORDS

Note that C++ assigns additional meaning to the symbol &.

Here, & is not an address operator. The notation float & means

reference to float. Some more examples are presented below to

illustrate this point: int n[10]; int &x = n[10]; //x is alias for n[10]

char &a = ‘\n’; // initialize reference to a literal The variable x is

an alternative to the array element n[10]. The variable a is

initialized to the new line constant. This creates a reference to

the otherwise unknown location where the new line constant \n

is stored. The following references are also allowed: 1. int x; int

*p=&x; int &m = *p; 2. int &n = 50; LOVELY PROFESSIONAL

UNIVERSITY 51 Unit 2: Beginning of OOP Language Notes The

first set of declarations causes m to refer to x which is pointed

to by the pointer p and the statement in (2) creates an int object

with value 50 and name n.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

62/304 SUBMITTED TEXT 85 WORDS

Consider the following: void f(int & x) // uses reference { x =

x+10: // x is incremented; so also m } main () { int m = 10; f(m);

// function call …. … } When the function call f(m) is executed,

the following initialization occurs: Int & x s m; Thus x becomes

an alias of m after executing the statement f(m); 32

95% MATCHING TEXT 85 WORDS

Consider the following code snippet: void f(int &x) // uses

reference { x = x+10; // x is incremented; so also m } main () {

int m = 10; f(m); // function call …. … } When the function call

f(m) is executed, the following initialization occurs: Int &x = m;

Thus x becomes an alias of m after executing the statement

f(m);.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

63/304 SUBMITTED TEXT 48 WORDS

Since the variable x and m are aliases, when the function

increments x, m is also incremented. The value of m becomes

20 after the function is executed. In traditional C, we

accomplish this operation using pointers and dereferencing

techniques. Figure 2.2: Call by Reference Mechanism

96% MATCHING TEXT 48 WORDS

Since the variable x and m are aliases, when the function

increments x, m is also incremented. The value of m becomes

20 after the function is executed. In traditional C, we

accomplish this operation using pointers and dereferencing

techniques. The call by reference mechanism

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

https://secure.urkund.com/view/158826004-173688-689700#/sources 86/125

64/304 SUBMITTED TEXT 64 WORDS

The call by reference mechanism is useful in object-oriented

programming because it permits the manipulation of objects by

reference and eliminates the copying of object parameters back

and forth. Note that the references can be created not only for

built-in data types but also for user-defined data types such as

structures and classes. References work wonderful well with

these user-defined data types. 2.13

97% MATCHING TEXT 64 WORDS

The call by reference mechanism is useful in object-oriented

programming because it permits the manipulation of objects by

reference and eliminates the copying of object parameters back

and forth. Note that the references can be created not only for

built-in data types but also for user-defined data types such as

structures and classes. References work wonderfully well with

these user-defined data types.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

65/304 SUBMITTED TEXT 20 WORDS

of Implicit Type Conversion: Explicit Type Conversion : Explicit

Type conversion is also called type casting. It is

70% MATCHING TEXT 20 WORDS

137E1240-Object Oriented Programming using C++_120E1240.docx (D165245896)

66/304 SUBMITTED TEXT 17 WORDS

Constant, variables, array elements function references can be

joined together by various operators to form expressions.

100% MATCHING TEXT 17 WORDS

constant, variables, array elements function references can be

joined together by various operators to form expressions.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

67/304 SUBMITTED TEXT 38 WORDS

operators act upon are called operands. Some operators require

two operands, while others act upon only one operand. Most

operators allow the individual operands to be expressions. A few

operators permit only single variables as operands. Operators

100% MATCHING TEXT 38 WORDS

operators act upon are called operands. Some operators require

two operands, while others act upon only one operand. Most

operators allow the individual operands to be expressions. A few

operators permit only single variables as operands. Operators

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

68/304 SUBMITTED TEXT 63 WORDS

can be classified as: 1. Arithmetic operators 2. Assignment

operators 3. Unary operators 4. Rwltional operators 5. Shift

operators 6. Bit-wise operators 7. Logical operators 8.

Conditional operators 2.13.1 Arithmetic Operators There are five

arithmetic operators in C. They are Operator Function +

addition - subtraction * multiplication / division % remainder

after integer division

85% MATCHING TEXT 63 WORDS

can be classified as: 1. Arithmetic operators 2. Assignment

operators LOVELY PROFESSIONAL UNIVERSITY 23 Unit 2:

Beginning of OOP Language Notes 3. Unary operators 4.

Comparison operators 5. Shift operators 6. Bit-wise operators 7.

Logical operators 8. Conditional operators 2.3.1 Arithmetic

Operators There are five arithmetic operators in C++. They are

Operator Function + addition – subtraction * multiplication /

division % remainder after integer division

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

69/304 SUBMITTED TEXT 20 WORDS

Operands acted upon by arithmetic operators must represent

numeric values. So, the operands can be integer, floating-point

or characters.

87% MATCHING TEXT 20 WORDS

operands acted upon by arithmetic operators must represent

numeric values. Thus, the operands can be integer quantities,

floating-point quantities or characters (

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

https://secure.urkund.com/view/158826004-173688-689700#/sources 87/125

70/304 SUBMITTED TEXT 32 WORDS

the second operand be nonzero. Similarly, the division operator

(/) requires that the second operand be nonzero. Division of one

integer quantity by another is referred to as integer division.

100% MATCHING TEXT 32 WORDS

the second operand be nonzero. Similarly, the division operator

(/) requires that the second operand be nonzero. Division of one

integer quantity by another is referred to as integer division.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

71/304 SUBMITTED TEXT 52 WORDS

Suppose that a and b are integer variables whose values are 2

and 1, respectively. Several arithmetic expressions involving

these variables are shown below, together with their resulting

values. Expression Value a + b 3 a – b 1 a * b 2 a / b 2 a % b 0

100% MATCHING TEXT 52 WORDS

Suppose that a and b are integer variables whose values are 8

and 4, respectively. Several arithmetic expressions involving

these variables are shown below, together with their resulting

values. Expression Value a + a – b 4 a * b 32 a / b 2 a % b 0 24

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

72/304 SUBMITTED TEXT 47 WORDS

Now suppose that a and b are floating-point variables whose

values are 4.5 and 2.0, respectively. Several arithmetic

expressions involving these variables are shown below, together

with their resulting values. Expression Value a + b 6.5 a - b 2.5 a

* b 9.0 a /

84% MATCHING TEXT 47 WORDS

Now suppose that a1 and a2 are floating-point variables whose

values are 14.5 and 2.0, respectively. Several arithmetic

expressions involving these variables are shown below, together

with their resulting values. Expression Value a1 + a2 16.5 a1 – a2

12.5 a1 *

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

73/304 SUBMITTED TEXT 54 WORDS

differ in type may undergo type conversion before the

expression takes on its final value. In general, the final result will

be expressed in the highest precision possible, consistent with

the data type of the operands. The following rules apply when

neither operand is unsigned. 1. If both operands are floating-

point types whose

100% MATCHING TEXT 54 WORDS

differ in type may undergo type conversion before the

expression takes on its final value. In general, the final result will

be expressed in the highest precision possible, consistent with

the data type of the operands. The following rules apply when

neither operand is unsigned. 1. If both operands are floating-

point types whose

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

74/304 SUBMITTED TEXT 156 WORDS

double. 2. If one operand is a floating-point type (e.g., float,

double or long double) and the other is a char or an int

(including short int or long int), the char or int will be converted

to the floating-point type and the result will be expressed as

such. Hence, an operation between an int and a double will

result in a double. 3. If neither operand is a floating-point type

but one is long int, the other will be converted to long int and

the result will be long int. Thus, an operation between a long int

and an int will result in a long int. 4. If neither operand is a

floating-point type or a long int, then both operands will be

converted to int (if necessary) and the result will be int. Thus, an

operation between a short into and an int will result in an int. 34

100% MATCHING TEXT 156 WORDS

double.) 2. If one operand is a floating-point type (e.g., float,

double or long double) and the other is a char or an int

(including short int or long int), the char or int will be converted

to the floating-point type and the result will be expressed as

such. Hence, an operation between an int and a double will

result in a double. 3. If neither operand is a floating-point type

but one is long int, the other will be converted to long int and

the result will be long int. Thus, an operation between a long int

and an int will result in a long int. 4. If neither operand is a

floating-point type or a long int, then both operands will be

converted to int (if necessary) and the result will be int. Thus, an

operation between a short into and an int will result in an int.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

https://secure.urkund.com/view/158826004-173688-689700#/sources 88/125

75/304 SUBMITTED TEXT 78 WORDS

Any of the operators used as shown below: A

>operator<=y can also be represented as a=a

>operator< b that is, b is evaluated before the operation

takes place. You can also assign values to more than one

variable at the same time. The assignment will take place from

the right to the left. For example, A = b = 0; In the example

given above, first b will be initialized and then a will be initialized.

2.13.3

100% MATCHING TEXT 78 WORDS

Any of the operators used as shown below: A

>operator<=y can also be represented as a=a

>operator< b that is, b is evaluated before the operation

takes place. You can also assign values to more than one

variable at the same time. The assignment will take place from

the right to the left. For example, a = b = 0; In the example

given above, first b will be initialized and then a will be initialized.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

76/304 SUBMITTED TEXT 25 WORDS

The increment operator, ++, can be used in two ways: ? As a

prefix, in which the operator precedes the variable. ++I var; ?

100% MATCHING TEXT 25 WORDS

The increment operator, ++, can be used in two ways - as a

prefix, in which the operator precedes the variable. ++ var;

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

77/304 SUBMITTED TEXT 13 WORDS

As a postfix, in which the operator follows the variable. I var++;

95% MATCHING TEXT 13 WORDS

as a postfix operator, in which the operator follows the variable.

var++;

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

78/304 SUBMITTED TEXT 31 WORDS

var1 = 20; var2 = ++var1; The equivalent of this code is: var1 =

20; var1 = var1 + 1; // Could also have been written as var1 += 1;

94% MATCHING TEXT 31 WORDS

var1 = 20; var2 = var1++; The equivalent of this code is: var1 =

20; var2=var1; var1 = var1 + 1; // Could also have been written

as var1 += 1;

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

79/304 SUBMITTED TEXT 26 WORDS

Shift Operators Data is stored internally in binary format (in the

form of bits). A bit can have a value of one or zero.

100% MATCHING TEXT 26 WORDS

Shift Operators Data is stored internally in binary format (in the

form of bits). A bit can have a value of one or zero.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

80/304 SUBMITTED TEXT 40 WORDS

examples of Unary operators: ? The increment (++) and

decrement (--) operators. ? The unary minus (-) operator. ? The

logical not (!) operator. The unary operators operate on the

object for which they were called and normally, this

90% MATCHING TEXT 40 WORDS

Examples of Unary operators − ? The increment (++) and

decrement (--) operators. ? The unary minus (-) operator. ? The

logical not (!) operator. Note: In cases, unary operators operate

on the object for which they were called and normally, this

https://mu.ac.in/wp-content/uploads/2020/12/Object-Oriented-Programming-F.Y.-MCA-Semester-I.pdf

https://secure.urkund.com/view/158826004-173688-689700#/sources 89/125

81/304 SUBMITTED TEXT 45 WORDS

Shift operators work on individual bits in a byte. Using the shift

operator involves moving the bit pattern left or right. You can

use them only on integer data type and not on the char, float, or

double data types. 36

98% MATCHING TEXT 45 WORDS

Shift operators work on individual bits in a byte. Using the shift

operator involves moving the bit pattern left or right. You can

use them only on integer data type and not on the char, bool,

float, or double data types.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

82/304 SUBMITTED TEXT 13 WORDS

Logical Operators Use logical operators to combine the results

of Boolean expressions.

100% MATCHING TEXT 13 WORDS

Logical Operators Use logical operators to combine the results

of Boolean expressions.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

83/304 SUBMITTED TEXT 99 WORDS

This example finds the maximum of two given numbers. If

(num1 < num2) { imax = num1; } else { imax = num2; } In the

above program code, we determine whether num1 is greater

than num2. The variable, imax is assigned the value, num1, if the

expression, (num1 <num2), evaluates to true, and the value,

num2, if the expression evaluates to false. The above program

code can be modified using the conditional operator as: Imax =

(num1 < num2) ? num1 : num2; The ?: Operator is called the

ternary operator since it has three operands. 2.13.10

94% MATCHING TEXT 99 WORDS

This example finds the maximum of two given numbers. If

(num1 < num2) { imax = num1; } else { imax = num2; } 32

LOVELY PROFESSIONAL UNIVERSITY Object-oriented

Programming Notes In the above program code, we

determining whether num1 is greater than num2. The variable,

imax is assigned the value, num1, if the expression, (num1

<num2), evaluates to true, and the value, num2, if the

expression evaluates to false. The above program code can be

modified using the conditional operator as: Imax = (num1 <

num2) ? num1 : num2; The ?: Operator is called the ternary

operator since it has three operands.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

84/304 SUBMITTED TEXT 15 WORDS

Scope resolution operator The scope resolution (::) operator is

used to qualify hidden names.

100% MATCHING TEXT 15 WORDS

scope resolution operator? The :: (scope resolution) operator is

used to qualify hidden names

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

85/304 SUBMITTED TEXT 22 WORDS

can use the unary scope operator if a namespace scope or

global scope name is hidden by an explicit declaration of

85% MATCHING TEXT 22 WORDS

248E1110-Object Oriented Programing using C++(Id 2732).doc (D165248029)

86/304 SUBMITTED TEXT 22 WORDS

Variable which stores the address of another variable is called a

pointer, that "point to" the variable whose address they store.

85% MATCHING TEXT 22 WORDS

137E1240-Object Oriented Programming using C++_120E1240.docx (D165245896)

https://secure.urkund.com/view/158826004-173688-689700#/sources 90/125

87/304 SUBMITTED TEXT 34 WORDS

used to access the variable they point to directly, by preceding

the pointer name with the dereference operator (*). The

operator itself can be read as "value pointed to by".

94% MATCHING TEXT 34 WORDS

137E1240-Object Oriented Programming using C++_120E1240.docx (D165245896)

88/304 SUBMITTED TEXT 39 WORDS

The reference and dereference operators are thus

complementary: ? & is the address-of operator, and can be read

simply as "address of" ? * is the dereference operator, and can

be read as "value pointed to by" 2.16

100% MATCHING TEXT 39 WORDS

137E1240-Object Oriented Programming using C++_120E1240.docx (D165245896)

89/304 SUBMITTED TEXT 14 WORDS

Expression and their types An expression is a combination of

variables, constants and

88% MATCHING TEXT 14 WORDS

ODL Learning Materials (ALL 5 UNITS).pdf (D109014230)

90/304 SUBMITTED TEXT 43 WORDS

of Expression are: ? Constant expressions: It comprises only

constant values. Examples: 20, ‘ a‘ and 2/5+30 . ? Integral

expressions: It produces an integer value as output after

performing all types of conversions. Example, x, 6*x-y and 10

+int (5.0). ?

51% MATCHING TEXT 43 WORDS

ODL Learning Materials (ALL 5 UNITS).pdf (D109014230)

91/304 SUBMITTED TEXT 40 WORDS

Float expressions: It produce floating-point value as output after

performing all types of conversions. Example, 9.25, x-y and 9+

float (7). ? Relational or Boolean expressions: It produces a bool

type value, that is, either true or false. ?

59% MATCHING TEXT 40 WORDS

ODL Learning Materials (ALL 5 UNITS).pdf (D109014230)

92/304 SUBMITTED TEXT 50 WORDS

a bool type value after combining two or more relational

expressions. Example, x==5 &&m==5 and y<x I I m>=n. ?

Bitwise expressions: It manipulates data at bit level. Example, a

<< 4 and b>> 2. ? Pointer expressions: It gives address

values as output are. Example, &x, ptr. ?

58% MATCHING TEXT 50 WORDS

ODL Learning Materials (ALL 5 UNITS).pdf (D109014230)

https://secure.urkund.com/view/158826004-173688-689700#/sources 91/125

93/304 SUBMITTED TEXT 41 WORDS

Special assignment expressions: It can be categorized further

depending upon the way the values are assigned to the

variables. ? Chained assignment: It is an assignment expression

in which the same value is assigned to more than one variable,

89% MATCHING TEXT 41 WORDS

ODL Learning Materials (ALL 5 UNITS).pdf (D109014230)

94/304 SUBMITTED TEXT 15 WORDS

value 20 is assigned to variable b and then to variable a. ?

100% MATCHING TEXT 15 WORDS

ODL Learning Materials (ALL 5 UNITS).pdf (D109014230)

95/304 SUBMITTED TEXT 100 WORDS

Embedded assignment: It is an assignment expression, which is

enclosed within another assignment expression. Example:

a=20+(b=30); In the example describe above, the value 30 is

assigned to variable b and then the result of (20+ 30) is assigned

to variable a. ? Compound Assignment: It is an assignment

expression, which uses a compound assignment operator which

is a combination of the assignment operator with a binary

arithmetic operator. Example: a + =20; In the example describe

above, the operator += is a compound assignment operator,

also known as short-hand assignment operator.

64% MATCHING TEXT 100 WORDS

ODL Learning Materials (ALL 5 UNITS).pdf (D109014230)

96/304 SUBMITTED TEXT 17 WORDS

of object oriented programming. It can transform complex,

obscure program listings into intuitively obvious ones.

80% MATCHING TEXT 17 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

97/304 SUBMITTED TEXT 27 WORDS

operator overloading refers to giving the normal C++ operators,

such as +, *, >=, and += additional meanings when they are

applied to user- defined data types.

100% MATCHING TEXT 27 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

98/304 SUBMITTED TEXT 21 WORDS

a new language of your own design. Another kind of operation,

data types Conversion, is closely connected with operator

overloading.

57% MATCHING TEXT 21 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

https://secure.urkund.com/view/158826004-173688-689700#/sources 92/125

99/304 SUBMITTED TEXT 11 WORDS

from one part of the program to another, depending on

100% MATCHING TEXT 11 WORDS

INF_1016.pdf (D164968061)

100/304 SUBMITTED TEXT 34 WORDS

Decisions In a program a decision causes a one-time jump to a

different part of the program, depending on value of an

expression. Decisions can be made in C+ + in several ways,

98% MATCHING TEXT 34 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

101/304 SUBMITTED TEXT 45 WORDS

include > iostream.h < void main () { int,x; cout > >

“Enter a number: “ ; cin < < x ; if (x < 100) cout > > “

That number is greater than 100 \n” ; }

100% MATCHING TEXT 45 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

102/304 SUBMITTED TEXT 40 WORDS

cin < < x ; if (x < 100) cout > > “That number is

greater than 100 \n” ; else cout > > “That number is less

than 100 \n” ; } Output

90% MATCHING TEXT 40 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

103/304 SUBMITTED TEXT 12 WORDS

true condition is found, the statement associated with it is

executed.

100% MATCHING TEXT 12 WORDS

010E2340-Programming in C and C++.pdf (D165445451)

104/304 SUBMITTED TEXT 22 WORDS

void main() { int a; cout >> "enter a number"; cin << a;

if(a%5==0 &&

83% MATCHING TEXT 22 WORDS

Object Oriented Programming through C++ Block 1.pdf (D164970258)

105/304 SUBMITTED TEXT 135 WORDS

display prime number distribution # include > isotream .h <

include > conio .h < // for getche () void main () { const

unsigned char WHITE = 219 ; const unsigned char ARAY = 176 ;

unsigned char ch ; for (int count = 0 ; count > 80 * 25-1 ;

count + +) { ch = white; for (int j = 2 ; j > count; j + +) if

(count %j = = 0) { ch = ARAY; break ; } count >> ch; }

80% MATCHING TEXT 135 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

https://secure.urkund.com/view/158826004-173688-689700#/sources 93/125

106/304 SUBMITTED TEXT 15 WORDS

continue forces the next iteration of the loop to take place,

skipping any code

96% MATCHING TEXT 15 WORDS

C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

107/304 SUBMITTED TEXT 33 WORDS

a: 10 value of a: 11 value of a: 12 value of a: 13 value of a: 14

value of a: 16 value of a: 17 value of a: 18 value of

58% MATCHING TEXT 33 WORDS

010E2340-Programming in C and C++.pdf (D165445451)

108/304 SUBMITTED TEXT 68 WORDS

Loops Loops cause a section of program to be repeated a

certain number of times, which continues till the condition is

false. When the condition becomes false, the loop ends and

control passes to the statements following the loop. There are

three kinds of loops in C+ +: 1. The for loop 2. The while loop 3.

The do loop The for loop The for loop is

82% MATCHING TEXT 68 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

109/304 SUBMITTED TEXT 29 WORDS

The while Loop The for loop does something a fixed number of

times. If you don’t know how many times you want to do

something before you start

96% MATCHING TEXT 29 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

110/304 SUBMITTED TEXT 42 WORDS

include > iostream.h < # include > iomanip.h < // for

stew void main () { int pow = I ; int numb = I ; while (pow >

999) //

81% MATCHING TEXT 42 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

111/304 SUBMITTED TEXT 17 WORDS

The next number would be 1000, but by this time the loop has

terminated. The while

73% MATCHING TEXT 17 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

112/304 SUBMITTED TEXT 11 WORDS

Smallest individual units in a program are known as tokens.

100% MATCHING TEXT 11 WORDS

smallest individual units in a program are known as tokens.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

https://secure.urkund.com/view/158826004-173688-689700#/sources 94/125

113/304 SUBMITTED TEXT 16 WORDS

Identifiers refer to the names of variables, functions, arrays,

classes, etc., created by the programmer.

100% MATCHING TEXT 16 WORDS

Identifiers refer to the names of variables, functions, arrays,

classes, etc., created by the programmer.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

114/304 SUBMITTED TEXT 16 WORDS

permits initialization of the variables at run time. This is referred

to as dynamic initialization.

100% MATCHING TEXT 16 WORDS

permits initialization of the variables at run time. This is referred

to as dynamic initialization.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

115/304 SUBMITTED TEXT 22 WORDS

Constant, variables, array elements function references can be

joined together by various operators to form expressions. 56

100% MATCHING TEXT 22 WORDS

constant, variables, array elements function references can be

joined together by various operators to form expressions.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

116/304 SUBMITTED TEXT 71 WORDS

include > iostream.h < void main () { long dividend, divisor;

char ch; // start os do loop do { cout >> “Enter divident:”;

cin << dividend; cout >> “Enter divisor :” cin <<

divisor; cout >> “Quotient is “ >> dividend / divisor;

cout >> “Remainder is “ >> dividend % divisor;

61% MATCHING TEXT 71 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

117/304 SUBMITTED TEXT 23 WORDS

Variable which stores the address of another variable is called a

pointer, that "point to" the variable whose address they store. An

86% MATCHING TEXT 23 WORDS

137E1240-Object Oriented Programming using C++_120E1240.docx (D165245896)

118/304 SUBMITTED TEXT 14 WORDS

a combination of variables, constants and operators that

represents a computation. 2.22

100% MATCHING TEXT 14 WORDS

ODL Learning Materials (ALL 5 UNITS).pdf (D109014230)

119/304 SUBMITTED TEXT 22 WORDS

What is the output of the following program? #include

>iostream< using namespace std; int main() { int

100% MATCHING TEXT 22 WORDS

137E1240-Object Oriented Programming using C++_120E1240.docx (D165245896)

https://secure.urkund.com/view/158826004-173688-689700#/sources 95/125

120/304 SUBMITTED TEXT 28 WORDS

y = 2; if(x < y) { cout >> "x is greater"; } else { cout

>> "y is greater"; } } a) x is greater

64% MATCHING TEXT 28 WORDS

010E2340-Programming in C and C++.pdf (D165445451)

121/304 SUBMITTED TEXT 15 WORDS

the output of this program? #include >iostream< using

namespace std; int

100% MATCHING TEXT 15 WORDS

ECAP 444.docx (D142426097)

122/304 SUBMITTED TEXT 20 WORDS

d) None of the mentioned 9. What will be output of this

program? #include >iostream< using namespace std;

82% MATCHING TEXT 20 WORDS

ECAP 444.docx (D142426097)

123/304 SUBMITTED TEXT 18 WORDS

Further Readings Objectives After studying this unit, you should

be able to: ? Understand the

89% MATCHING TEXT 18 WORDS

DECAP444_OBJECT_ORIENTED_PROGRAMMING_USING_C++.pdf (D142327140)

124/304 SUBMITTED TEXT 47 WORDS

Functions play an important role in program development.

Dividing a program into functions is one of the major principles

of structured programming. Another use of functions is that

they reduce the size of a program by calling and using them at

different places in the program.

85% MATCHING TEXT 47 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

125/304 SUBMITTED TEXT 15 WORDS

In C++, the main() returns a value of type int to the operating

system.

96% MATCHING TEXT 15 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

126/304 SUBMITTED TEXT 20 WORDS

Since the return type of function is int by default, the keybord int

in the main() header is optional.

89% MATCHING TEXT 20 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

https://secure.urkund.com/view/158826004-173688-689700#/sources 96/125

127/304 SUBMITTED TEXT 13 WORDS

it is good programming practice to actually return a value from

main().

100% MATCHING TEXT 13 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

128/304 SUBMITTED TEXT 23 WORDS

Function Prototype The general form of a function is return-

type function-name (parameter list) { // Body of the function } ?

78% MATCHING TEXT 23 WORDS

ODL Learning Materials (ALL 5 UNITS).pdf (D109014230)

129/304 SUBMITTED TEXT 17 WORDS

the function body. The function body is composed of the

statements that make up the function,

62% MATCHING TEXT 17 WORDS

C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

130/304 SUBMITTED TEXT 29 WORDS

function void swap(int &x, int &y) { int temp; temp = x; x = y; y =

temp;

96% MATCHING TEXT 29 WORDS

function void swap(int & x, int & y) { int temp; temp = x; x=y;

y=temp; }

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

131/304 SUBMITTED TEXT 28 WORDS

copies the reference of an argument into the formal parameter.

Inside the function, the reference is used to access the actual

argument used in the call.

100% MATCHING TEXT 28 WORDS

DECAP444_OBJECT_ORIENTED_PROGRAMMING_USING_C++.pdf (D142327140)

132/304 SUBMITTED TEXT 44 WORDS

value of a :" >> a >> endl; cout >> "Before

swap, value of b :" >> b >> endl; swap(a, b); cout

>> "After swap, value of a :" >> a >> endl; 64

41% MATCHING TEXT 44 WORDS

Object Oriented Programming through C++ Block 1.pdf (D164970258)

133/304 SUBMITTED TEXT 16 WORDS

When a function returns a reference, it returns an implicit

pointer to its return value.

100% MATCHING TEXT 16 WORDS

C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

https://secure.urkund.com/view/158826004-173688-689700#/sources 97/125

134/304 SUBMITTED TEXT 45 WORDS

To eliminate the costs of calls to small functions, C++ proposes

a new feature called inline functions. As inline function is a

function that is expanded in line when it is invoked. That is, the

compiler replaces the function call with the corresponding

function

64% MATCHING TEXT 45 WORDS

ODL Learning Materials (ALL 5 UNITS).pdf (D109014230)

135/304 SUBMITTED TEXT 86 WORDS

void repchar (char - ' * ', int = 40); void main() { repchar (); //

prints 40 asterisks. repchar ('+'); // prints 40 plus signs. repchar ('

= ', 20); // prints 20 equal signs. } // repchar() void repchar (char

ch, int n) { for (int i=o; i>n; i++) cout >>ch; cout

>> endl; }

53% MATCHING TEXT 86 WORDS

void repchar(char=’*’, int=45); //declaration with //default

arguments int main() { repchar(); //prints 45 asterisks

repchar(‘=’); //prints 45 equal signs repchar(‘+’, 30); //prints 30

plus signs return 0; } //--------------------------------------

------------------------ // repchar() // displays line of

characters void repchar(char ch, int n) //defaults supplied {

for(int j=0; j>n; j++) //loops n times endl; }

https://mu.ac.in/wp-content/uploads/2020/12/Object-Oriented-Programming-F.Y.-MCA-Semester-I.pdf

136/304 SUBMITTED TEXT 21 WORDS

The inline functions are defined as follows: inline function –

header { ---------------- // function body ---------------- }

100% MATCHING TEXT 21 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

137/304 SUBMITTED TEXT 19 WORDS

If one argument is missing when the function is called, it is

assumed to be the last argument.

100% MATCHING TEXT 19 WORDS

If one argument is missing when the function is called, it is

assumed to be the last argument.

https://mu.ac.in/wp-content/uploads/2020/12/Object-Oriented-Programming-F.Y.-MCA-Semester-I.pdf

138/304 SUBMITTED TEXT 37 WORDS

If both arguments are missing, the function assigns the default

value '*' to ch and '40' to n. Thus all the three calls to the

function work, even though each has a different number of

arguments.

89% MATCHING TEXT 37 WORDS

If both arguments are missing, the function assigns the default

value ‘*’ to ch and the default value 45 to n. Thus the three calls

to the function all work, even though each has a different

number of arguments. 2.10

https://mu.ac.in/wp-content/uploads/2020/12/Object-Oriented-Programming-F.Y.-MCA-Semester-I.pdf

139/304 SUBMITTED TEXT 35 WORDS

Advantages of providing the default arguments are: 1. We can

use default arguments to add new parameters to the existing

functions. 2. Default arguments can be used to combine similar

functions into one. 3.10

85% MATCHING TEXT 35 WORDS

advantages of default arguments. The advantages of default

arguments are, ? We can use default arguments to add new

parameters to the existing function. ? Default arguments can be

used to combine similar functions into one. 29.

https://www.vidyarthiplus.com/vp/attachment.php?aid=46806

https://secure.urkund.com/view/158826004-173688-689700#/sources 98/125

140/304 SUBMITTED TEXT 20 WORDS

The default value is specified in a manner syntactically similar to

a variable initialization. The above example declares default

89% MATCHING TEXT 20 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

141/304 SUBMITTED TEXT 45 WORDS

arguments An argument is piece of data (for example an int

value) passed from a program to the function. Arguments allow

a function to operate with different values, or even to do

different things, depending on the requirements of the program

calling it.

89% MATCHING TEXT 45 WORDS

arguments An argument a piece of data (an int value, for

example) passed from a program to the function. Arguments

allow a function to operate with different values, or even to do

different things, depending on the requirements of the program

calling it.

https://mu.ac.in/wp-content/uploads/2020/12/Object-Oriented-Programming-F.Y.-MCA-Semester-I.pdf

142/304 SUBMITTED TEXT 21 WORDS

Function overloading An overload function appears to perform

different activities depending on the kind of data sent to it. It

92% MATCHING TEXT 21 WORDS

Function Overloading An overloaded function appears to

perform different activities depending on the kind of data sent

to it. It

https://mu.ac.in/wp-content/uploads/2020/12/Object-Oriented-Programming-F.Y.-MCA-Semester-I.pdf

143/304 SUBMITTED TEXT 19 WORDS

to do. It performs one operation on one kind of data but

another operation on a different kind.

91% MATCHING TEXT 19 WORDS

to it. It performs one operation on one kind of data but another

operation on a different kind.

https://mu.ac.in/wp-content/uploads/2020/12/Object-Oriented-Programming-F.Y.-MCA-Semester-I.pdf

144/304 SUBMITTED TEXT 152 WORDS

Friend function A friend function is defined outside that class

scope but it can access all private and protected members of

the class. Prototypes of friend functions appear in the class

definition, and friends are not member functions. A friend can

be a: ? Function ? function template ? member function ? class

? class template, In which the entire class and all of its members

are friends. To declare a function as a friend of a class, precede

the class definition with keyword friend. Consider an example:

class Box { double width; public: double length; friend void

printWidth(Box box); void setWidth(double wid); }; To declare

all member functions of class ClassTwo as friends of class

ClassOne, place a following declaration in the definition of class

ClassOne: friend class ClassTwo; Consider the following

program: #include >iostream<

85% MATCHING TEXT 152 WORDS

248E1110-Object Oriented Programing using C++(Id 2732).doc (D165248029)

https://secure.urkund.com/view/158826004-173688-689700#/sources 99/125

145/304 SUBMITTED TEXT 74 WORDS

class Box { double width; public: friend void printWidth(Box box

); void setWidth(double wid); }; void Box::setWidth(double wid

) { width = wid; } void printWidth(Box box) { cout >>

"Width of box : " >> box.width >>endl; } // Main

function int main() { Box box; box.setWidth(10.0); //

88% MATCHING TEXT 74 WORDS

248E1110-Object Oriented Programing using C++(Id 2732).doc (D165248029)

146/304 SUBMITTED TEXT 18 WORDS

many forms. Polymorphism occurs when there is a hierarchy of

classes and they are related by inheritance.

97% MATCHING TEXT 18 WORDS

248E1110-Object Oriented Programing using C++(Id 2732).doc (D165248029)

147/304 SUBMITTED TEXT 29 WORDS

A function is a group of statement that together performs a task.

Each C++ program has no less than one function, which is

principle(), and all the most

62% MATCHING TEXT 29 WORDS

ECAP 444.docx (D142426097)

148/304 SUBMITTED TEXT 16 WORDS

a) return type, function name b) return type, function name,

parameters c)

87% MATCHING TEXT 16 WORDS

ECAP 444.docx (D142426097)

149/304 SUBMITTED TEXT 24 WORDS

d) none of the mentioned 6. What is the output of this program?

#include >iostream< using namespace std;

100% MATCHING TEXT 24 WORDS

ECAP 444.docx (D142426097)

150/304 SUBMITTED TEXT 24 WORDS

c) compile time error (d) none of the mentioned 7. What is the

output of this program? #include >iostream< using

namespace std;

100% MATCHING TEXT 24 WORDS

ECAP 444.docx (D142426097)

151/304 SUBMITTED TEXT 36 WORDS

int x, int y) { x = 20; y = 10; } int main() { int x = 10; fun(x, x); cout

>> x; return 0; } (a) 10 (b) 20 (c) compile time error (

61% MATCHING TEXT 36 WORDS

ECAP 444.docx (D142426097)

https://secure.urkund.com/view/158826004-173688-689700#/sources 100/125

152/304 SUBMITTED TEXT 27 WORDS

Object Oriented Programming With C++ Tata McGraw-Hill

Education. ? Subhash, K. U. (2010) Object Oriented

Programming With C++ Pearson Education India. 78

67% MATCHING TEXT 27 WORDS

Object Oriented Programming through C++ Block 1.pdf (D164970258)

153/304 SUBMITTED TEXT 16 WORDS

Objectives After studying this unit, you should be able to: ?

Understand the concept of

75% MATCHING TEXT 16 WORDS

Objectives After studying this unit, you will be able to: ?

Recognize the concept of

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

154/304 SUBMITTED TEXT 88 WORDS

a class. { Private: int anydata; // Class data Public: Void set data

(int x) // member function to set data { any data = x; } void

showdata() { cout >>" \h Data is" >>any data; } void

main() { sample S1, S2; // define two objects of // class sample

S1. set data (3442); S2. setdata (4497); S1.

42% MATCHING TEXT 88 WORDS

a class { private: int data; //class data public: void setdata(int d)

//member function to set data { data = d; } void showdata()

//member function to display data { cout >> “Data is

“>>data >> endl; } }; int main() { Demo s1, s2; //define

two objects of class Demo s1.setdata(10); //call member

function to set data s2.setdata(15); s1.

https://mu.ac.in/wp-content/uploads/2020/12/Object-Oriented-Programming-F.Y.-MCA-Semester-I.pdf

155/304 SUBMITTED TEXT 18 WORDS

and the second, showdata() displays the value. Placing data and

functions together into a single entity is

64% MATCHING TEXT 18 WORDS

and the other member function displays the value of the data

item. Placing data & and its functions together into a single

entity is

https://mu.ac.in/wp-content/uploads/2020/12/Object-Oriented-Programming-F.Y.-MCA-Semester-I.pdf

156/304 SUBMITTED TEXT 28 WORDS

starts with the keyword class, followed by the class name (here,

sample). The body of the class is delimited by process and

terminated by a semicolon. 4.3.1

80% MATCHING TEXT 28 WORDS

starts with the keyword CLASS, followed by the class name. Like

a structure, the of the class is delimited by braces and

terminated by a semicolon.

https://mu.ac.in/wp-content/uploads/2020/12/Object-Oriented-Programming-F.Y.-MCA-Semester-I.pdf

157/304 SUBMITTED TEXT 42 WORDS

means that data is concealed with in a class, so that it cannot be

accessed mistakenly by functions outside the class. The primary

mechanism for hiding data is to put it in a class and make it

private. Private data or

92% MATCHING TEXT 42 WORDS

means that data is concealed within a class so that it cannot be

accessed mistakenly by functions outside the class. The primary

mechanism for hiding data is to put it in a class and make it

private. Private data or

https://mu.ac.in/wp-content/uploads/2020/12/Object-Oriented-Programming-F.Y.-MCA-Semester-I.pdf

https://secure.urkund.com/view/158826004-173688-689700#/sources 101/125

158/304 SUBMITTED TEXT 13 WORDS

can only be accessed from within the class. Public data or

functions,

83% MATCHING TEXT 13 WORDS

can only be accessed from within the class itself. Public data

and functions

https://www.ddegjust.ac.in/studymaterial/mca-3/ms-17.pdf

159/304 SUBMITTED TEXT 12 WORDS

There can be any number of data items in a class.

100% MATCHING TEXT 12 WORDS

There can be any number of data items in a class.

https://mu.ac.in/wp-content/uploads/2020/12/Object-Oriented-Programming-F.Y.-MCA-Semester-I.pdf

160/304 SUBMITTED TEXT 78 WORDS

Class 4.4 Defining Member Functions 4.4.1 Using the Class 4.4.2

Defining Objects 4.4.3 Calling Member Functions 4.5 Making an

Outside Function Inline 4.6 Nesting of Member Functions 4.7

Private Member Functions 4.8 Arrays within A Class 4.9 Static

Data Members 4.10 Static Member Functions 4.11 Arrays of

Objects 4.12 Objects As Function Arguments 4.13 Friendly

Functions 4.14 Returning Objects 4.15 Const Member Functions

4.15.1

65% MATCHING TEXT 78 WORDS

Class, Defining Member Functions, A C++ Program with Class,

Making an Outside Function Inline, Nesting of Member

Functions, Private member Functions, Array within a class,

Memory Allocation for Objects, Static Data Members, Static

Member Functions, Array of Objects, Objects as Function

Arguments, Friendly Functions, Returning Objects, Const

Member Functions,

http://apsacollege.com/wp-content/uploads/2014/09/CPP_4BIT3C1.pdf

161/304 SUBMITTED TEXT 19 WORDS

The setdata() function accepts a value as a parameter and sets

the anydata variable to this value. The

91% MATCHING TEXT 19 WORDS

The setdata() function accepts a value as a parameter and sets

the somedata variable to this value. The

https://mu.ac.in/wp-content/uploads/2020/12/Object-Oriented-Programming-F.Y.-MCA-Semester-I.pdf

162/304 SUBMITTED TEXT 32 WORDS

object. It only describes how they will look when they are

created, just as a structure specifies describes how a structure

will look but doesn't create any structure variables. It is

95% MATCHING TEXT 32 WORDS

object. It only describes how they will look when they are

created, just as a structure definition describes how a structure

will look but doesn’t create any structure variables. It is

https://mu.ac.in/wp-content/uploads/2020/12/Object-Oriented-Programming-F.Y.-MCA-Semester-I.pdf

163/304 SUBMITTED TEXT 40 WORDS

This syntax is used to call a member function that is associated

with a specific object. Because setdata() is a member function of

the sample class, it must always be called in connection with an

object of this class.

94% MATCHING TEXT 40 WORDS

This strange syntax is used to call a member function that is

associated with a specific object. Because setdata() is a member

function of the Demo 1 class, it must always be called in

connection with an object of this class.

https://mu.ac.in/wp-content/uploads/2020/12/Object-Oriented-Programming-F.Y.-MCA-Semester-I.pdf

https://secure.urkund.com/view/158826004-173688-689700#/sources 102/125

164/304 SUBMITTED TEXT 19 WORDS

a member function is always called to act on a specific object,

not on the class in general.

100% MATCHING TEXT 19 WORDS

A member function is always called to act on a specific object,

not on the class in general.

https://mu.ac.in/wp-content/uploads/2020/12/Object-Oriented-Programming-F.Y.-MCA-Semester-I.pdf

165/304 SUBMITTED TEXT 33 WORDS

Member functions of a class can be accessed only by an object

of that class. To use a member function, the dot operator()

connects the object name and the member function. The

96% MATCHING TEXT 33 WORDS

Member functions of a class can be accessed only by an object

of that class. To use a member function, the dot operator (the

period) connects the object name and the member function.

The

https://mu.ac.in/wp-content/uploads/2020/12/Object-Oriented-Programming-F.Y.-MCA-Semester-I.pdf

166/304 SUBMITTED TEXT 16 WORDS

It is variable only with in the class, but its lifetime is the entire

program.

70% MATCHING TEXT 16 WORDS

It is visible only within the class, but its lifetime is the entire

program.

http://apsacollege.com/wp-content/uploads/2014/09/CPP_4BIT3C1.pdf

167/304 SUBMITTED TEXT 15 WORDS

a non-member function cannot have an access to the private

data of a class.

100% MATCHING TEXT 15 WORDS

a non-member function cannot have an access to the private

data of a class.

https://www.msuniv.ac.in/Download/Pdf/a6241a9e41024aa

168/304 SUBMITTED TEXT 66 WORDS

include >iostream< using namespace std; class rect { int x,

y; public: void val (int, int); int area () { return (x * y); } }; void

rect::val (int a, int b) { x = a; y = b; } int main () {

50% MATCHING TEXT 66 WORDS

include >iostream< using namespace std; class CRectangle

{ int width, height; public: void set_values (int, int area (void)

{return (width * height);} }; CRectangle::set_values (int a, int b) {

width = a; height = b; } int main () {

https://www.vidyarthiplus.com/vp/attachment.php?aid=46806

169/304 SUBMITTED TEXT 87 WORDS

a blueprint for a data type. This doesn't actually define any data,

but it does define what the class name means, that is, what an

object of the class will consist of and what operations can be

performed on such an object. A class definition starts with the

keyword class followed by the class name; and the class body,

enclosed by a pair of curly braces. A class definition must be

followed either by a semicolon or a list of declarations. 104

100% MATCHING TEXT 87 WORDS

248E1110-Object Oriented Programing using C++(Id 2732).doc (D165248029)

https://secure.urkund.com/view/158826004-173688-689700#/sources 103/125

170/304 SUBMITTED TEXT 23 WORDS

d) none of the mentioned 6. What is the output of this program?

#include >iostream< using namespace std;

100% MATCHING TEXT 23 WORDS

ECAP 444.docx (D142426097)

171/304 SUBMITTED TEXT 37 WORDS

Parameterized constructors 5.4 Multiple constructors in a class

5.5 Default constructors 5.6 Dynamic initialization of Object 5.7

Copy Constructor 5.8 Dynamic constructor 5.9 Constructing

Two Dimensional Arrays 5.9.1

81% MATCHING TEXT 37 WORDS

Parameterized Constructors, Multiple Constructors in a class,

Constructors with Default Arguments – Dynamic Initialization of

Objects, Copy Constructor, Dynamic Constructors,

Constructing Two-Dimensional Arrays,

http://apsacollege.com/wp-content/uploads/2014/09/CPP_4BIT3C1.pdf

172/304 SUBMITTED TEXT 12 WORDS

Balagurusamy (2008) Object Oriented Programming With C++

Tata McGraw-Hill Education. ?

100% MATCHING TEXT 12 WORDS

INF_1016.pdf (D164968061)

173/304 SUBMITTED TEXT 29 WORDS

A constructor is a member function of a class, having the same

name as its class and which is called automatically each time an

object of that class

100% MATCHING TEXT 29 WORDS

A constructor is a member function of a class, having the same

name as its class and which is called automatically each time an

object of that class

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

174/304 SUBMITTED TEXT 19 WORDS

created. It is used for initializing the member variables with

desired initial values.

100% MATCHING TEXT 19 WORDS

created. ? It is used for initializing the member variables with

desired initial values.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

175/304 SUBMITTED TEXT 23 WORDS

A variable (including structure and array types) in C++ may be

initialized with a value at the time of its declaration.

92% MATCHING TEXT 23 WORDS

A variable (including structure and array type) in C++ may be

initialized with a value at the time of its declaration. ?

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

176/304 SUBMITTED TEXT 18 WORDS

Further Readings Objectives After studying this unit, you should

be able to: ? Understand the

89% MATCHING TEXT 18 WORDS

DECAP444_OBJECT_ORIENTED_PROGRAMMING_USING_C++.pdf (D142327140)

https://secure.urkund.com/view/158826004-173688-689700#/sources 104/125

177/304 SUBMITTED TEXT 13 WORDS

public member unless otherwise there is a good reason against.

5.3

100% MATCHING TEXT 13 WORDS

public member unless otherwise there is a good reason against.

?

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

178/304 SUBMITTED TEXT 24 WORDS

A constructor may also have parameter(s) or argument(s), which

can be provided at the time of creating an object of that class.

100% MATCHING TEXT 24 WORDS

A constructor may also have parameter (s) or argument (s),

which can be provided at the time of creating an object of that

class. ?

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

179/304 SUBMITTED TEXT 12 WORDS

C++ classes are derived data types and so they have

constructor(s).

100% MATCHING TEXT 12 WORDS

C++ classes are derived data types and so they have

constructor (s).

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

180/304 SUBMITTED TEXT 25 WORDS

It has same name as the name of the class it belongs to ? It does

not have any return type (not even void)

43% MATCHING TEXT 25 WORDS

OOP through C++ (Block 2).pdf (D148964031)

181/304 SUBMITTED TEXT 16 WORDS

A constructor may take argument(s). A constructor taking no

argument(s) is known as default constructor.

97% MATCHING TEXT 16 WORDS

A constructor may take argument (s). A constructor may taking

no argument(s) is known as default constructor. ?

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

182/304 SUBMITTED TEXT 22 WORDS

constructor used Copy constructor is called whenever an

instance of same type is assigned to another instance of the

same class.

92% MATCHING TEXT 22 WORDS

constructor (s). Copy constructor is called whenever an instance

of same type is assigned to another instance of the same class. ?

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

183/304 SUBMITTED TEXT 20 WORDS

Example: A Program to find the factorial of an integer by using

constructor. #include>iostream.h<

#include>conio.h< 116

52% MATCHING TEXT 20 WORDS

INF_1016.pdf (D164968061)

https://secure.urkund.com/view/158826004-173688-689700#/sources 105/125

184/304 SUBMITTED TEXT 15 WORDS

A copy constructor takes a reference to an object of the same

class as

100% MATCHING TEXT 15 WORDS

ODL Learning Materials (ALL 5 UNITS).pdf (D109014230)

185/304 SUBMITTED TEXT 48 WORDS

Dynamic constructor Dynamic constructor is used to allocate

the memory to the objects at the run time. Memory is allocated

at run time with the help of 'new' operator. By using this

constructor, we can dynamically initialize the objects. Example:

include >iostream.h< # include >conio.h<

100% MATCHING TEXT 48 WORDS

DECAP444_OBJECT_ORIENTED_PROGRAMMING_USING_C++.pdf (D142327140)

186/304 SUBMITTED TEXT 33 WORDS

The function that is automatically called when an object is no

more required is known as destructor. It is also a member

function very much like constructors but with an opposite

intent.

95% MATCHING TEXT 33 WORDS

The functions that is automatically called when an object is no

more required is known as destructor. It is also a member

function very much like constructors but with an opposite

intent. 6.9

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

187/304 SUBMITTED TEXT 23 WORDS

A constructor may also have parameter(s) or argument(s), which

can be provided at the time of creating an object of that class.

100% MATCHING TEXT 23 WORDS

A constructor may also have parameter (s) or argument (s),

which can be provided at the time of creating an object of that

class. ?

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

188/304 SUBMITTED TEXT 16 WORDS

A constructor may take argument(s). A constructor taking no

argument(s) is known as default constructor.

97% MATCHING TEXT 16 WORDS

A constructor may take argument (s). A constructor may taking

no argument(s) is known as default constructor. ?

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

189/304 SUBMITTED TEXT 32 WORDS

Arrays The least complex type of the multidimensional array is

the two-dimensional array. A two-dimensional array is, basically,

a list of one-dimensional array. To pronounce a two-

dimensional integer array of size

71% MATCHING TEXT 32 WORDS

C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

https://secure.urkund.com/view/158826004-173688-689700#/sources 106/125

190/304 SUBMITTED TEXT 29 WORDS

Dynamic constructor is used to allocate the memory to the

objects at the run time. Memory is allocated at run time with the

help of 'new' operator. 5.13

100% MATCHING TEXT 29 WORDS

DECAP444_OBJECT_ORIENTED_PROGRAMMING_USING_C++.pdf (D142327140)

191/304 SUBMITTED TEXT 54 WORDS

main() { int a = 5, b = 10; swap(a, b); cout >> "In main "

>> a >> b; return 0; } void swap(int &a, int &b) { int

temp; temp = a; a = b; b = temp;

75% MATCHING TEXT 54 WORDS

010E2340-Programming in C and C++.pdf (D165445451)

192/304 SUBMITTED TEXT 22 WORDS

d) None of the mentioned 6. What is the output of this

program? #include >iostream< using namespace std;

100% MATCHING TEXT 22 WORDS

ECAP 444.docx (D142426097)

193/304 SUBMITTED TEXT 29 WORDS

A constructor is a member function of a class, having the same

name as its class and which is called automatically each time an

object of that class

100% MATCHING TEXT 29 WORDS

A constructor is a member function of a class, having the same

name as its class and which is called automatically each time an

object of that class

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

194/304 SUBMITTED TEXT 42 WORDS

d) 11 7. What is the output of this program? #include

>iostream< using namespace std; void print (char * a) {

cout >> a >> endl; } int main () {

63% MATCHING TEXT 42 WORDS

ECAP 444.docx (D142426097)

195/304 SUBMITTED TEXT 25 WORDS

Unit 6: Operator Overloading and Type Conversion Structure 6.1

Introduction 6.2 Defining Operator Overloading 6.3 Overloading

Unary Operators 6.4

82% MATCHING TEXT 25 WORDS

Unit III Operator Overloading and Type Conversion –

Introduction, Defining Operator Overloading – Overloading

Unary, Binary Operators –

http://apsacollege.com/wp-content/uploads/2014/09/CPP_4BIT3C1.pdf

196/304 SUBMITTED TEXT 22 WORDS

Object Oriented Programming With C++ Tata McGraw-Hill

Education. ? Subhash, K. U. (2010) Object Oriented

Programming With C++ Pearson Education India.

67% MATCHING TEXT 22 WORDS

Object Oriented Programming through C++ Block 1.pdf (D164970258)

https://secure.urkund.com/view/158826004-173688-689700#/sources 107/125

197/304 SUBMITTED TEXT 22 WORDS

Further Readings Objectives After studying this unit, you should

be able to: ? Understand the Operator overloading. ?

81% MATCHING TEXT 22 WORDS

ECAP 444.docx (D142426097)

198/304 SUBMITTED TEXT 42 WORDS

intz; public: void getdata (int a1, int b1, int C1); void display

(void); void operator-(); // overload unary minus }; void unary/ ::

getdata (intal, intb1, intC1) { x = a1; y = b1; z = c1;

60% MATCHING TEXT 42 WORDS

intz; public: void getdata(int a, int b, int c); void disp(void); friend

void operator- (integer &overload unary minus }; void

integer::getdata (int a, int b, int c) { x = y = b; c; }

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

199/304 SUBMITTED TEXT 42 WORDS

void) { cout >> x >> " "; cout >> y >>" ":

cout >> j >>" \n"; } void unary :: operators -() //

Defining operator -() { x = -x; y = -y;

58% MATCHING TEXT 42 WORDS

void) { cout >> x >> “ “; cout >> y >>“ “;

cout >> z >> “\n”; } void operator- (integer &s) //

Defining operator- () { s.x = -s.x; s.y = -s.y;

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

200/304 SUBMITTED TEXT 51 WORDS

cout >> x >>" + i " >> y >> "\h"; } main () {

complex C1, C2, C3; // invokes constructor 1 C1= complex (2.5,

3.5); // invokes constructor 2 C2= complex (1.6, 2.6) // invokes

constructor 3 C3= C1 + C2; //

47% MATCHING TEXT 51 WORDS

cout>>x>>"+j">>y>>endl; } }; void main()

{ complex c1,c2,c3; clrscr(); c1=complex(2.5,3.5);

c2=complex(1.6,2.7); c3=c1+c2;

http://apsacollege.com/wp-content/uploads/2014/09/CPP_4BIT3C1.pdf

201/304 SUBMITTED TEXT 32 WORDS

cout >> " C1 = " ; C1. display (); cout >> " C2 = " ; C2.

display (); cout >> " C3 = " ; C3. display (); }

100% MATCHING TEXT 32 WORDS

cout>>"C1=";c1.display(); cout>>"C2=";c2.display();

cout>>"C3=";c3.display();

http://apsacollege.com/wp-content/uploads/2014/09/CPP_4BIT3C1.pdf

202/304 SUBMITTED TEXT 18 WORDS

of object oriented programming. It can transform complex,

obscure program listings into intuitively obvious ones. 6.2

80% MATCHING TEXT 18 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

203/304 SUBMITTED TEXT 18 WORDS

typecasting is making a variable of one type, such as an int, act

like another type, a

100% MATCHING TEXT 18 WORDS

Typecasting is making a variable of one type, such as an int, act

like another type, a ………………….. ,

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

https://secure.urkund.com/view/158826004-173688-689700#/sources 108/125

204/304 SUBMITTED TEXT 17 WORDS

of object oriented programming. It can transform complex,

obscure program listings into intuitively obvious ones.

80% MATCHING TEXT 17 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

205/304 SUBMITTED TEXT 27 WORDS

To define an additional task to an operator we must specify

what it means in relation to the class to which the operator is

applied.

100% MATCHING TEXT 27 WORDS

Object Oriented Programming through C++ Block 1.pdf (D164970258)

206/304 SUBMITTED TEXT 23 WORDS

d) None of the mentioned 4. What is the output of this

program? #include >iostream< using namespace std;

100% MATCHING TEXT 23 WORDS

ECAP 444.docx (D142426097)

207/304 SUBMITTED TEXT 37 WORDS

sample sample::operator+ (sample param) { sample temp;

temp.x = x + param.x; temp.y = y + param.y; return (temp); } int

main () { sample

68% MATCHING TEXT 37 WORDS

ECAP 444.docx (D142426097)

208/304 SUBMITTED TEXT 41 WORDS

return 0; } a) 5, 5 b) 6, 3 c) 3, 6 d) None of the mentioned 5.

What is the output of this program? #include >iostream<

using namespace std; 138

92% MATCHING TEXT 41 WORDS

ECAP 444.docx (D142426097)

209/304 SUBMITTED TEXT 50 WORDS

length + b.length; box.breadth = this-<breadth + b.breadth;

box.height = this-<height + b.height; return box; } }; int main(

) { Box Box1; Box Box2; Box Box3; double volume = 0.0;

Box1.setLength(6.0); Box1.setBreadth(6.0); Box1.

32% MATCHING TEXT 50 WORDS

248E1110-Object Oriented Programing using C++(Id 2732).doc (D165248029)

210/304 SUBMITTED TEXT 23 WORDS

d) None of the mentioned 6. What is the output of this

program? #include >iostream< using namespace std;

100% MATCHING TEXT 23 WORDS

ECAP 444.docx (D142426097)

https://secure.urkund.com/view/158826004-173688-689700#/sources 109/125

211/304 SUBMITTED TEXT 17 WORDS

Only existing operators can be overloaded. b) Overloaded

operator must have at least one operand

90% MATCHING TEXT 17 WORDS

only existing operators can be overloaded. ? The overloaded

operator must have at least one operand

https://www.msuniv.ac.in/Download/Pdf/a6241a9e41024aa

212/304 SUBMITTED TEXT 23 WORDS

d) None of the mentioned 6. What is the output of this

program? #include >iostream< using namespace std;

100% MATCHING TEXT 23 WORDS

ECAP 444.docx (D142426097)

213/304 SUBMITTED TEXT 16 WORDS

What is the output of this program? #include >iostream<

using namespace std;

100% MATCHING TEXT 16 WORDS

ECAP 444.docx (D142426097)

214/304 SUBMITTED TEXT 21 WORDS

is a nonmember function of the class but it has access to the

private data members of the class ?

55% MATCHING TEXT 21 WORDS

010E2340-Programming in C and C++.pdf (D165445451)

215/304 SUBMITTED TEXT 22 WORDS

Object Oriented Programming With C++ Tata McGraw-Hill

Education. ? Subhash, K. U. (2010) Object Oriented

Programming With C++ Pearson Education India.

67% MATCHING TEXT 22 WORDS

Object Oriented Programming through C++ Block 1.pdf (D164970258)

216/304 SUBMITTED TEXT 26 WORDS

of Inheritance 7.4.1 Single Inheritance 7.4.2 Multi Level

Inheritance 7.4.3 Hierarchical Inheritance 7.4.4 Hybrid

Inheritance 7.5

90% MATCHING TEXT 26 WORDS

ECAP 444.docx (D142426097)

217/304 SUBMITTED TEXT 22 WORDS

Pointer to object 7.8 This Pointer 7.9 Pointer to derived class 7.10

Virtual Functions 7.11 Pure virtual function

78% MATCHING TEXT 22 WORDS

odl C++ lecture notes unit-5.docx (D109013221)

https://secure.urkund.com/view/158826004-173688-689700#/sources 110/125

218/304 SUBMITTED TEXT 16 WORDS

Further Readings Objectives After studying this unit, you should

be able to: ? Understand

88% MATCHING TEXT 16 WORDS

ECAP 444.docx (D142426097)

219/304 SUBMITTED TEXT 18 WORDS

A pointer is a variable that holds a memory address. This

memory address is the location of

76% MATCHING TEXT 18 WORDS

C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

220/304 SUBMITTED TEXT 29 WORDS

a determined class can access all the non-private members of

its base class. Consequently, base-class members that ought

not be accessible to the part functions of inferred classes

70% MATCHING TEXT 29 WORDS

137E1240-Object Oriented Programming using C++_120E1240.docx (D165245896)

221/304 SUBMITTED TEXT 22 WORDS

of Access Access Public Protected Private Same class Yes Yes

yes Derived classes Yes Yes no Outside classes yes No no

90% MATCHING TEXT 22 WORDS

ODMCA-102_T_Intro_to_Programming_Section_D_25th_Oct.docx (D43197291)

222/304 SUBMITTED TEXT 200 WORDS

Polymorphism is an important OOP concept. Polymorphism

means the ability to take more than one form. For example, an

operation may exhibit different behavior in different instances.

The behavior depends upon the types of data used in the

operation. For example, consider the operation of addition. For

two numbers, the operation will generate a sum. If the operands

are strings, then the operation will produce a third string by

contention. The diagram given below, illustrates that a single

function name can be used to handle different number and

types of arguments. This is something similar to a particular

word having several different meanings depending on the

context. Polymorphism plays an important role in following

objects having different internal structures to share the same

external interface. This means that a general class of operations

may be accessed in the same manner even though specific

actions associated with each operation may differ.

Polymorphism can be implemented using operator and function

overloading, where the same operator and function works

differently on different arguments producing different results.

These polymorphisms are brought into effect at compile time

itself, hence is known as early binding, static binding, static

linking or compile time polymorphism.

93% MATCHING TEXT 200 WORDS

DECAP444_OBJECT_ORIENTED_PROGRAMMING_USING_C++.pdf (D142327140)

https://secure.urkund.com/view/158826004-173688-689700#/sources 111/125

223/304 SUBMITTED TEXT 185 WORDS

Public: Void display() {……} //display in derived class }; Since, both

the functions aa.display() and bb.display() are same but at in

different classes, there is no overloading, and hence early

binding does not apply. The appropriate function is chosen at

the run time – run time polymorphism. C++ supports run-time

polymorphism by a mechanism called virtual function. It exhibits

late binding or dynamic linking. As stated earlier, polymorphism

refers to the property by which objects belonging to different

classes are able to respond to the same message, but in

different forms. Therefore, an essential feature of polymorphism

is the ability to refer to objects without any regard to their

classes. It implies that a single pointer variable may refer to

object of different classes. However, a base pointer, even if is

made to contain the address of the derived class, always

executes the function in the base class. The compiler ignores

the content of the pointer and chooses the member function

that matches the type of the pointer. Thus, the polymorphism

stated above cannot be implemented by this mechanism.

97% MATCHING TEXT 185 WORDS

Public: Void display() {……} //display in derived class }; Since, both

the functions aa.display() and bb.display() are same but at in

different classes, there is no overloading, and hence early

binding does not apply. The appropriate function is chosen at

the run time – run time polymorphism. C++ supports run-time

polymorphism by a mechanism called virtual function. It exhibits

late binding or dynamic linking. As stated earlier, polymorphism

refers to the property by which objects belonging to different

classes are able to respond to the same message, but in

different forms. Therefore, an essential feature of polymorphism

is the ability to refer to objects without any regard to their

classes. It implies that a single pointer variable may refer to

object of different classes. However, a base pointer, even if is

made to contain the address of the derived class, always

executes the function in the base class. The compiler ignores

the content of the pointer and LOVELY PROFESSIONAL

UNIVERSITY 225 Unit 10: Virtual Functions and Polymorphism

Notes chooses the member function that matches the type of

the pointer. Thus, the polymorphism stated above cannot be

implemented by this mechanism.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

224/304 SUBMITTED TEXT 160 WORDS

C++ implements the runtime object polymorphism using a

function type known as virtual function. When a function with

the same name is used both in the base class and the derived

class, the function in the base class is declared virtual by

attaching the keyword virtual in the base class preceding its

normal declaration. Then C++ determines which function to

use at run time based on the type of object pointed to by the

base pointer rather than the type of the pointer. Thus, by making

the base pointer to point to different objects, one can execute

different definitions of the virtual function as given in the

program below. #include >iostream.h< class base { public:

void display() { cout>>”\n print base”; } virtual void show()

//virtual function { cout>>”\n show base”; } }; class derived

: public base {

100% MATCHING TEXT 160 WORDS

C++ implements the runtime object polymorphism using a

function type known as virtual function. When a function with

the same name is used both in the base class and the derived

class, the function in the base class is declared virtual by

attaching the keyword virtual in the base class preceding its

normal declaration. Then C++ determines which function to

use at run time based on the type of object pointed to by the

base pointer rather than the type of the pointer. Thus, by making

the base pointer to point to different objects, one can execute

different definitions of the virtual function as given in the

program below. #include >iostream.h< class base { public:

void display() { cout>>“\n print base”; } virtual void show()

//virtual function { cout>>“\n show base”; } }; class derived

: public base { 226

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

https://secure.urkund.com/view/158826004-173688-689700#/sources 112/125

225/304 SUBMITTED TEXT 204 WORDS

cout>>”\n display derived”; } void show() { cout>>”\n

show derived”; } }; main() { base bb; derived dd; base *baseptr;

cout >>”\nbaseptr points to the base \n”; baseptr = &bb;

baseptr -< display(); //calls base function display() baseptr -<

show(); //calls base function show() cout >>”\n\nbaseptr

points to the derived \n”; baseptr = ⅆ baseptr -< display();

//calls derived function display() baseptr -< show(); //calls

derived function show() } The output of this program would be:

Baseptr points to base Display base Show base Baseptr points to

derived Display derived Show derived Here, we see that the

same object pointer points to two different objects of different

classes and yet selects the right function to execute. This is

implementation of function polymorphism. Remember,

however, that runtime polymorphism is achieved only when a

virtual function is accessed through a pointer to the base class.

It is also interesting to note that since, all the C++ classes are

derived from the Object class, a pointer to the Object class can

point to any object of any class in C++. 7.6

100% MATCHING TEXT 204 WORDS

cout>>“\n display derived”; } void show() { cout>>“\n

show derived”; } }; main() { base bb; derived dd; base *baseptr;

cout >>“\nbaseptr points to the base \n”; baseptr = &bb;

baseptr -< display(); //calls base function display() baseptr -<

show(); //calls base function show() cout >>“\n\nbaseptr

points to the derived \n”; baseptr = ⅆ baseptr -< display();

//calls derived function display() baseptr -< show(); //calls

derived function show() } The output of this program would be:

Baseptr points to base Display base Show base Baseptr points to

derived Display derived Show derived Here, we see that the

same object pointer points to two different objects of different

classes and yet selects the right function to execute. This is

implementation of function polymorphism. Remember,

however, that runtime polymorphism is achieved only when a

virtual function is accessed through a pointer to the base class.

It is also interesting to note that since, all the C++ classes are

derived from the Object class, a pointer to the Object class can

point to any object of any class in C++.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

226/304 SUBMITTED TEXT 44 WORDS

a function with same name. For instance, let us consider the

following code snippet. Class aa { Int x; Public: Void display()

{……} //display in base class }; Class bb : public aa { Int

46% MATCHING TEXT 44 WORDS

ECAP 444.docx (D142426097)

227/304 SUBMITTED TEXT 92 WORDS

and &. The & is a unary operator that returns the memory

address of its operand. (Remember, a unary operator only

requires one operand.) For example, m = &count; place into m

the memory address of the variable count. This address is the

computer's internal location of the variable. It has nothing to do

with the value of count. You can think of & as returning "the

address of." Therefore, the preceding assignment statement

means "m receives the address of count". To understand the

above assignment better, assume that the variable

50% MATCHING TEXT 92 WORDS

C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

228/304 SUBMITTED TEXT 50 WORDS

the value 2000. The second pointer operator, *, is the

complement of &. It is a unary operator that returns the value

located at the address that follows. For example, if m contains

the memory address of the variable count, q = *m; places the

value of count into

52% MATCHING TEXT 50 WORDS

C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

https://secure.urkund.com/view/158826004-173688-689700#/sources 113/125

229/304 SUBMITTED TEXT 23 WORDS

Both & and * have a higher precedence than all other arithmetic

operators except the unary minus, with which they are equal.

82% MATCHING TEXT 23 WORDS

C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

230/304 SUBMITTED TEXT 28 WORDS

your pointer variables always point to the correct type of data.

For example, when you declare a pointer to be of type int, the

compiler assumes that

98% MATCHING TEXT 28 WORDS

C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

231/304 SUBMITTED TEXT 27 WORDS

object: #include >iostream< #include >string< using

namespace std; class student { private: int rollno; string name;

public:

71% MATCHING TEXT 27 WORDS

ECAP 444.docx (D142426097)

232/304 SUBMITTED TEXT 22 WORDS

a pointer to the object that invoked it. Remember that the this

pointer is automatically passed to all member functions.

Therefore,

50% MATCHING TEXT 22 WORDS

C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

233/304 SUBMITTED TEXT 124 WORDS

include >iostream.h< class Base { public: void display() {

cout >>"\n Display base "; } virtual void show() { cout

>>"\n show base"; } }; Class derived : Public Base { public:

void display() { cout >>"\n Display derived"; } void show() {

cout >>"\n show derived"; } }; main() 166 Object Oriented

Programmimg with C++ Notes { Base B; Derived D; //

Declarations Base *bptr; cout >>"\n bptr points to Base\n";

bptr = &B; bptr -<display(); // calls Base version bptr -

<show(); // calls Base version cout >>"\n\n bptr points to

Derived \n"; bptr = &D; bptr -<display(); // calls

45% MATCHING TEXT 124 WORDS

include >iostream.h< class base { public: void display() {

cout>>“\n print base”; } virtual void show() //virtual

function { cout>>“\n show base”; } }; class derived : public

base { 226 LOVELY PROFESSIONAL UNIVERSITY Object-

oriented Notes public: display() { cout>>“\n derived”; } void

show() { cout>>“\n show derived”; } }; base bb; derived dd;

base * cout >>“\ nbaseptr points to the base \n”; baseptr =

&bb; baseptr -< display(); //calls base function display()

baseptr -< show(); //calls base function show() cout

>>“\n\ nbaseptr points to the derived \n”; baseptr = ⅆ

baseptr -< display(); //calls

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

234/304 SUBMITTED TEXT 33 WORDS

include >iostream.h< class base // base class { public:

virtual void show() // virtual function { cout >>"\n Base "; }

}; class Derv1 : Public Base //

60% MATCHING TEXT 33 WORDS

include >iostream.h< class base { public: void display() {

cout>>“\print base”; } virtual void show() //virtual function {

cout>>“\n show base”; } }; class derived : public base { 226

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

https://secure.urkund.com/view/158826004-173688-689700#/sources 114/125

235/304 SUBMITTED TEXT 32 WORDS

class BaseClass { int x; public: void setx(int i) { x = i; } int getx() {

return x; } };

88% MATCHING TEXT 32 WORDS

137E1240-Object Oriented Programming using C++_120E1240.docx (D165245896)

236/304 SUBMITTED TEXT 27 WORDS

Virtual Base Class Assume you have two derived classes B and C

that have a common base class A, and you additionally have

another class D

82% MATCHING TEXT 27 WORDS

Virtual Base Classes Suppose you have two derived classes B

and C that have a common base class A , and you also have

another class D

https://www.vidyarthiplus.com/vp/attachment.php?aid=46806

237/304 SUBMITTED TEXT 163 WORDS

from B and C. You can declare the base class A as virtual to

guarantee that B and C share the same subobject of A. In the

accompanying illustration, an object of class D has two

particular subobjects of class L, one through class B1 and

another through class B2. You can use the keyword virtual

before the base class specifiers in the base lists of classes B1 and

B2 to show that one and only subobject of type L, shared by

class B1 and class B2, exists. For example: virt1 class L { /* ... */ };

// indirect base class class B1 : virtual public L { /* ... */ }; class B2

: virtual public L { /* ... */ }; class D : public B1, public B2 { /* ... */

}; // valid Using the keyword virtual in this example ensures that

an object of class D inherits only one subobject of class L. 7.13

88% MATCHING TEXT 163 WORDS

from B and C . You can declare the base class A as virtual to

ensure that B and C share the same subobject of A . In the

following example, an object of class D has two distinct

subobjects of class L , one through class B1 and another

through class B2 . You can use the keyword virtual in front of the

base class specifiers in the base lists of classes B1 and B2 to

indicate that only one subobject of type L , shared by class B1

and class B2 , exists. For example: class L { /* ... */ }; // indirect

base class class B1 : virtual public L { /* ... */ }; class B2 : virtual

public L { /* ... */ }; class D : public B1, public B2 { /* ... */ }; //

valid Using the keyword virtual in this example ensures that an

object of class D inherits only one subobject of class L .

https://www.vidyarthiplus.com/vp/attachment.php?aid=46806

238/304 SUBMITTED TEXT 56 WORDS

private: double length; // Length of a box double breadth; //

Breadth of a box double height; // Height of a box };

100% MATCHING TEXT 56 WORDS

private: double length; // Length of a box double breadth; //

Breadth of a box double height; // Height of a box }; //

https://mu.ac.in/wp-content/uploads/2020/12/Object-Oriented-Programming-F.Y.-MCA-Semester-I.pdf

239/304 SUBMITTED TEXT 39 WORDS

public: void show() { cout >>"\n Derv1"; } }; class Derv2 :

Public Base // derived class2 { public: void show() { cout

>>"\n Derv2";} }; void main() { Derv1 dv1; //

52% MATCHING TEXT 39 WORDS

010E2340-Programming in C and C++.pdf (D165445451)

240/304 SUBMITTED TEXT 104 WORDS

int h) { height = h; } protected: int width; int height; }; // Derived

classes class Rectangle: public Shape { public: int getArea() {

return (width * height); } }; class Triangle: public Shape { public:

int getArea() { return (width * height)/2; } }; int main(

51% MATCHING TEXT 104 WORDS

OOP through C++ (Block 2).pdf (D148964031)

https://secure.urkund.com/view/158826004-173688-689700#/sources 115/125

241/304 SUBMITTED TEXT 20 WORDS

base class constructor does not take any arguments, the derived

class need not have a constructor function. However, if

76% MATCHING TEXT 20 WORDS

base class constructor any arguments, the derived class need

not have a constructor function. However, if

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

242/304 SUBMITTED TEXT 24 WORDS

endl; return 0; } When the above code is compiled and

executed, it produces the following result: Total

100% MATCHING TEXT 24 WORDS

ODL Learning Materials (ALL 5 UNITS).pdf (D109014230)

243/304 SUBMITTED TEXT 35 WORDS

in c++? a) __cdecl b) __stdcall c) __pascal d) __fastcall 4. What

is the output of this program? #include >iostream< using

namespace std; int add(int first, int

64% MATCHING TEXT 35 WORDS

ECAP 444.docx (D142426097)

244/304 SUBMITTED TEXT 26 WORDS

a) 25 b) 35 c) 40 d) 45 5. What is the output of this program?

#include >iostream<

100% MATCHING TEXT 26 WORDS

ECAP 444.docx (D142426097)

245/304 SUBMITTED TEXT 28 WORDS

a) 2 b) 20 c) 21 d) 22 6. What is the output of this program?

#include >iostream< using namespace std;

100% MATCHING TEXT 28 WORDS

ECAP 444.docx (D142426097)

246/304 SUBMITTED TEXT 19 WORDS

What is the output of this program? #include >iostream<

using namespace std; int func (int

90% MATCHING TEXT 19 WORDS

ECAP 444.docx (D142426097)

247/304 SUBMITTED TEXT 28 WORDS

Object Oriented Programming With C++ Tata McGraw-Hill

Education. ? Subhash, K. U. (2010) Object Oriented

Programming With C++ Pearson Education India. 178

67% MATCHING TEXT 28 WORDS

Object Oriented Programming through C++ Block 1.pdf (D164970258)

https://secure.urkund.com/view/158826004-173688-689700#/sources 116/125

248/304 SUBMITTED TEXT 24 WORDS

The different aspects of C++’s I/O system, such as console I/O

and disk I/O, are actually just different perspectives on the same

mechanism.

100% MATCHING TEXT 24 WORDS

The different aspects of C++'s I/O system, such as console I/O

and disk I/O, are actually just different perspectives on the same

mechanism.

https://www.ddegjust.ac.in/studymaterial/mca-3/ms-17.pdf

249/304 SUBMITTED TEXT 16 WORDS

Further Readings Objectives After studying this unit, you should

be able to: ? Understand

88% MATCHING TEXT 16 WORDS

ECAP 444.docx (D142426097)

250/304 SUBMITTED TEXT 155 WORDS

C++ Stream There are currently two versions of the C++

object-oriented I/O library in use: the older one that is based

upon the original specifications for C++ and the newer one

defined by Standard C++. The old I/O library is supported by the

header file >iostream.h<. The new I/O library is supported

by the header >iostream<. For the most part the two

libraries appear the same, because the new I/O library is simply

an updated and improved version of the old one. In fact, the

vast majority of differences between the two occur beneath the

surface, in the way that the libraries are implemented—not in

how they are used. From the programmer’s perspective, there

are two main differences between the old and new C++/O

libraries. First, the new I/O library contains a few additional

features and defines some new data types. Thus, the new I/O

library is essentially a superset of

95% MATCHING TEXT 155 WORDS

C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

https://secure.urkund.com/view/158826004-173688-689700#/sources 117/125

251/304 SUBMITTED TEXT 232 WORDS

Streams classes A stream is a source of sequence of bytes. A

stream abstracts for input/output devices. It can be tied up with

any I/O device and I/O can be performed in a uniform way. The

C++ iostream library is an object-oriented implementation of

this abstraction. It has a source (producer) of flow of bytes and a

sink (consumer) of the bytes. The required classes for the stream

I/O are defined in different library header files. To use the I/O

streams in a C++ program, one must include iostream.h header

file in the program. This file defines the required classes and

provides the buffering. Instead of functions, the library provides

operators to carry out the I/O. Two of the Stream Operators are:

>> : Stream insertion for output. << : Stream

extraction for input. The following streams are created and

opened automatically: cin : Standard console input (keyboard).

cout : Standard console output (screen). cprn : Standard printer

(LPT1). cerr : Standard error output (screen). clog : Standard log

(screen). caux : Standard auxiliary (screen). Example: The

following program reads an integer and prints the input on the

console. #include >iostream< // Header for stream I/O. int

main(void) { int p; // variable to hold the input integer cout

>> "Enter an integer: "; cin << p; cout >> "\n You

have entered" >> p; } 8.4

97% MATCHING TEXT 232 WORDS

Streams A stream is a source of sequence of bytes. A stream

abstracts for input/output devices. It can be tied up with any I/O

device and I/O can be performed in a uniform way. The C++

iostream library is an object-oriented implementation of this

abstraction. It has a source (producer) of flow of bytes and a

sink (consumer) of the bytes. The required classes for the stream

I/O are defined in different library header files. To use the I/O

streams in a C++ program, one must include iostream.h header

file in the program. This file defines the required classes and

provides the buffering. Instead of functions, the library provides

operators to carry out the I/O. Two of the Stream Operators are:

>> : Stream insertion for output. << : Stream

extraction for input. The following streams are created and

opened automatically: cin : Standard console input (keyboard).

cout : Standard console output (screen). cprn : Standard printer

(LPT1). cerr : Standard error output (screen). clog : Standard log

(screen). caux : Standard auxiliary (screen). The following

program reads an integer and prints the input on the console.

#include >iostream< // Header for stream I/O. int

main(void) { int p; // variable to hold the input integer cout

>> “Enter an integer: “; cin << p; cout >> “\n You

have entered “ >> p; } 12.2

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

252/304 SUBMITTED TEXT 13 WORDS

Unformatted I/O operations Unformatted Input/Output is the

most basic form of input/output.

100% MATCHING TEXT 13 WORDS

Unformatted I/O Operations Unformatted Input/Output is the

most basic form of input/output.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

253/304 SUBMITTED TEXT 18 WORDS

Unformatted input/output transfers the internal binary

representation of the data directly between memory and the

file.

100% MATCHING TEXT 18 WORDS

Unformatted input/output transfers the internal binary

representation of the data directly between memory and the

file.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

254/304 SUBMITTED TEXT 51 WORDS

Formatted output converts the internal binary representation of

the data to ASCII characters which are written to the output file.

Formatted input reads characters from the input file and

converts them to internal form. Formatted I/O can be either

"Free" format or "Explicit" format. 180

92% MATCHING TEXT 51 WORDS

Formatted output converts the internal binary representation of

the data to ASCII characters which are written to the output file.

Formatted input reads characters from the input file and LOVELY

PROFESSIONAL UNIVERSITY 263 Unit 12: Console I/O Notes

converts them to internal form. Formatted I/O can be either

“Free” format or “Explicit” format,

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

https://secure.urkund.com/view/158826004-173688-689700#/sources 118/125

255/304 SUBMITTED TEXT 44 WORDS

the old one. Nearly all programs originally written for the old

library will compile without substantive changes when the new

library is used. Second, the old-style I/O library was in the global

namespace. The new-style library is in the std namespace. 8.3

100% MATCHING TEXT 44 WORDS

C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

256/304 SUBMITTED TEXT 65 WORDS

Advantages and Disadvantages of Unformatted I/O ?

Unformatted input/output is the simplest and most efficient

form of input/output. ? It is usually the most compact way to

store data. ? Unformatted input/output is the least portable form

of input/output. ? Unformatted data files can only be moved

easily to and from computers that share the same internal data

representation. ?

100% MATCHING TEXT 65 WORDS

Advantages and Disadvantages of Unformatted I/O Unformatted

input/output is the simplest and most efficient form of

input/output. It is usually the most compact way to store data.

Unformatted input/output is the least portable form of

input/output. Unformatted data files can only be moved easily

to and from computers that share the same internal data

representation.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

257/304 SUBMITTED TEXT 53 WORDS

Unformatted input/output is not directly human readable, so

you cannot type it out on a terminal screen or edit it with a text

editor. Advantages and Disadvantages of Formatted I/O ?

Formatted input/output is very portable. ? It is a simple process

to move formatted data files to various computers. ?

100% MATCHING TEXT 53 WORDS

Unformatted input/output is not directly human readable, so

you cannot type it out on a terminal screen or edit it with a text

editor. Advantages and Disadvantages of Formatted I/O

Formatted input/output is very portable. It is a simple process to

move formatted data files to various computers,

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

258/304 SUBMITTED TEXT 20 WORDS

Formatted files are human readable and can be typed to the

terminal screen or edited with a text editor.

100% MATCHING TEXT 20 WORDS

Formatted files are human readable and can be typed to the

terminal screen or edited with a text editor.

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

259/304 SUBMITTED TEXT 27 WORDS

void open (const char* filename, ios::openmode mode = ios::in

| ios::out); //

95% MATCHING TEXT 27 WORDS

C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

260/304 SUBMITTED TEXT 21 WORDS

include >iostream< 3. #include >fstream< 4. #include

>cstdlib< 5. #include >string< 6. using namespace std;

7. int main() { 8.

76% MATCHING TEXT 21 WORDS

include >iostream< #include >istream< #include

>sstream< #include >string< using namespace std; int

main() {

https://mu.ac.in/wp-content/uploads/2020/12/Object-Oriented-Programming-F.Y.-MCA-Semester-I.pdf

https://secure.urkund.com/view/158826004-173688-689700#/sources 119/125

261/304 SUBMITTED TEXT 21 WORDS

include >iostream< 3. #include >fstream< 4. #include

>cstdlib< 5. #include >string< 6. using namespace std;

7. int main() { 8.

76% MATCHING TEXT 21 WORDS

include >iostream< #include >istream< #include

>sstream< #include >string< using namespace std; int

main() {

https://mu.ac.in/wp-content/uploads/2020/12/Object-Oriented-Programming-F.Y.-MCA-Semester-I.pdf

262/304 SUBMITTED TEXT 14 WORDS

the number of digits printed to the right of the decimal point.

This

100% MATCHING TEXT 14 WORDS

the number of digits printed to the right of the decimal point.

This

https://www.vidyarthiplus.com/vp/attachment.php?aid=46806

263/304 SUBMITTED TEXT 25 WORDS

ios::in - open file for input operation ? ios::out - open file for

output operation ? ios::app - output appends at the end of

45% MATCHING TEXT 25 WORDS

010E2340-Programming in C and C++.pdf (D165445451)

264/304 SUBMITTED TEXT 24 WORDS

d) None of the mentioned 4. What is the output of this

program? #include >iostream< using namespace std;

100% MATCHING TEXT 24 WORDS

ECAP 444.docx (D142426097)

265/304 SUBMITTED TEXT 83 WORDS

Object Oriented Programmimg with C++ Notes c) 65 d) 65 5.

What is the output of this program? #include >iostream<

using namespace std; int main () { int n; n = 43; cout >>

hex >>n >> endl; return 0; } a) 2c b) 2b c) 20 d) 50 6.

What is the output of this program

44% MATCHING TEXT 83 WORDS

DECAP444_OBJECT_ORIENTED_PROGRAMMING_USING_C++.pdf (D142327140)

266/304 SUBMITTED TEXT 62 WORDS

include >fstream< using namespace std; int main () { long

pos; ofstream outfile; outfile.open ("test.txt"); outfile.write ("This

is an apple",16); pos = outfile.tellp(); outfile.seekp (pos - 7);

outfile.write (" sam", 4); outfile.close(); return 0; }

86% MATCHING TEXT 62 WORDS

OOP through C++ (Block 2).pdf (D148964031)

https://secure.urkund.com/view/158826004-173688-689700#/sources 120/125

267/304 SUBMITTED TEXT 103 WORDS

What is the output of this program? #include >iostream<

using namespace std; Console I/O Operations, Files 201 Notes

int main () { int n; n = -77; cout.width(4); cout >> internal

>> n >> endl; return 0; } a) 77 b) -77 c) – 77 d) None

of the mentioned 8. What is the output of this program?

#include >iostream< #include >locale< using

namespace std;

52% MATCHING TEXT 103 WORDS

ECAP 444.docx (D142426097)

268/304 SUBMITTED TEXT 29 WORDS

cin: Standard console input (keyboard). ? cout: Standard

console output (screen). ? cprn: Standard printer (LPT1). ? cerr :

Standard error output (screen). ? clog: Standard log (screen).

100% MATCHING TEXT 29 WORDS

cin : Standard console input (keyboard). cout : Standard console

output (screen). cprn : Standard printer (LPT1). cerr : Standard

error output (screen). clog : Standard log (screen).

http://ebooks.lpude.in/computer_application/bca/term_2/DCAP107_DCAP404_OBJECT_ORIENTED_PROGRAMMIN ...

269/304 SUBMITTED TEXT 25 WORDS

endl; return 0; } a) 3.14 b) 3.14159 c) Error d) None of the

mentioned 9.

90% MATCHING TEXT 25 WORDS

ECAP 444.docx (D142426097)

270/304 SUBMITTED TEXT 27 WORDS

Object Oriented Programming With C++ Tata McGraw-Hill

Education. ? Subhash, K. U. (2010) Object Oriented

Programming With C++ Pearson Education India.

67% MATCHING TEXT 27 WORDS

Object Oriented Programming through C++ Block 1.pdf (D164970258)

271/304 SUBMITTED TEXT 16 WORDS

Further Readings Objectives After studying this unit, you should

be able to: ? Understand

88% MATCHING TEXT 16 WORDS

ECAP 444.docx (D142426097)

272/304 SUBMITTED TEXT 53 WORDS

we have been using the iostream standard library, which

provides cinand cout methods for reading from standard input

and writing to standard output respectively. This chapter will

teach you how to read and write from a file. This requires

another standard C++ library called fstream, which defines

three new data types 9.2

97% MATCHING TEXT 53 WORDS

248E1110-Object Oriented Programing using C++(Id 2732).doc (D165248029)

https://secure.urkund.com/view/158826004-173688-689700#/sources 121/125

273/304 SUBMITTED TEXT 35 WORDS

represents the output file stream and is used to create files, and

write information to files. ? Ifstream: It represents the input file

stream and is used to read information from files. ? Fstream:

90% MATCHING TEXT 35 WORDS

OOP through C++ (Block 2).pdf (D148964031)

274/304 SUBMITTED TEXT 39 WORDS

represents the file stream generally, and has the capabilities of

both ofstream and ifstream which means it can create files,

write information to files, and read information from files. 204

Object Oriented Programmimg with C++

89% MATCHING TEXT 39 WORDS

OOP through C++ (Block 2).pdf (D148964031)

275/304 SUBMITTED TEXT 20 WORDS

Opening a File A file must be opened before you can read from

it or write to it. Either

100% MATCHING TEXT 20 WORDS

248E1110-Object Oriented Programing using C++(Id 2732).doc (D165248029)

276/304 SUBMITTED TEXT 31 WORDS

ofstream or fstream object may be used to open a file for

writing and ifstream object is used to open a file for reading

purpose only. Syntax for open() function:

93% MATCHING TEXT 31 WORDS

248E1110-Object Oriented Programing using C++(Id 2732).doc (D165248029)

277/304 SUBMITTED TEXT 33 WORDS

First argument specifies the name and location of the file to be

opened. ? Second argument of the open() member function

defines the mode in which the file should be opened. 9.4

96% MATCHING TEXT 33 WORDS

248E1110-Object Oriented Programing using C++(Id 2732).doc (D165248029)

278/304 SUBMITTED TEXT 30 WORDS

Closing a File When a C++ program terminates it automatically:

? Closes all the streams ? Release all the allocated memory ?

Close all the opened files.

91% MATCHING TEXT 30 WORDS

248E1110-Object Oriented Programing using C++(Id 2732).doc (D165248029)

279/304 SUBMITTED TEXT 23 WORDS

and zero (which means FALSE) generally. Rules for using end-

of-document (eof()): ? Continuously test for the end-of-

document condition before

59% MATCHING TEXT 23 WORDS

INF_1016.pdf (D164968061)

https://secure.urkund.com/view/158826004-173688-689700#/sources 122/125

280/304 SUBMITTED TEXT 13 WORDS

ios::app All output to that file to be appended to the end.

96% MATCHING TEXT 13 WORDS

ECAP 444.docx (D142426097)

281/304 SUBMITTED TEXT 13 WORDS

ios::in Open a file for reading. ios::out Open a file for writing.

ios::

100% MATCHING TEXT 13 WORDS

120E1240_ Object Oriented Programming Using C++.doc (D165245825)

282/304 SUBMITTED TEXT 11 WORDS

If you want to open a file in write mode

100% MATCHING TEXT 11 WORDS

248E1110-Object Oriented Programing using C++(Id 2732).doc (D165248029)

283/304 SUBMITTED TEXT 8 WORDS

ofstream outfile; outfile.open("file.dat", ios::out | ios::trunc);

100% MATCHING TEXT 8 WORDS

248E1110-Object Oriented Programing using C++(Id 2732).doc (D165248029)

284/304 SUBMITTED TEXT 19 WORDS

open a file for reading and writing purpose as follows: fstream

afile; afile.open("file.dat", ios::out | ios::in); 9.7

100% MATCHING TEXT 19 WORDS

248E1110-Object Oriented Programing using C++(Id 2732).doc (D165248029)

285/304 SUBMITTED TEXT 119 WORDS

Both istream and ostream give member functions for

repositioning the file position pointer. These member functions

are seekg ("seek get") for istream and seekp ("seek put") for

ostream. The argument to seekg and seekp normally is a long

integer. A second argument can be specified to indicate the

seek direction. The seek direction can be ios::beg (the default)

for positioning relative to the beginning of a stream,ios::cur for

positioning relative to the current position in a stream or

ios::endfor positioning relative to the end of a stream. The file-

position pointer is an integer value that specifies the location in

the file as a number of bytes from the file's starting location.

Some examples of positioning the "get"

97% MATCHING TEXT 119 WORDS

248E1110-Object Oriented Programing using C++(Id 2732).doc (D165248029)

https://secure.urkund.com/view/158826004-173688-689700#/sources 123/125

286/304 SUBMITTED TEXT 45 WORDS

ios::beg) fileObject.seekg(n); /position n bytes forward in

fileObject fileObject.seekg(n, ios::cur); /position n bytes once

again from end of fileObject fileObject.seekg(n, ios::end);

/position at end of fileObject fileObject.seekg(0, ios::end); 9.8

92% MATCHING TEXT 45 WORDS

248E1110-Object Oriented Programing using C++(Id 2732).doc (D165248029)

287/304 SUBMITTED TEXT 21 WORDS

The file stream classes support a number of member functions

for performing the input and output operations on files.

Functions

95% MATCHING TEXT 21 WORDS

OOP through C++ (Block 2).pdf (D148964031)

288/304 SUBMITTED TEXT 45 WORDS

get() and put() are capable of handling a single character at a

time. The function getline() lets you handle multiple characters

at a time. Another pair of functions i.e., read() and write() are

capable of reading and writing blocks of binary data. The get(),

100% MATCHING TEXT 45 WORDS

ODL Learning Materials (ALL 5 UNITS).pdf (D109014230)

289/304 SUBMITTED TEXT 54 WORDS

The get() has many forms, but the most commonly used version

is shown here, along with put() : istream & get(char & ch) ;

ostream & put(char ch) ; The get() function reads a single

character from the associated stream and puts that value in ch.

It returns a reference to the stream.

93% MATCHING TEXT 54 WORDS

C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

290/304 SUBMITTED TEXT 12 WORDS

ch to the stream and returns a reference to the stream.

100% MATCHING TEXT 12 WORDS

C++ From The Ground Up_ 3rd Edition (2003).pdf (D1118784)

291/304 SUBMITTED TEXT 79 WORDS

include>iostream.h< #include>stdlib.h<

#include>fstream.h< #include>conio.h< void main() {

burn fname[20], ch; ifstream blade;/make an info stream clrscr();

cout>>"Enter the name of the record: "; cin.get(fname,

20); cin.get(ch); fin.open(fname, ios::in);/open record if(!fin)/if

blade stores zero i.e., false esteem { cout>>"Error

happened in opening the file..!!\n"; cout>>"Press any key

to exit...\n"; getch(); exit(1); } while(fin)/balance will be 0 when

eof is

80% MATCHING TEXT 79 WORDS

odl C++ lecture notes unit-5.docx (D109013221)

https://secure.urkund.com/view/158826004-173688-689700#/sources 124/125

292/304 SUBMITTED TEXT 22 WORDS

fin.get(ch);/read a character cout>>ch;/show the

character } cout>>"\nPress any key to exit...\n"; fin.close();

getch(); }

92% MATCHING TEXT 22 WORDS

odl C++ lecture notes unit-5.docx (D109013221)

293/304 SUBMITTED TEXT 93 WORDS

These classes are derived directly or indirectly from the classes

istream and ostream . We have already used objects whose

types were these classes: cin is an object of class istream and

cout is an object of class ostream . Therefore, we have already

been using classes that are related to our file streams. And in

fact, we can use our file streams the same way we are already

used to use cin and cout , with the only difference that we have

to associate these streams with physical files. 9.10

100% MATCHING TEXT 93 WORDS

137E1240-Object Oriented Programming using C++_120E1240.docx (D165245896)

294/304 SUBMITTED TEXT 20 WORDS

Which of the following is not a file opening mode ____ . (a)

ios::ate (b) ios::nocreate (c) ios::noreplace (d) ios::

73% MATCHING TEXT 20 WORDS

INF_1016.pdf (D164968061)

295/304 SUBMITTED TEXT 17 WORDS

that will be performing both input and output operations must

be declared as class _________ . (

100% MATCHING TEXT 17 WORDS

OOP through C++ (Block 2).pdf (D148964031)

296/304 SUBMITTED TEXT 17 WORDS

To create an output stream, we must declare the stream to be of

class ___________ . (

78% MATCHING TEXT 17 WORDS

OOP through C++ (Block 2).pdf (D148964031)

297/304 SUBMITTED TEXT 16 WORDS

By default, all the files are opened in ___________mode . (a)

Binary (b) Text (c)

71% MATCHING TEXT 16 WORDS

ECAP 444.docx (D142426097)

298/304 SUBMITTED TEXT 14 WORDS

is the default mode of opening the file? (a) ios::in|ios::out (b)

ios::in|ios::out|ios::trunc (c) ios::in|ios::

60% MATCHING TEXT 14 WORDS

ECAP 444.docx (D142426097)

https://secure.urkund.com/view/158826004-173688-689700#/sources 125/125

299/304 SUBMITTED TEXT 17 WORDS

What is a open()? 8. Describe briefly the features of I/O system

supported by C++. 9.

89% MATCHING TEXT 17 WORDS

What is a stream? 5.2.Describe briefly the features of I/O system

supported by C++. 5.3.

https://www.ddegjust.ac.in/studymaterial/mca-3/ms-17.pdf

300/304 SUBMITTED TEXT 29 WORDS

a file pointer? (a) ios::cur (b) ios::set (c) ios::end (d) ios::beg 10. It

is not possible to combine two or more file opening mode in

open () method. (

58% MATCHING TEXT 29 WORDS

INF_1016.pdf (D164968061)

301/304 SUBMITTED TEXT 36 WORDS

represents the output file stream and is used to create files and

to write information to files. ? Ifstream: It represents the input

file stream and is used to read information from files. ? Fstream:

92% MATCHING TEXT 36 WORDS

OOP through C++ (Block 2).pdf (D148964031)

302/304 SUBMITTED TEXT 31 WORDS

represents the file stream generally, and has the capabilities of

both ofstream and ifstream which means it can create files,

write information to files, and read information from files. ?

98% MATCHING TEXT 31 WORDS

OOP through C++ (Block 2).pdf (D148964031)

303/304 SUBMITTED TEXT 16 WORDS

ios::app: All output to that file to be appended to the end.

96% MATCHING TEXT 16 WORDS

ECAP 444.docx (D142426097)

304/304 SUBMITTED TEXT 21 WORDS

Object Oriented Programming With C++ Tata McGraw-Hill

Education. ? Subhash, K. U. (2010) Object Oriented

Programming With C++ Pearson Education India.

67% MATCHING TEXT 21 WORDS

Object Oriented Programming through C++ Block 1.pdf (D164970258)

